1
|
Zhao Y, Zhu R, Hu X. Diagnostic capacity of miRNAs in neonatal sepsis: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2024; 37:2345850. [PMID: 38714508 DOI: 10.1080/14767058.2024.2345850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Neonatal sepsis is the third leading cause of mortality during the neonatal period, with manifestations atypical and obscure. But the gold standard-blood culture test, requiring 3-5 days, makes it difficult to unveil the final pathogen and leads to the increasing ratio of false-negative results. The empirical method is consulting traditional biomarkers, such as procalcitonin (PCT), C-reactive protein (CRP), and white blood cell count. However, they are not specific for neonate in diagnostic capacity, especially for infants within three days after delivery, so more novel biomarkers are urgently needed to assist diagnosing neonatal sepsis. microRNAs (miRNAs) have been widely studied in recent years for their diagnostic and prognostic values in different diseases and we conducted a meta-analysis of miRNAs on the topic that whether they are potentially novel biomarkers in early detection of neonatal sepsis. OBJECTIVES The purpose of the study was to assess whether circulating miRNAs could be used as potential biomarkers for neonatal sepsis, including early and late-onset neonatal sepsis, then calculate their overall accuracy (OA) via meta-analysis. METHODS PubMed, Cochrane Library, Embase, Web of Science, Scopus, and Ovid databases were retrieved; data cutoff for this analysis was 15 January 2023. Methodological quality assessment of included studies was performed through the Quality in Prognostic Studies tool. Corresponding 95% confidence interval (95%CI) was calculated to present miRNAs' diagnostic value including the pooled sensitivity (Sen), specificity (Spe), positive or negative likelihood ratios (PLR or NLR), diagnostic odds ratio (DOR), and area under the curve (AUC). Differences in OA between the septic group and non-septic group were compared using Chi-square test. RESULTS After identification, 16 records out of 11 selected articles were eligible for systematic review of miRNAs and four records for PCT; the case group for miRNAs included 945 neonatal sepsis cases; contrast group included 190 respiratory tract infections or pneumonia cases, 60 systemic inflammatory response syndrome (SIRS) cases and 559 healthy neonates. The pooled Sen, Spe, and DOR of miRNAs were 0.87 (95%CI 0.81-0.91), 0.79 (95%CI 0.71-0.85), and 24 (95%CI 12-50), respectively. The pooled Sen, Spe, and DOR of PCT were 0.92 (95%CI 0.83-0.96), 0.64 (95%CI 0.56-0.70), and 20 (95%CI, 7-56), respectively. The OA value of miRNAs was 80.38% and that of PCT was 77.36%, which were not statistically significant difference (p = .13) after the Chi-square test. In addition, no significant publication bias was indicated (p = .92). CONCLUSIONS Circulating miRNA levels could be applied as diagnostic biomarkers in neonatal sepsis.
Collapse
Affiliation(s)
- Yihong Zhao
- Pediatrics Department, Peking University Shenzhen Hospital, Shenzhen, China
- Shantou University Medical College, ShanTou, China
| | - Ruqin Zhu
- Anhui Medical University, HeFei, China
| | - Xiaoyan Hu
- Pediatrics Department, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
He RR, Yue GL, Dong ML, Wang JQ, Cheng C. Sepsis Biomarkers: Advancements and Clinical Applications-A Narrative Review. Int J Mol Sci 2024; 25:9010. [PMID: 39201697 PMCID: PMC11354379 DOI: 10.3390/ijms25169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Sepsis is now defined as a life-threatening syndrome of organ dysfunction triggered by a dysregulated host response to infection, posing significant challenges in critical care. The main objective of this review is to evaluate the potential of emerging biomarkers for early diagnosis and accurate prognosis in sepsis management, which are pivotal for enhancing patient outcomes. Despite advances in supportive care, traditional biomarkers like C-reactive protein and procalcitonin have limitations, and recent studies have identified novel biomarkers with increased sensitivity and specificity, including circular RNAs, HOXA distal transcript antisense RNA, microRNA-486-5p, protein C, triiodothyronine, and prokineticin 2. These emerging biomarkers hold promising potential for the early detection and prognostication of sepsis. They play a crucial role not only in diagnosis but also in guiding antibiotic therapy and evaluating treatment effectiveness. The introduction of point-of-care testing technologies has brought about a paradigm shift in biomarker application, enabling swift and real-time patient evaluation. Despite these advancements, challenges persist, notably concerning biomarker variability and the lack of standardized thresholds. This review summarizes the latest advancements in sepsis biomarker research, spotlighting the progress and clinical implications. It emphasizes the significance of multi-biomarker strategies and the feasibility of personalized medicine in sepsis management. Further verification of biomarkers on a large scale and their integration into clinical practice are advocated to maximize their efficacy in future sepsis treatment.
