1
|
Bu P, Xie W, Wang S, Yang Z, Peng K, Zhang W, Hu S. EGFL6 activates the ERK signaling to improve angiogenesis and osteogenesis of BMSCs in patients with steroid-induced osteonecrosis of the femoral head. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4287-4298. [PMID: 38085290 DOI: 10.1007/s00210-023-02880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 05/23/2024]
Abstract
Recently, epidermal growth factor-like domain protein 6 (EGFL6) was proposed as a candidate gene for coupling angiogenesis to osteogenesis during bone repair; however, the exact role and underlying mechanism are largely unknown. Here, using immunohistochemical and Western blotting analyses, we found that EGFL6 was downregulated in the femoral head tissue of patients with steroid-induced osteonecrosis of the femoral head (SONFH) compared to patients with traumatic femoral neck fracture (FNF), accompanied by significantly downregulation of osteogenic and angiogenic marker genes. Then, bone marrow mesenchymal stem cells (BMSCs) were isolated from the FNF and the SONFH patients, respectively, and after identification by immunofluorescence staining surface markers, the effect of EGFL6 on their abilities of osteogenic differentiation and angiogenesis was evaluated. Our results of alizarin red staining and tubular formation experiment revealed that BMSCs from the SONFH patients (SONFH-BMSCs) displayed an obviously weaker ability of osteogenesis than FNF-BMSCs, and EGFL6 overexpression improved the abilities of osteogenic differentiation and angiogenesis of SONFH-BMSCs. Moreover, EGFL6 overexpression activated extracellular signal-regulated kinases 1/2 (ERK1/2). ERK1/2 inhibitor U0126 reversed the promoting effect of EGFL6 overexpression on the expression of osteogenesis and angiogenesis-related genes in the SONFH femoral head. In conclusion, EGFL6 plays a protective role in SONFH, it promotes osteogenesis and angiogenesis of BMSCs, and its effect is likely to be related to ERK1/2 activation.
Collapse
Affiliation(s)
- Penghui Bu
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710054, China
| | - Weipeng Xie
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710054, China
| | - Sicheng Wang
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710054, China
| | - Zhi Yang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| | - Kan Peng
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| | - Weisong Zhang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| | - Shouye Hu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China.
| |
Collapse
|
2
|
Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, Liu H, Qian D, Deng W, Chen J, Tang P, Wang Q, Zhao S, Zhou Z, Xu T, Huang Y, Gu J, Fan J, Yin G. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY) 2021; 13:7067-7083. [PMID: 33621952 PMCID: PMC7993661 DOI: 10.18632/aging.202560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). As phagocytes do, microvascular endothelial cells (MECs) participate in myelin debris clearance at the injury site within one week. Our group has verified that G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) is essential in autophagy and angiogenesis, both of which are tightly related to the uptake and degradation of myelin debris by MECs. Here, we analyzed the performance and mechanism of GIT1 in myelin debris clearance after SCI. The SCI contusion model was established and in vitro MECs were treated with myelin debris. Better recovery from traumatic SCI was observed in the GIT1 WT mice than in the GIT1 KO mice. More importantly, we found that GIT1 prompted MECs to clear myelin debris and further enhanced MECs angiogenesis in vivo and in vitro. Mechanistically, GIT1-mediated autophagy contributed to the clearance of myelin debris by MECs. In this study, we demonstrated that GIT1 may prompt MECs to clear myelin debris via autophagy and further stimulate MECs angiogenesis via upregulating VEGF. Our results indicate that GITI may serve as a promising target for accelerating myelin debris clearance and improving SCI recovery.
