1
|
Schulz ME, Akerstrom VL, Song K, Broyhill SE, Li M, Lambert MD, Goldberg TB, Kataru RP, Shin J, Braun SE, Norton CE, Czepielewski RS, Mehrara BJ, Domeier TL, Zawieja SD, Castorena-Gonzalez JA. TRPV4-Expressing Tissue-Resident Macrophages Regulate the Function of Collecting Lymphatic Vessels via Thromboxane A2 Receptors in Lymphatic Muscle Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595189. [PMID: 38826322 PMCID: PMC11142127 DOI: 10.1101/2024.05.21.595189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.
Collapse
|
2
|
Zhi S, Hu X, Ding Y, Chen H, Li X, Tao Y, Li W. An exploration on the machine-learning-based stroke prediction model. Front Neurol 2024; 15:1372431. [PMID: 38742047 PMCID: PMC11089140 DOI: 10.3389/fneur.2024.1372431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction With the rapid development of artificial intelligence technology, machine learning algorithms have been widely applied at various stages of stroke diagnosis, treatment, and prognosis, demonstrating significant potential. A correlation between stroke and cytokine levels in the human body has recently been reported. Our study aimed to establish machine-learning models based on cytokine features to enhance the decision-making capabilities of clinical physicians. Methods This study recruited 2346 stroke patients and 2128 healthy control subjects from Chongqing University Central Hospital. A predictive model was established through clinical experiments and collection of clinical laboratory tests and demographic variables at admission. Three classification algorithms, namely Random Forest, Gradient Boosting, and Support Vector Machine, were employed. The models were evaluated using methods such as ROC curves, AUC values, and calibration curves. Results Through univariate feature selection, we selected 14 features and constructed three machine-learning models: Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Our results indicated that in the training set, the RF model outperformed the GBM and SVM models in terms of both the AUC value and sensitivity. We ranked the features using the RF algorithm, and the results showed that IL-6, IL-5, IL-10, and IL-2 had high importance scores and ranked at the top. In the test set, the stroke model demonstrated a good generalization ability, as evidenced by the ROC curve, confusion matrix, and calibration curve, confirming its reliability as a predictive model for stroke. Discussion We focused on utilizing cytokines as features to establish stroke prediction models. Analyses of the ROC curve, confusion matrix, and calibration curve of the test set demonstrated that our models exhibited a strong generalization ability, which could be applied in stroke prediction.
Collapse
Affiliation(s)
- Shenshen Zhi
- Department of Blood Transfusion, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiefei Hu
- Medicine School of Chongqing University, Chongqing, China
| | - Yan Ding
- Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huajian Chen
- Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xun Li
- Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yang Tao
- Intensive Care Unit, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Yuan S, Qiu B, Liang Y, Deng B, Xu J, Tang X, Wu J, Zhou S, Li Z, Li H, Ye Q, Wang L, Cui S, Tang C, Yi W, Yao L, Xu N. Role of TRPV1 in electroacupuncture-mediated signal to the primary sensory cortex during regulation of the swallowing function. CNS Neurosci Ther 2024; 30:e14457. [PMID: 37718934 PMCID: PMC10916430 DOI: 10.1111/cns.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
AIMS Electroacupuncture (EA) at the Lianquan (CV23) could alleviate swallowing dysfunction. However, current knowledge of its neural modulation focused on the brain, with little evidence from the periphery. Transient receptor potential channel vanilloid subfamily 1 (TRPV1) is an ion channel predominantly expressed in sensory neurons, and acupuncture can trigger calcium ion (Ca2+ ) wave propagation through active TRPV1 to deliver signals. The present study aimed to investigate whether TRPV1 mediated the signal of EA to the primary sensory cortex (S1) during regulation of swallowing function. METHODS Blood perfusion was evaluated by laser speckle contrast imaging (LSCI), and neuronal activity was evaluated by fiber calcium recording and c-Fos staining. The expression of TRPV1 was detected by RNA-seq analysis, immunofluorescence, and ELISA. In addition, the swallowing function was assessed by in vivo EMG recording and water consumption test. RESULTS EA treatment potentiated blood perfusion and neuronal activity in the S1, and this potentiation was absent after injecting lidocaine near CV23. TRPV1 near CV23 was upregulated by EA-CV23. The blood perfusion at CV23 was decreased in the TRPV1 hypofunction mice, while the blood perfusion and the neuronal activity of the S1 showed no obvious change. These findings were also present in post-stroke dysphagia (PSD) mice. CONCLUSION The TRPV1 at CV23 after EA treatment might play a key role in mediating local blood perfusion but was not involved in transferring EA signals to the central nervous system (CNS). These findings collectively suggested that TRPV1 may be one of the important regulators involved in the mechanism of EA treatment for improving swallowing function in PSD.