Collapse
Affiliation(s)
- Rong-Rong He
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Guo-Li Yue
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Mei-Ling Dong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jia-Qi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Chen Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| |
Collapse
|
3
|
Xia R, Shan Y, Luo S, Li J, Liu Y. CIRC_0033530 KNOCKDOWN ALLEVIATES LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY MODEL OF HUMAN LUNG FIBROBLASTS BY MIR-1184/TLR4 AXIS. Shock 2024; 61:215-222. [PMID: 37962954 DOI: 10.1097/shk.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ABSTRACT Background: Circular RNAs have been reported to be involved in regulating the progression of sepsis and sepsis-associated damage. Herein, this work investigated whether circ_0033530 had roles in the process of septic acute lung injury (sepsis-ALI) and its associated mechanism. Methods: Lipopolysaccharide (LPS)-stimulated human lung fibroblasts MRC-5 were used to mimic the cell model of sepsis-ALI in vitro . Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. Functional experiments were conducted using 5-ethynyl-2'-deoxyuridine assay, Cell Counting Kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between miR-1184 and circ_0033530 or toll-like receptor 4 (TLR4) was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Results: Circ_0033530 expression was lower in sepsis patients and LPS-induced fibroblasts than those in healthy control and untreated cells. Functionally, knockdown of circ_0033530 protected fibroblasts against LPS-induced proliferation arrest, apoptosis, and inflammatory response. Mechanistically, circ_0033530 acted as a sponge for miR-1184, and TLR4 RNA was targeted by miR-1184, indicating the circ_0033530/miR-1184/TLR4 axis. Further rescue experiments showed that circ_0033530 silencing-mediated growth inhibition and inflammation on fibroblasts were attenuated by miR-1184 downregulation or TLR4 upregulation. Conclusion: Circ_0033530 knockdown alleviated LPS-induced proliferation arrest, apoptosis, and inflammation in lung fibroblasts by miR-1184/TLR4 axis, and provided molecular theoretical basis for circ_0033530 on the pathogenesis of sepsis-ALI.
Collapse
Affiliation(s)
- Rui Xia
- Synthesize Intensive Care Unit, Zhumadian Central Hospital, Zhumadian 463000, China
| | | | | | | | | |
Collapse
|
4
|
Han W, Li S, Wang N, Chen X, Ma J, Liang J, Hao L, Ren C. MiRNAs as biomarkers for diagnosis of neonatal sepsis: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2023; 36:2217317. [PMID: 37303196 DOI: 10.1080/14767058.2023.2217317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND The relationship between circulating miRNAs and neonatal sepsis and the mechanism of action are still unclear at this time. Therefore, the potential diagnostic role of miRNAs in neonatal sepsis (NS) was studied through meta-analysis. METHOD Web of Science, Cochrane Library, PubMed, and Embase are retrieved, supplemented by manual search, and the search was conducted to find related studies without time limit until May 2022.The quality of the literature was assessed via QUADAS criteria and meta-analyzed via Stata 11.0 software, including the assessment of specificity, sensitivity, likelihood ratio and diagnostic odds ratio. Then, sensitivity analysis and heterogeneity testing were conducted, and finally, the summary receiver operating characteristics (SROC) curve was drawn. RESULT This study included 14 articles, including 20 miRNAs and 1597 newborns(control group: 727 and case group: 870). Among them, one article was of low quality, three articles were of high quality, and the rest were of medium quality. According to the results of random effects model analysis, the pooled specificity and sensitivity of miRNA for the diagnosis of NS were 0.83 (95%CI: 0.79-0.87) and 0.76 (95%CI: 0.72-0.80), respectively. And negative likelihood ratio, positive likelihood ratio, and diagnostic odds ratio were 0.29 (95%CI: 0.24-0.34), 4.51 (95%CI: 3.52-5.78), and 15.81 (95%CI: 10.71-23.35), respectively. The area under the SROC curve was 0.86, and there was no evidence publication bias detected in the funnel plot. CONCLUSION Circulating miRNAs may be very useful in the development of early diagnostic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Wenxiao Han