Collapse
Affiliation(s)
- Bowen Wan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Wang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fanqi Kong
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Qirui Ding
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenliang Zhang
- Department of Orthopedics, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian 223600, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dingfei Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenlin Deng
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi 214000, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
3
|
Xu Y, Wang C, Chen X, Li Y, Bian W, Yao C. San Huang Decoction Targets Aurora Kinase A to Inhibit Tumor Angiogenesis in Breast Cancer. Integr Cancer Ther 2020; 19:1534735420983463. [PMID: 33349071 PMCID: PMC7758657 DOI: 10.1177/1534735420983463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
San Huang Decoction (SHD), a Chinese herb formula, has been popularly prescribed in the clinical treatment of patients suffering from breast cancer. The aim of this study was to explore the anti-angiogenic effects of SHD in breast cancer and explain the underlying mechanism. Transwell and Matrigel assays showed that SHD reduced human umbilical vein endothelial cell migration and tubule formation and ELISA and qRT-PCR assays demonstrated its mediation of vascular endothelial growth factor (VEGF) expression. siRNA silencing of aurora kinase A (AURKA) produced results similar to those obtained by inhibition of AURKA with SHD. In addition, a chorioallantoic membrane assay was carried out to directly examine the effect of SHD on breast cancer anti-angiogenesis and immunofluorescence and immunohistochemical staining analysis showed that SHD reduced the expression of CD31, AURKA, and VEGF in a xenograft model. Furthermore, SHD regulated extracellular signal-regulated kinase expression in breast cancer cells, which was examined by western blotting. In conclusion, our findings indicated that SHD treatment mimicked the decrease in tumor neovascularization in breast cancer cells after the siRNA-mediated knockdown of AURKA. Thus, SHD may inhibit tumor angiogenesis in breast cancer by targeting AURKA and downregulating the ERK signaling pathway.
Collapse
Affiliation(s)
- Yanlei Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Liyang Branch of Jiangsu Province Hospital of Chinese Medicine, Changzhou, China
| | - Cong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiyan Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yongfei Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Weihe Bian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chang Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Chang Yao, Affiliated Hospital of Nanjing University of Chinese Medicine, Han Zhong Road 155, Nanjing, Jiangsu 210029, China. The First Clinical School of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Liu S, Luttrell LM, Premont RT, Rockey DC. β-Arrestin2 is a critical component of the GPCR-eNOS signalosome. Proc Natl Acad Sci U S A 2020; 117:11483-11492. [PMID: 32404425 PMCID: PMC7261012 DOI: 10.1073/pnas.1922608117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cell nitric oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in endothelial cells, is regulated by complex posttranslational mechanisms. Sinusoidal portal hypertension, a disorder characterized by liver sinusoidal endothelial cell (SEC) injury with resultant reduced eNOS activity and NO production within the liver, has been associated with defects in eNOS protein-protein interactions and posttranslational modifications. We and others have previously identified novel eNOS interactors, including G protein-coupled receptor (GPCR) kinase interactor 1 (GIT1), which we found to play an unexpected stimulatory role in GPCR-mediated eNOS signaling. Here we report that β-arrestin 2 (β-Arr2), a canonical GPCR signaling partner, localizes in SECs with eNOS in a GIT1/eNOS/NO signaling module. Most importantly, we show that β-Arr2 stimulates eNOS activity, and that β-Arr2 expression is reduced and formation of the GIT1/eNOS/NO signaling module is interrupted during liver injury. In β-Arr2-deficient mice, bile duct ligation injury (BDL) led to significantly reduced eNOS activity and to a dramatic increase in portal hypertension compared to BDL in wild-type mice. Overexpression of β-Arr2 in injured or β-Arr2-deficient SECs rescued eNOS function by increasing eNOS complex formation and NO production. We also found that β-Arr2-mediated GIT1/eNOS complex formation is dependent on Erk1/2 and Src, two kinases known to interact with and be activated by β-Arr2 in response to GCPR activation. Our data emphasize that β-Arr2 is an integral component of the GIT1/eNOS/NO signaling pathway and have implications for the pathogenesis of sinusoidal portal hypertension.