Collapse
Affiliation(s)
- Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
- Department of Rehabilitation of Traditional Chinese MedicineHunan University of Chinese MedicineChangshaChina
| | - Bo Qiu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ying Liang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bing Deng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Junshang Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Zeli Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hongzhu Li
- Rehabilitation CenterFirst Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qiuping Ye
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
- Department of Rehabilitation Medicine, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shuai Cui
- Research Institute of Acupuncture and Meridian, College of Acupuncture and MoxibustionAnhui University of Chinese MedicineHefeiChina
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
4
|
Liu X, Zhang M, He C, Jia S, Xiang R, Xu Y, Zhao M. Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1327-1346. [PMID: 37695335 DOI: 10.1007/s00210-023-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Recently, various studies have been devoted to the study of transient receptor potential vanilloid member 1 (TRPV1)-related diseases, potential drugs, and related mechanisms. The objective of this investigation was to examine the significant areas and cutting-edge developments in TRPV1 study within recent decades. Articles or reviews were obtained from the Web of Science Core Collection. VOSviewer 1.6.18 and CiteSpace 6.1 R2 software were utilized to examine publication growth, distribution by country/region, institution, journal, authorship, references, and keywords. The software identified keywords with a high citation burstiness to determine emerging topics. From 1990 to 2023, the annual global publications increased by 62,000%, from 1 to 621. Journal of neuroscience published the most manuscripts and Nature produced the highest citations. The USA, Seoul National University and Di marzo V were the most productive and impactful institution, country, and author, respectively. "TRPV1," "Capsaicin receptor," "Activation," and "Pain" are the most important keywords. The burst keywords "TRPV1 channel," "Oxidative stress," "TRPV1 structure," and "Cancer" are supposed to be the research frontiers. The present study offers valuable insights into the understanding of TRPV1 and pain-related conditions. The research on TRPV1 has demonstrated a steady increase in studies related to pain-related diseases in the past few decades. The significance of TRPV1 in cancer pathogenesis and the resolution of its structure will emerge as a new academic trend in this field, providing direction for more widespread and comprehensive studies in the future.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Mengying Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chongyang He
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
5
|
Romeo I, Brizzi A, Pessina F, Ambrosio FA, Aiello F, Belardo C, Carullo G, Costa G, De Petrocellis L, Frosini M, Luongo L, Maramai S, Paolino M, Moriello AS, Mugnaini C, Scorzelli F, Maione S, Corelli F, Di Marzo V, Alcaro S, Artese A. In Silico-Guided Rational Drug Design and Synthesis of Novel 4-(Thiophen-2-yl)butanamides as Potent and Selective TRPV1 Agonists. J Med Chem 2023; 66:6994-7015. [PMID: 37192374 DOI: 10.1021/acs.jmedchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienza della Salute e della Nutrizione, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carmela Belardo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gabriele Carullo
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Livio Luongo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Epitech Group SpA, Via L. Einaudi 13, 35030 Saccolongo, Padova, Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesco Scorzelli
- Recipharm (Edmond Pharma), Strada Statale dei Giovi 131, 20037 Paderno Dugnano, Milano, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Heart and Lung Research Institute, Department of Medicine, Faculty of Medicine, and Institute of Nutrition and Functional Foods, NUTRISS Center, School of Nutrition, Faculty of Agriculture and Food Science, Université Laval, 2325 Rue de l'Université, Québec, Canada
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Tureckova J, Hermanova Z, Marchetti V, Anderova M. Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int J Mol Sci 2023; 24:ijms24087101. [PMID: 37108263 PMCID: PMC10138480 DOI: 10.3390/ijms24087101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.
Collapse
Affiliation(s)
- Jana Tureckova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Valeria Marchetti
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| |
Collapse
|
7
|
Yang F, Sivils A, Cegielski V, Singh S, Chu XP. Transient Receptor Potential (TRP) Channels in Pain, Neuropsychiatric Disorders, and Epilepsy. Int J Mol Sci 2023; 24:ijms24054714. [PMID: 36902145 PMCID: PMC10003176 DOI: 10.3390/ijms24054714] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Pharmacomodulation of membrane channels is an essential topic in the study of physiological conditions and disease status. Transient receptor potential (TRP) channels are one such family of nonselective cation channels that have an important influence. In mammals, TRP channels consist of seven subfamilies with a total of twenty-eight members. Evidence shows that TRP channels mediate cation transduction in neuronal signaling, but the full implication and potential therapeutic applications of this are not entirely clear. In this review, we aim to highlight several TRP channels which have been shown to mediate pain sensation, neuropsychiatric disorders, and epilepsy. Recent findings suggest that TRPM (melastatin), TRPV (vanilloid), and TRPC (canonical) are of particular relevance to these phenomena. The research reviewed in this paper validates these TRP channels as potential targets of future clinical treatment and offers patients hope for more effective care.
Collapse
|
8
|
Krivoshein G, Bakreen A, van den Maagdenberg AMJM, Malm T, Giniatullin R, Jolkkonen J. Activation of Meningeal Afferents Relevant to Trigeminal Headache Pain after Photothrombotic Stroke Lesion: A Pilot Study in Mice. Int J Mol Sci 2022; 23:ijms232012590. [PMID: 36293444 PMCID: PMC9604291 DOI: 10.3390/ijms232012590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.
Collapse
Affiliation(s)
- Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Abdulhameed Bakreen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|