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shangbin Li
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Wang
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinqing Chen
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinjin Ma
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaojiao Liang
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ling Hao
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Changjun Ren
- Department of Pediatrics, The First Affiliation Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Zheng X, Zhang Y, Lin S, Li Y, Hua Y, Zhou K. Diagnostic significance of microRNAs in sepsis. PLoS One 2023; 18:e0279726. [PMID: 36812225 PMCID: PMC9946237 DOI: 10.1371/journal.pone.0279726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that induce tens of million death each year, yet early diagnosis remains a formidable challenge. Many studies have focused on the diagnostic accuracy of microRNAs (miRNAs) for sepsis in recent years, particularly miR-155-5p, miR-21, miR-223-3p, miR-146a, and miR-125a. Thus, we conducted this meta-analysis to explore if miRNAs may be used as a biomarker for sepsis detection. METHODS We searched PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, and China National Knowledge Infrastructure through May 12, 2022. This meta-analysis was conducted using Meta-disc 1.4 and STATA 15.1 in a fixed/random-effect model. RESULTS The analysis included a total of 50 relevant studies. The overall performance of total miRNAs detection was: pooled sensitivity, 0.76 (95% confidence interval [CI], 0.75 to 0.77); pooled specificity, 0.77 (95%CI, 0.75 to 0.78); and area under the summary receiver operating characteristic curves value (SROC), 0.86. The subgroup analysis suggested that detection in miR-155-5p group had the highest area under the curve (AUC) of SROC among all miRNAs: pooled sensitivity, 0.71 (95%CI, 0.67 to 0.75); pooled specificity, 0.82 (95%CI, 0.76 to 0.86); and SROC, 0.85. MiR-21, miR-223-3p, miR-146a, and miR-125a had SROC values of 0.67, 0.78, 0.69, and 0.74, respectively. The specimen type was found to be a source of heterogeneity in the meta-regression study. The SROC of serum was higher than that of plasma (0.87 and 0.83, respectively). CONCLUSIONS Our meta-analysis revealed that miRNAs, specifically miR-155-5p, could be useful biomarkers for detecting sepsis. A clinical serum specimen is also indicated for diagnostic purposes.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| |
Collapse
|
6
|
Limothai U, Jantarangsi N, Suphavejkornkij N, Tachaboon S, Dinhuzen J, Chaisuriyong W, Trongkamolchai S, Wanpaisitkul M, Chulapornsiri C, Tiawilai A, Tiawilai T, Tantawichien T, Thisyakorn U, Srisawat N. Discovery and validation of circulating miRNAs for the clinical prognosis of severe dengue. PLoS Negl Trop Dis 2022; 16:e0010836. [PMID: 36251659 PMCID: PMC9576100 DOI: 10.1371/journal.pntd.0010836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Early prognostic markers of severe dengue may improve case management and reduce dengue-related mortalities. This study aimed to identify circulating microRNAs (miRNAs) as biomarkers for predicting severe dengue. Methodology Serum samples from dengue-infected patients were collected on the first day of admission. Patients were followed up for 14 days after admission to determine the final diagnosis. Participants were divided into non-severe and severe dengue, as defined by WHO 2009 criteria. Circulating microtranscriptome analysis was performed using NanoString miRNA Expression Assay. The expression level of candidate miRNAs were then validated by quantitative reverse transcription-PCR method. Principal findings The discovery cohort (N = 19) lead to the identification of 37 differentially expressed miRNAs between the two groups. Six up-regulated candidate miRNAs were selected and further validated in the larger cohort (N = 135). MiR574-5p and miR1246 displayed the highest diagnostic performance in discriminating between severe from non-severe dengue (ROC-AUC = 0.83). Additionally, miR574-5p and miR1246 had high sensitivity and high negative predictive value for detecting severe dengue. Multivariate analysis suggested that serum miR574-5p was an independent predictor of severe