Collapse
Affiliation(s)
- Songling Liu
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Louis M Luttrell
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Richard T Premont
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Don C Rockey
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
5
|
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020; 1474:5-14. [PMID: 32242943 DOI: 10.1111/nyas.14348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels serve as a versatile transport system and play crucial roles in organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular stem cells or osteoprogenitor cells and thereby regulate bone formation. Recent studies reported that a specialized capillary subtype, termed type H vessels, is shown to couple angiogenesis and osteogenesis in rodents and humans. They can be distinguished by specific cell surface markers, as the endothelial cells in the metaphysis and endosteum highly express the junctional protein CD31 and the sialoglycoprotein endomucin. Here, we provide an overview of the role of type H vessels in bone homeostasis and summarize their linkage with various cytokines to control bone cell behavior and bone formation. We also discuss the potential clinical application for bone disorders by targeting these specific vessels according to their physiological and pathobiological settings.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li L, Tang P, Zhou Z, Wang Q, Xu T, Zhao S, Huang Y, Kong F, Liu W, Cheng L, Zhou Z, Zhao X, Gu C, Luo Y, Tao G, Qian D, Chen J, Fan J, Yin G. GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NF-κB/Notch signalling to promote angiogenesis. Cell Prolif 2019; 52:e12689. [PMID: 31502302 PMCID: PMC6869488 DOI: 10.1111/cpr.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Osteogenesis is coupled with angiogenesis during bone remodelling. G‐protein‐coupled receptor (GPCR) kinase 2‐interacting protein‐1 (GIT1) is an important protein that participates in fracture healing by regulating angiogenesis. This study investigated whether GIT1 could affect bone mesenchymal stem cells (BMSCs) to secrete angiogenic factors to enhance fracture healing by promoting angiogenesis and its possible mechanism. Materials and methods The angiogenesis of mice post‐fracture was detected by micro‐CT and immunofluorescence. Subsequently, vascular endothelial growth factor (VEGF) level in mouse and human BMSCs (hBMSCs) under TNF‐α stimulation was detected. The hBMSCs were transfected with GIT1 shRNAs to further explore the relationship between GIT1 and VEGF and angiogenesis in vitro. Furthermore, based on previous research on GIT1, possible signal pathways were investigated. Results GIT1 knockout mice exhibited impaired angiogenesis and delayed fracture healing. And GIT1 deficiency remarkably reduced the expression of VEGF mRNA in BMSCs, which affected the proliferation and migration of human umbilical vein endothelial cells. GIT1 knockdown inhibited the activation of Notch and NF‐κB signals by decreasing nuclear transportation of NICD and P65/P50, respectively. Overexpression of the canonical NF‐κB subunits P65 and P50 markedly increased NICD‐dependent activation of recombination signal‐binding protein‐jκ reporter. Finally, GIT1 enhanced the affinity of NF‐κB essential modulator (NEMO) for K63‐linked ubiquitin chains via interaction with NEMO coiled‐coil 2 domains. Conclusion These data revealed a positive role for GIT1 by modulating the Notch/NF‐κB signals which promoting paracrine of BMSCs to enhance angiogenesis and fracture healing.
Collapse
Affiliation(s)
- Linwei Li
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Huang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fanqi Kong
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhimin Zhou
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjiang Gu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Luo
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaojian Tao
- Department of Pain, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dingfei Qian
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Chen
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Xu T, Luo Y, Kong F, Lv B, Zhao S, Chen J, Liu W, Cheng L, Zhou Z, Zhou Z, Huang Y, Li L, Zhao X, Qian D, Fan J, Yin G. GIT1 is critical for formation of the CD31 hiEmcn hi vessel subtype in coupling osteogenesis with angiogenesis via modulating preosteoclasts secretion of PDGF-BB. Bone 2019; 122:218-230. [PMID: 30853660 DOI: 10.1016/j.bone.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) is a scaffold protein that plays a vital role in bone modeling and remodeling during osteogenesis coupled with angiogenesis. Recent studies have shown that a specialized subset of vascular endothelium strongly positive for CD31 and Endomucin (CD31hiEmcnhi) is coupled with anabolic bone formation. Based on our previous finding that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and bone formation, we hypothesized that GIT1 affects formation of the CD31hiEmcnhi vessel subtype. In the current study, GIT1 knockout (GIT1 KO) mice displayed a significant decrease in trabecular bone mass and CD31hiEmcnhi vessel number, compared to their wild-type counterparts. In the fracture healing mouse model, GIT1 KO mice contained a lower number of CD31hiEmcnhi vessels in fracture callus at days 7 and 14. However, no significant differences in the number of preosteoclasts in bone marrow, trabecular bone and callus in GIT1 KO mice were observed, compared with wild-type mice. Notably, concentrations of serum platelet-derived growth factor-BB(PDGF-BB) secreted by preosteoclasts associated with CD31hiEmcnhi vessel formation were lower in GIT1 KO mice. In addition, PDGF-BB-associated expression of phosphorylated extracellular signal-regulated kinase- 1/2 (ERK1/2) and specificity protein 1 (SP1) was significantly decreased in preosteoclasts of GIT1 KO mice. These results collectively suggest that GIT1 is a critical participant in formation of the CD31hiEmcnhi vessel subtype, highlighting a novel biologic function of this scaffold protein in preosteoclasts.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - YongJun Luo
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - FanQi Kong
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - ShuJie Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Jian Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Wei Liu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Lin Cheng
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Zheng Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - ZhiMin Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - YiFan Huang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - LinWei Li
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Xuan Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - DingFei Qian
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China
| | - Jin Fan
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China.
