1
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Chen X, Zhu X, Yan W, Wang L, Xue D, Zhu S, Pan J, Li Y, Zhao Q, Han D. Serum lncRNA THRIL predicts benign and malignant pulmonary nodules and promotes the progression of pulmonary malignancies. BMC Cancer 2023; 23:755. [PMID: 37582734 PMCID: PMC10426220 DOI: 10.1186/s12885-023-11264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND This project aimed to research the significance of THRIL in the diagnosis of benign and malignant solitary pulmonary nodules (SPNs) and to investigate the role of THRIL/miR-99a in malignant SPNs. METHODS The study groups consisted of 169 patients with SPN and 74 healthy subjects. The differences in THRIL levels were compared between the two groups and the healthy group. The receiver operating characteristic curve (ROC) was utilized to analyze the THRIL's significance in detecting benign and malignant SPN. Pearson correlation and binary regression coefficients represented the association between THRIL and SPN. CCK-8 assay, Transwell assay, and flow cytometry were utilized to detect the regulatory effect of THRIL silencing. The interaction between THRIL, miR-99a, and IGF1R was confirmed by the double luciferase reporter gene. RESULTS There were differences in THRIL expression in the healthy group, benign SPN group, and malignant SPN group. High accuracy of THRIL in the diagnosis of benign SPN and malignant SPN was observed. THRIL was associated with the development of SPN. The expression of THRIL was upregulated and miR-99a was downregulated in lung cancer cells. The double luciferase report experiment confirmed the connections between THRIL/miR-99a/IGF1R. Silencing THRIL could suppress cell proliferation, migration, and invasion and promote cell apoptosis by binding miR-99a. CONCLUSION The detection of THRIL in serum is useful for the assessment of malignant SPN. THRIL can regulate the expression of IGF1R through miR-99a, thereby promoting the growth of lung cancer cells and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Xianji Zhu
- Department of Respiratory Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenjun Yan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Luan Wang
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dongming Xue
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Shouying Zhu
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Jiajun Pan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Yufeng Li
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Qixiang Zhao
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dong Han
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China.
| |
Collapse
|
4
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|