dengue (odds ratio 3.30, 95% CI 1.81–6.04; p<0.001). Conclusion Our study indicated that circulating miRNAs, especially miR-574-5p and miR-1246, might be a promising diagnostic and prognostic biomarker for severe dengue upon hospital admission, especially when using these biomarkers on days 1 to 2 before the onset of severe dengue complications. Dengue infection, a mosquito-borne disease, is an expanding global problem. It has a broad clinical spectrum that includes severe and non-severe clinical manifestations with a high risk of death. Identifying early prognostic markers of severe complications may improve case management and reduce dengue-related mortalities. The circulating microRNA (miRNA) profile has been widely used to identify potential biomarkers against viral infections. Our data revealed that the circulating miRNA expression pattern of severe dengue patients was significantly different from the non-severe group. In addition, circulating miRNAs, especially miR-574-5p and miR-1246, could be promising diagnostic and prognostic biomarkers for severe dengue. These data have implications for developing biomarkers for clinical use and could improve risk prediction in dengue patients.
Collapse
Affiliation(s)
- Umaporn Limothai
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sasipha Tachaboon
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Janejira Dinhuzen
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Watchadaporn Chaisuriyong
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | - Terapong Tantawichien
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand,Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Usa Thisyakorn
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Srisawat
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand,Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America,Academy of Science, Royal Society of Thailand, Bangkok, Thailand,* E-mail:
| |
Collapse
|
7
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Wang L, Su H, Liu W. Hsa_circ_0010729 regulates H 2O 2-induced myocardial injury by regulating miR-1184/RIPK1 axis. Transpl Immunol 2022; 74:101653. [PMID: 35772682 DOI: 10.1016/j.trim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is an important risk factor for cardiovascular diseases (CVDs) and cardiac transplantation, as I/R can cause myocardial cell hypoxia/reoxygenation (H/R) injury. Recent research has shown that circular RNAs (circRNAs) may affect the progress of H/R-induced myocardial injury, but the mechanism remains unknown. Our work explored the role of circ_0010729 in H2O2-induced myocardial injury. METHODS The levels of circ_0010729, microRNA-1184 (miR-1184) and mRNA of receptor interacting serine/threonine kinase 1 (RIPK1) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in human cardiac myocytes (HCMs). Meanwhile, the protein level of RIPK1 was quantified by western blot analysis. Besides, the cell functions were examined by 5-Ethynyl-29-deoxyuridine (EdU) assay, flow cytometry assay, western blot and antioxidant indexes analysis. Furthermore, the interplay between miR-1184 and circ_0010729 or RIPK1 was detected by dual-luciferase reporter assay. Eventually, the in vivo experiments were applied to measure the role of circ_0010729. RESULTS The levels of circ_0010729 RNA and RIPK1 protein were increased, and the miR-1184 was decreased in HCMs exposed to H2O2. In functional analysis, circ_0010729 deficiency restrained cell apoptosis and oxidative stress, whereas promoted cell proliferation in HCMs under H2O2 exposure. Moreover, miR-1184 inhibited the H2O2-induced myocardial injury by targeting RIPK1. Mechanistically, circ_0010729 acted as a miR-1184 sponge to regulate the level of RIPK1. CONCLUSION Circ_0010729 promotes H2O2-induced myocardial injury, and thus circ_001729 may be targeted as a potential therapy for H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Lingna Wang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, No.48, Baishuitang Road, Haikou, Hainan Province 571000, China
| | - Huiqin Su
- Department of Cardiology, Qionghai Hospital of Traditional Chinese Medicine, Qionghai City, Hainan Province 571400, China
| | - Wen Liu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, No.48, Baishuitang Road, Haikou, Hainan Province 571000, China.