| | - GuoYong Yin
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd., Nanjing 210029, China.
| |
Collapse
|
8
|
Zhang Z, Hu P, Xiong J, Wang S. Inhibiting GIT1 reduces the growth, invasion, and angiogenesis of osteosarcoma. Cancer Manag Res 2018; 10:6445-6455. [PMID: 30555255 PMCID: PMC6278701 DOI: 10.2147/cmar.s181066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background GIT1, a scaffold protein with ubiquitous multi-domain, is involved in many cellular processes. In recent years, it was proved that GIT1 participated in various tumors’ growth or metastasis. However, the biological function of GIT1 in osteosarcoma is still unclear. In this study, we aimed to investigate the role and mechanism of GIT1 in osteosarcoma. Materials and methods Human osteosarcoma tissues were obtained to investigate the distribution of GIT1. Adequate osteosarcoma cells were stably infected with lentivirus to knockdown GIT1 level and then was used to carry out cell invasion and vascular endothelial growth factor (VEGF) assay in vitro. Orthotopic femoral osteosarcoma model was constructed to investigate the growth, invasion, and angiogenesis in vivo. Western blot was used to detect extracellular signal-regulated kinase (ERK1/2) activation and hypoxia-inducible factor-1 (HIF-1α) expression. Results In this study, we found that GIT1 was distributed in human osteosarcoma tissues and highly expressed in osteosarcoma (OS) cells. Knockdown of GIT1 inhibited cell invasion and VEGF release in vitro and suppressed tumor growth, invasion, and angiogenesis in vivo. Furthermore, knockdown of GIT1 substantially downregulated the protein levels of p-ERK and HIF-1α in OST cells and inhibition of p-ERK by PD98059 could significantly decrease the expression of HIF-1α and concentration of VEGF in GIT1-shRNA-treated cells. Conclusion GIT1 knockdown can effectively inhibit the growth, invasion, and angiogenesis of osteosarcoma. Thus, GIT1 might act as an oncogenic factor in osteosarcoma and could be a potential molecular target for osteosarcoma gene therapy.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China,
| | - Polu Hu
- Nanjing Red Cross Blood Center, Nanjing 210003, China
| | - Jin Xiong
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China,
| | - Shoufeng Wang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China,
| |
Collapse
|
9
|
Chen J, Wang Q, Zhou W, Zhou Z, Tang PY, Xu T, Liu W, Li LW, Cheng L, Zhou ZM, Fan J, Yin GY. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling. FASEB J 2018; 32:fj201800548. [PMID: 29912587 DOI: 10.1096/fj.201800548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GPCR kinase 2-interacting protein-1 (GIT1) is a scaffold protein that plays an important role in cell adaptation, proliferation, migration, and differentiation; however, the role of GIT1 in the regulation of neuronal death after spinal cord injury remains obscure. Here, we demonstrate that GIT1 deficiency remarkably increased neuronal apoptosis and enhanced JNK/p38 signaling, which resulted in stronger motor deficits by ischemia-reperfusion in vivo, consistent with the finding of oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro. After treatment with JNK and p38 inhibitors, abnormally necroptotic cell death caused by GIT1 knockdown could be partially rescued, with the recovery of neuronal viability, which was still poorer than that in control neurons. Meanwhile, overactivation of JNK/p38 after GIT1 depletion was concomitant with excessive activity of apoptosis signal-regulating kinase-1 (ASK1) that could be abolished by ASK1 silencing in HEK293T cells. Finally, GIT1 could disrupt the oligomerization of ASK1 via interaction between the synaptic localization domain that contains the coiled-coil (CC)-2 domain of GIT1 and the C-terminal CC domain of ASK1. It suppressed the autophosphorylation of ASK1 and led to decreasing activity of the ASK1/JNK/p38 pathway. These data reveal a protective role for GIT1 in neuronal damage by modulating ASK1/JNK/p38 signaling.-Chen, J., Wang, Q., Zhou, W., Zhou, Z., Tang, P.-Y., Xu, T., Liu, W., Li, L.-W., Cheng, L., Zhou, Z.-M., Fan, J., Yin, G.-Y. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng-Yu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin-Wei Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, Lennon RJ, Dyer RB, Camilleri M, Kashyap PC, Farrugia G, Chen J, Singh RJ, Grover M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 2018; 32:fj201800560R. [PMID: 29897814 PMCID: PMC6219825 DOI: 10.1096/fj.201800560r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie A. Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory D. Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Wendy J. Sundt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan J. Lennon
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Roy B. Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Chen P, Gu WL, Gong MZ, Wang J, Li DQ. GIT1 gene deletion delays chondrocyte differentiation and healing of tibial plateau fracture through suppressing proliferation and apoptosis of chondrocyte. BMC Musculoskelet Disord 2017; 18:320. [PMID: 28754105 PMCID: PMC5534123 DOI: 10.1186/s12891-017-1653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Although tibial plateau fracture is an uncommon injury, its regulation is challenging and there are some influencing factors, including the effects of severe bone displacement, depression and cancellous bone cartilage, and inevitable cartilage damage. And GIT1 plays an important role in bone mass and 78 osteoblast cell migration. Methods The study used 72 C57/BL6 mice. A tibial plateau fracture model was established by using mice with the same number of GIT1 gene deletions (the experimental group) and their wild-type littermates (the control group). Joint and bone callus recovery were evaluated by X-ray and CT thin layer scans. Micro CT assay and histomorphometry were conducted in order to evaluate the volume of newly formed blood vessels. Type II collagen expression in tibial tissues after tibial plateau fracture were detected by immunohistochemistry after 7, 14 and 21 days. The number of proliferating cell nuclear antigen (PCNA) positive cells after tibial plateau fracture was tested by immunohistochemistry after 14 and 21 days. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was conducted after 14 and 21 days in order to test chondrocyte apoptosis in tibial tissues after tibial plateau fracture. Results The GIT1 gene deletion group mice spent less time on the rotating rod than the control group mice (P < 0.05). Compared with the control group, postoperative recovery was retarded, because GIT1 gene deletion slowed down neovascularization after tibial plateau fracture (P < 0.05). Compared with the control group, mouse type II collagen expression significantly decreased in the GIT1 gene deletion group, and the proportion of PCNA positive cells significantly decreased (P < 0.05). The TUNEL results indicate that GIT1 gene deletion led to reduced chondrocyte apoptosis. Conclusion GIT1 gene deletion can inhibit chondrocyte proliferation and apoptosis during the recovery of tibial plateau fracture, so as to delay chondrocyte differentiation and tibial plateau fracture healing.
Collapse
Affiliation(s)
- Peng Chen
- Department of Trauma Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Wan-Li Gu
- Department of Trauma Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Ming-Zhi Gong
- Department of Trauma Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Jun Wang
- Department of Trauma Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Dong-Qing Li
- Department of Operating Theater, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, Shandong Province, People's Republic of China.
| |
Collapse
|
12
|
Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 2017; 15:1362-1367. [PMID: 28098876 DOI: 10.3892/mmr.2017.6110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Brain‑derived neurotrophic factor (BDNF), a member of the neurotropic family, is expressed in osteoblast‑like cells of a fracture callus, however, its role in fracture healing remains to be fully elucidated. Osteoblasts isolated from Sprague Dawley rats were stimulated by BDNF in a dose‑ and time‑dependent manner. Immunoblotting and immunofluorescence was used to detect the expression and distribution of targeted proteins. The concentration of vascular endothelial growth factor (VEGF) released in medium was determined using an ELISA. PD98059 and K252a were used to investigate the signaling pathways that may be involved. The present study demonstrated that BDNF was involved in fracture repair by controlling the expression and secretion of VEGF from osteoblasts, which predominantly drives angiogenesis during fracture healing. Tropomyosin‑related kinase B (TrkB), the specific receptor of BDNF, was shown to be expressed at high levels in the osteoblasts. Following BDNF stimulation, TrkB and extracellular signal‑regulated kinase 1/2 (ERK1/2) were rapidly activated. The inhibition of TrkB by K252a decreased the expression and secretion of VEGF, and suppressed the phosphorylation level of ERK1/2. PD98059, an antagonist of ERK1/2, elicited the same effects on VEGF from the BDNF‑stimulated osteoblasts, however, it did not affect the phosphorylation of TrkB. In conclusion, during fracture healing, BDNF was found to stimulate the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengnan Zhou