| |
Collapse
|
9
|
Abdelaleem OO, Mohammed SR, El Sayed HS, Hussein SK, Ali DY, Abdelwahed MY, Gaber SN, Hemeda NF, El-Hmid RGA. Serum miR-34a-5p and miR-199a-3p as new biomarkers of neonatal sepsis. PLoS One 2022; 17:e0262339. [PMID: 34990478 PMCID: PMC8735601 DOI: 10.1371/journal.pone.0262339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Neonatal sepsis is a serious condition. Recent clinical studies have indicated that microRNAs (miRNAs) are key players in the pathogenesis of sepsis, which could be used as biomarkers for this condition. Patients and methods A total of 90 neonates with sepsis and 90 healthy neonates were enrolled in this study. qRT-PCR was performed to measure the expression levels of serum miR-34a-5p and miR-199a-3p. Results miR-34a-5p and miR-199a-3p serum levels were significantly reduced in neonates with sepsis compared with those in healthy neonates (P = 0.006 and P = 0.001, respectively). Significant correlations of miR-34a-5p and miR-199a-3p with each of TLC, RDW, RBS, and C-reactive protein (CRP) as well as SNAPII were observed, indicating their associations with the severity of neonatal sepsis. Conclusion miR-34a-5p and miR-199a-3p may be useful as novel biomarkers in neonatal sepsis and may provide a new direction for its treatment.
Collapse
Affiliation(s)
- Omayma O. Abdelaleem
- Faculty of Medicine, Departments of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt
- * E-mail:
| | - Shereen Rashad Mohammed
- Faculty of Medicine, Departments of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt
| | - Hassan S. El Sayed
- Faculty of Medicine, Departments of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt
| | | | - Doaa Y. Ali
- Faculty of Medicine, Departments of Clinical Pathology, Fayoum University, Fayoum, Egypt
| | | | - Sylvana N. Gaber
- Faculty of Medicine, Departments of Microbiology and Immunology, Fayoum University, Fayoum, Egypt
| | - Nada F. Hemeda
- Faculty of Agriculture, Department of Genetics, Fayoum University, Fayoum, Egypt
| | - Rehab G. Abd El-Hmid
- Faculty of Medicine, Departments of Pediatrics, Fayoum University, Fayoum, Egypt
| |
Collapse
|
10
|
Doganyigit Z, Eroglu E, Akyuz E. Inflammatory mediators of cytokines and chemokines in sepsis: From bench to bedside. Hum Exp Toxicol 2022; 41:9603271221078871. [PMID: 35337213 DOI: 10.1177/09603271221078871] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Sepsis is a serious clinical condition characterized by damage to the immune system as a result of an uncontrolled response to infection. Septic patients show complications such as fever, cardiovascular shock, and/or systemic organ failure. Acute organ failure formed in sepsis mostly affects the respiratory and cardiovascular systems. In sepsis, responses including pro-inflammatory and anti-inflammatory processes in addition to the Toll-Like Receptor 4 (TLR4) signals leading to the release of inflammatory mediators have been suggested to be fundamental pathways in the pathophysiology of sepsis. Purpose: In this context, unregulated levels of sepsis-associated inflammatory mediators may increase the risk of mortality. In sepsis, infection-induced pathogens lead to a systemic inflammatory response. These systemic responses may contribute to septic shock and organ dysfunction. In the unfavorable clinical course of sepsis, an uncontrolled inflammatory response is observed. Accordingly, the mechanism of inflammatory mediators such as cytokines and chemokines in sepsis might increase. Neurotransmitters and gene regulators affect inflammatory mediators and control the inflammatory response. In this review, we aimed to show the new therapeutic targets in sepsis treatment with current studies. New clinical implications targeting inflammatory mediators in high mortality affected by the uncontrolled inflammatory response in sepsis can contribute to the understanding of the symptoms.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, 162338Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, 162338Yozgat Bozok University Yozgat, Turkey
| | - Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, 448249University of Health Sciences Istanbul, Turkey
| |
Collapse
|
11
|