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongfei Shi
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xusheng Qiu
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Xiong
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yixin Chen
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
13
|
ZHAO GUANGZONG, ZHANG LONGQIANG, LIU YAO, FANG JUN, LI HUAZHUANG, GAO KEHAI, CHEN YUNZHEN. Effects of platelet-derived growth factor on chondrocyte proliferation, migration and apoptosis via regulation of GIT1 expression. Mol Med Rep 2016; 14:897-903. [DOI: 10.3892/mmr.2016.5291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/19/2016] [Indexed: 11/06/2022] Open
|
14
|
Lei Q, Chen J, Huang W, Wu D, Lin H, Lai Y. Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells: Implications for bone tissue engineering. Chem Biol Interact 2015; 233:139-46. [PMID: 25824407 DOI: 10.1016/j.cbi.2015.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells-bone marrow (BM-hMSCs) are considered as the most suitable seed cells for bone tissue engineering. Calcium ions (Ca(2+)) forms an important component of a number of commercial bone substitutes and support materials. For efficient bone tissue engineering, it is crucial to explore the effect of extracellular Ca(2+) on the growth and differentiation of BM-hMSCs, and to understand their molecular mechanisms. Therefore, in the present study, BM-hMSCs were cultivated in serum free growth medium or serum free growth medium with additional 4 or 6mM Ca(2+) for 3weeks, following which, the proliferation and osteoblastic differentiation of these cells were evaluated. Differentially expressed proteins were established using iTRAQ labeling coupled with nano-LC-MS/MS. Our data revealed that Ca(2+) significantly promoted the proliferation of BM-hMSCs in the early stage. Furthermore, Ca(2+) showed osteoinduction properties. MAPKs signaling pathway might participate in the osteogenic differentiation of BM-hMSCs caused by Ca(2+). Certain newly found proteins could be potentially important for the osteogenic differentiation of BM-hMSCs and may be associated with osteogenesis.
Collapse
Affiliation(s)
- Qun Lei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China
| | - Jiang Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China
| | - Wenxiu Huang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China
| | - Dong Wu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China.
| | - Hengzhang Lin
- Department of Stomatology, Affiliated Provincial Governmental Hospital of Fujian Health College, Fuzhou, Fujian 350002, China
| | - Yingzhen Lai
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361008, China
| |
Collapse
|
15
|
Zhang LQ, Zhao GZ, Xu XY, Fang J, Chen JM, Li JW, Gao XJ, Hao LJ, Chen YZ. Integrin-β1 regulates chondrocyte proliferation and apoptosis through the upregulation of GIT1 expression. Int J Mol Med 2015; 35:1074-80. [PMID: 25715677 DOI: 10.3892/ijmm.2015.2114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/05/2015] [Indexed: 01/25/2023] Open
Abstract
Chondrocytes play a critical role in the repair process of osteoarthritis, which is also known as degenerative arthritis. Integrins, as the key family of cell surface receptors, are responsible for the regulation of chondrocyte proliferation, differentiation, survival and apoptosis through the recruitment and activation of downstream adaptor proteins. Moreover, G-protein-coupled receptor kinase interacting protein-1 (GIT1) exerts its effects on cell proliferation and migration through interaction with various cytokines. It has been previously suggested that GIT1 acts as a vital protein downstream of the integrin-mediated pathway. In the present study, we investigated the effects of integrin-β1 on cell proliferation and apoptosis, as well as the underlying mechanisms in chondrocytes in vitro. Following transfection with a vector expressing integrin-β1, our results revealed that the overexpression of integrin-β1 enhanced GIT1 expression, whereas the knockdown of integrin-β1 by siRNA suppressed GIT1 expression. However, no significant effect was observed on integrin-β1 expression following the enforced overexpression of GIT1, which suggests that GIT1 is localized downstream of integrin-β1. In other words, integrin-β1 regulates the expression of GIT1. Furthermore, this study demonstrated that integrin-β1 and GIT1 increased the expression levels of aggrecan and type II collagen, thus promoting chondrocyte proliferation; however, they inhibited chondrocyte apoptosis. Taken together, our data demonstrate that integrin-β1 plays a vital role in chondrocyte proliferation, differentiation and apoptosis. GIT1 exerts effects similar to those of integrin-β1 and is a downstream target of integrin-β1.
Collapse
Affiliation(s)
- Long-Qiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guang-Zong Zhao
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Xiao-Yan Xu
- Department of Oncology, Qingzhou Hospital of Traditional Chinese Medicine, Qingzhou, Shandong 262500, P.R. China
| | - Jun Fang
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jing-Ming Chen
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Ji-Wen Li
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Xue-Jian Gao
- Department of Orthopedics, The 89th Hospital of PLA, Weifang, Shandong 261021, P.R. China
| | - Li-Juan Hao
- Department of Urologic Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Yun-Zhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. PDGF regulates chondrocyte proliferation through activation of the GIT1- and PLCγ1-mediated ERK1/2 signaling pathway. Mol Med Rep 2014; 10:2409-14. [PMID: 25175053 DOI: 10.3892/mmr.2014.2506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Studies investigating the effects of cytokines on chondrocytes have significant application potential, since the culture of cartilage cells in vitro is a vital step for cartilage tissue engineering. Platelet-derived growth factor (PDGF), one of the growth factors occurring at the early stage of the healing process of damaged tissue, is critical in bone healing. The present study investigated the effects of the activation of PDGF on cell proliferation, apoptosis and the underlying mechanisms of chondrocytes in vitro. The results indicated that the stimulation of PDGF led to overexpression of the G-protein-coupled receptor kinase interacting protein-1 (GIT1) and promotion of the phosphorylation of phospholipase Cγ1 (PLCγ1). Furthermore, PDGF induced chondrocyte proliferation and inhibited apoptosis via activation of the extracellular signal-regulated kinase (ERK) 1/2 pathway. Following knocking down GIT1 expression by small interfering RNA, phosphorylation of PLCγ1 and activation of the ERK1/2 pathway was no longer promoted by PDGF. In addition, the effects of PDGF on proliferation and apoptosis were suppressed. The expression levels of GIT1 were not affected; however, the phosphorylation of ERK1/2 was suppressed through inhibition of the phosphorylation of PLCγ1 by U73122. The results demonstrated that GIT1 is upstream of PLCγ1. Although the ability of PDGF to induce cell proliferation was inhibited by the inhibition of the ERK1/2 pathway by PD98059, apoptosis was not suppressed. In conclusion, the present study demonstrated that PDGF was able to activate the GIT1‑PLCγ1‑mediated ERK1/2 pathway to control chondrocyte proliferation.
Collapse
Affiliation(s)
- Jin Xiao
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Xuqiong Chen
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Lipeng Xu
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Ying Zhang
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Qingshui Yin
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Fei Wang
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
17
|
Decreased BMP2 signal in GIT1 knockout mice slows bone healing. Mol Cell Biochem 2014; 397:67-74. [PMID: 25138700 DOI: 10.1007/s11010-014-2173-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Endochondral ossification, an important stage of fracture healing, is regulated by a variety of signaling pathways. Transforming growth factor β (TGFβ) superfamily plays important roles and comprises TGFβs, bone morphogenetic proteins (BMPs), and growth differentiation factors. TGFβs primarily regulate cartilage formation and endochondral ossification. BMP2 shows diverse efficacy, from the formation of skeleton and extraskeletal organs to the osteogenesis and remodeling of bone. G-protein-coupled receptor kinase 2-interacting protein-1 (GIT1), a shuttle protein in osteoblasts, facilitates fracture healing by promoting bone formation and increasing the secretion of vascular endothelial growth factor. Our study examined whether GIT1 regulates fracture healing through the BMP2 signaling pathway and/or through the TGFβ signaling pathway. GIT1 knockout (KO) mice exhibited delayed fracture healing, chondrocyte accumulation in the fracture area, and reduced staining intensity of phosphorylated Smad1/5/8 (pSmad1/5/8) and Runx2. Endochondral mineralization diminished while the staining intensity of phosphorylated Smad2/3 (pSmad2/3) showed no significant change. Bone marrow mesenchymal stem cells extracted from GIT1 KO mice showed a decline of pSmad1/5/8 levels and of pSmad1/5/8 translocated into the cell nucleus after BMP2 stimulus. We detected no significant change in the pSmad2/3 level after TGFβ1 stimulus. Data obtained from reporter gene analysis of C3H10T1/2 cells cultured in vitro confirmed these findings. GIT1-siRNA inhibited transcription in the cell nucleus via pSmad1/5/8 after BMP2 stimulus but had no significant effect on transcription via pSmad2/3 after TGFβ1 stimulus. Our results indicate that GIT1 regulates Smad1/5/8 phosphorylation and mediates BMP2 regulation of Runx2 expression, thus affecting endochondral ossification at the fracture site.