Jouza M, Bohosova J, Stanikova A, Pecl J, Slaby O, Jabandziev P. MicroRNA as an Early Biomarker of Neonatal Sepsis. Front Pediatr 2022; 10:854324. [PMID: 35615626 PMCID: PMC9125080 DOI: 10.3389/fped.2022.854324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a major cause of lethality in neonatal intensive care units. Despite significant advances in neonatal care and growing scientific knowledge about the disease, 4 of every 10 infants born in developed countries and suffering from sepsis die or experience considerable disability, including substantial and permanent neurodevelopmental impairment. Pharmacological treatment strategies for neonatal sepsis remain limited and mainly based upon early initiation of antibiotics and supportive treatment. In this context, numerous clinical and serum-based markers have been evaluated for diagnosing sepsis and evaluating its severity and etiology. MicroRNAs (miRNAs) do not encode for proteins but regulate gene expression by inhibiting the translation or transcription of their target mRNAs. Recently, it was demonstrated in adult patients that miRNAs are released into the circulation and that the spectrum of circulating miRNAs is altered during various pathologic conditions, such as inflammation, infection, and sepsis. Here, we summarize current findings on the role of circulating miRNAs in the diagnosis and staging of neonatal sepsis. The conclusions point to substantial diagnostic potential, and several miRNAs have been validated independently by different teams, namely miR-16a, miR-16, miR-96-5p, miR-141, miR-181a, and miR-1184.
Collapse
Affiliation(s)
- Martin Jouza
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Andrea Stanikova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neonatology, University Hospital Brno, Brno, Czechia
| | - Jakub Pecl
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
13
|
Sun B, Guo S. miR-486-5p Serves as a Diagnostic Biomarker for Sepsis and Its Predictive Value for Clinical Outcomes. J Inflamm Res 2021; 14:3687-3695. [PMID: 34354365 PMCID: PMC8331108 DOI: 10.2147/jir.s323433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background As a molecular detection method, miRNA can quickly diagnose and prevent diseases, intervene in disease as early as possible, and reduce mortality. This study was to investigate the potential clinical diagnostic and predictive significance of miR-486-5p in sepsis and its correlation with inflammation and disease severity. Methods The serum miR-486-5p in 108 sepsis, 60 pneumonia-infected, and 101 healthy controls were detected by RT-qPCR. Spearman coefficient detects the correlation between serum miRNA and disease severity indicators (APACHE II, SOFA scores), and inflammation indicators (CRP, PCT), respectively. The diagnostic significance of miR-486-5p in sepsis was analyzed by the ROC curve. Kaplan–Meier estimator and Cox regression hazards analysis of the predictive significance of serum miR-486-5p in 28-day survival from sepsis. Results Serum miR-486-5p was increased in sepsis patients compared with healthy control and pneumonia-infected patients (P < 0.001). And increased serum miR-486-5p was positively associated with disease severity (SOFA score and APACHE II score) and inflammation (CRP and PCT). Serum miR-486-5p can not only identify sepsis patients from healthy controls (AUC = 0.914) but also significantly distinguish sepsis patients from pneumonia-infected patients (AUC = 0.814), showing good potential as a diagnostic biomarker for sepsis. In addition, serum miR-486-5p was an independent predictor of 28-day survival (log-rank P = 0.012), and patients with high levels of miR-486-5p had a poorer overall 28-day survival (HR = 3.057, 95% CI = 1.385–17.817, P = 0.014). Conclusion miR-486-5p is a potential diagnostic biomarker for sepsis, and its high level is significantly correlated with the disease severity and inflammation. In addition, miR-486-5p were predictive risk factors for 28-day survival in sepsis patients.
Collapse
Affiliation(s)
- Baobin Sun
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, People's Republic of China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, People's Republic of China
| |
Collapse
|