Collapse
|
18
|
Wu Y, Zhang Y, Yin Q, Xia H, Wang J. Platelet‑derived growth factor promotes osteoblast proliferation by activating G‑protein‑coupled receptor kinase interactor‑1. Mol Med Rep 2014; 10:1349-54. [PMID: 25017023 DOI: 10.3892/mmr.2014.2374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/19/2014] [Indexed: 11/05/2022] Open
Abstract
Platelet‑derived growth factor (PDGF) has been reported to stimulate bone fracture‑healing. Multiple studies have demonstrated that PDGF has a critical role in osteoblast or osteoprogenitor cell activation, although the underlying mechanism remains unclear. Studies have found that G‑protein‑coupled receptor kinase interactor‑1 (GIT1) is activated by PDGF and described as an important factor in bone metabolism. In the present study, the effects of PDGF and GIT1 on the proliferation and apoptosis of osteoblasts were investigated in cultured osteoblasts isolated from rat calvaria with PDGF stimulation and GIT1 small interfering RNA transfection. The results demonstrated that PDGF rapidly stimulated GTI1 expression in osteoblasts, increased osteoblast proliferation and inhibited cell apoptosis. Furthermore, cyclin D1 expression was significantly upregulated, the number of cells in the G0/G1 phase was decreased, while the number in the S phase was increased. In cells with knockdown of GIT1, the change stimulated by PDGF was not evident. The results indicate that, PDGF stimulated GIT1 activation of cyclin D1 expression, thereby promoting osteoblasts to enter the S phase from the stationary G0/G1 phase, leading to the proliferation of osteoblasts.
Collapse
Affiliation(s)
- You Wu
- Department of Traumatic Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Ying Zhang
- Department of Traumatic Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Qingshui Yin
- Department of Traumatic Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Hong Xia
- Department of Traumatic Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Jiajia Wang
- Department of Traumatic Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
19
|
Yin G, Sheu TJ, Menon P, Pang J, Ho HC, Shi S, Xie C, Smolock E, Yan C, Zuscik MJ, Berk BC. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice. PLoS One 2014; 9:e89127. [PMID: 24586541 PMCID: PMC3929643 DOI: 10.1371/journal.pone.0089127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT) and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31) were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.
Collapse
Affiliation(s)
- Guoyong Yin
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Prashanthi Menon
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hsin-Chiu Ho
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shanshan Shi
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chao Xie
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elaine Smolock
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chen Yan
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Zuscik
- Center for Musculoskeletal Research and the Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bradford C. Berk
- Aab Cardiovascular Research Institute and the Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. Regulation of chondrocyte proliferation through GIT1-Rac1-mediated ERK1/2 pathway by PDGF. Cell Biol Int 2014; 38:695-701. [PMID: 24420748 DOI: 10.1002/cbin.10241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
Abstract
There are many growth factors contributing to fracture healing after bone fractures. Platelet-derived growth factor (PDGF) released from platelets is a factor promoting cell division and proliferation, and first appears around the sites of fractures. Culture of chondrocytes in vitro are stimulated by PDGF to proliferation, its presence being upregulated in the extracellular matrix of cartilage; the main components include aggrecan and type II collagen. PDGF induces the expression of G the protein-coupled receptor kinase interacting protein 1 (GIT1), promoting Rac1 and ERK1/2 phosphorylation. Both knocking down GIT1 expression by siRNA and blocking phosphorylation of Rac1 inhibit this induced proliferation of chondrocyte. GIT1 and Rac1 control each other, having a synergistic effect on activation of the ERK1/2 pathway. The results suggest that PDGF regulates chondrocyte proliferation through activation of ERK1/2 pathway by upregulation of GIT1 expression and Rac1 phosphorylation.
Collapse
Affiliation(s)
- Jin Xiao
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | |
Collapse
|