1
|
Sun Y, Kang K, Li YL, Sang LX, Chang B. Tea polyphenols protect mice from acute ethanol-Induced liver injury by modulating the gut microbiota and short-chain fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
2
|
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J Cell Mol Med 2021; 25:5899-5911. [PMID: 34061461 PMCID: PMC8256341 DOI: 10.1111/jcmm.16063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury represents an event characterized by anoxic cell death and an inflammatory response, that can limit the treatment efficacy of liver surgery. Ischaemic preconditioning agents such as sevoflurane (Sevo) have been highlighted to play protective roles in hepatic I/R injury. The current study aimed to investigate the molecular mechanism underlying the effects associated with Sevo in hepatic I/R injury. Initially, mouse hepatic I/R injury models were established via occlusion of the hepatic portal vein and subsequent reperfusion. The expression of forkhead box protein O4 (FOXO4) was detected using reverse transcription quantitative polymerase chain reaction and Western blot analysis from clinical liver tissue samples obtained from patients who had previously undergone liver transplantation, mouse I/R models and oxygen-deprived hepatocytes. The morphology of the liver tissues was analysed using haematoxylin-eosin (HE) staining, with apoptosis detected via TUNEL staining. Immunohistochemistry methods were employed to identify the FOXO4-positive cells. Mice with knocked out FOXO4 (FOXO4-KO mice) were subjected to I/R. In this study, we found FOXO4 was highly expressed following hepatic I/R injury. After treatment with Sevo, I/R modelled mice exhibited an alleviated degree of liver injury, fewer apoptotic cells and FOXO4-positive cells. FOXO4 was a target gene of miR-96. Knockdown of FOXO4 could alleviate hepatic I/R injury and decrease cell apoptosis. Taken together, the key observations of our study suggest that Sevo alleviates hepatic I/R injury by means of promoting the expression of miR-96 while inhibiting FOXO4 expression. This study highlights the molecular mechanism mediated by Sevo in hepatic I/R injury.
Collapse
Affiliation(s)
- Binghua He
- Jinan UniversityGuangzhouChina
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Fan Yang
- Department of Anesthesiologythe Central Hospital of ShaoyangShaoyangChina
| | - Yingxia Ning
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yalan Li
- Department of Anesthesiologythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Yang S, Pang L, Dai W, Wu S, Ren T, Duan Y, Zheng Y, Bi S, Zhang X, Kong J. Role of Forkhead Box O Proteins in Hepatocellular Carcinoma Biology and Progression (Review). Front Oncol 2021; 11:667730. [PMID: 34123834 PMCID: PMC8190381 DOI: 10.3389/fonc.2021.667730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of malignant tumor of the digestive system, is associated with high morbidity and mortality. The main treatment for HCC is surgical resection. Advanced disease, recurrence, and metastasis are the main factors affecting prognosis. Chemotherapy and radiotherapy are not sufficiently efficacious for the treatment of primary and metastatic HCC; therefore, optimizing targeted therapy is essential for improving outcomes. Forkhead box O (FOXO) proteins are widely expressed in cells and function to integrate a variety of growth factors, oxidative stress signals, and other stimulatory signals, thereby inducing the specific expression of downstream signal factors and regulation of the cell cycle, senescence, apoptosis, oxidative stress, HCC development, and chemotherapy sensitivity. Accordingly, FOXO proteins are considered multifunctional targets of cancer treatment. The current review discusses the roles of FOXO proteins, particularly FOXO1, FOXO3, FOXO4, and FOXO6, in HCC and establishes a theoretical basis for the potential targeted therapy of HCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunlong Duan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Sang L, Kang K, Sun Y, Li Y, Chang B. FOXO4 ameliorates alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice. Int Immunopharmacol 2021; 96:107572. [PMID: 33798806 DOI: 10.1016/j.intimp.2021.107572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal mucosa barrier function and gut-liver axis are impaired by ethanol in chronic alcoholic liver disease (ALD). However, the possible mechanism is not clear. This study aimed to investigate the effects of Forkhead Box O4 (FOXO4) on alcohol-induced chronic liver injury and its molecular mechanism(s). METHODS Male C57BL/6J mice were injected with or without FOXO4-WT, FOXO4-TB or NF-κB vectors, and fed with Lieber-DeCarli liquid diets containing 36% ethanol for eight weeks to induce chronic ALD. Thereafter, blood, liver, colon and fecal samples were collected. Biochemical parameters, endotoxin and inflammatory cytokines in the blood and antioxidant enzymes in the liver were tested by commercial kits. Histopathological changes in the liver were evaluated by HE staining. In addition, the mRNA and protein expression of FOXO4, NF-κB, ZO-1 and Occluding in the colon were measured by quantitative real-time PCR and Western blot, respectively. Furthermore, gut microbiota composition in the fecal samples was investigated with 16S rDNA sequencing. RESULTS FOXO4 significantly ameliorated liver histopathological damage. Moreover, FOXO4 reduced the serum endotoxin, biochemical parameters (ALT, AST, ALP and TG), antioxidant enzymes (ROS and MDA), inflammatory cytokines (IL-6, IL-1β, and TNF-α), but restored the levels of GSH, SOD and IL-10. Furthermore, FOXO4 significantly inhibited the expression of NF-κB, p-NF-κB p65, p-IKKα and p-IKKβ, and up-regulated the expression of ZO-1 and Occludin. Additionally, FOXO4 modulated the gut microbiota composition and certain bacteria including Odoribacter, Parasutterella and Psychrobacter. CONCLUSION These findings suggest that FOXO4 protects against alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice.
Collapse
Affiliation(s)
- Lixuan Sang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kai Kang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Sun
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in intestinal mucosal injury induced by restraint stress in mice. PHARMACEUTICAL BIOLOGY 2020; 58:342-351. [PMID: 32298156 PMCID: PMC7178821 DOI: 10.1080/13880209.2020.1750659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Context: A growing body of evidence demonstrates that gastrointestinal motility disorder (GIMD) and gastric stress ulcers can be induced by restraint stress, while melatonin (MT) elicits anti-inflammation and antioxidant effects.Objective: The present study investigated the mechanisms of MT-mediated protection effects on restraint stress-induced GIMD.Materials and methods: 144 8-week-old male ICR mice were divided into four groups: control, restraint stress, restraint stress + MT and MT (positive control). 20 mg/kg MT or vehicle were intraperitoneally injected 60 min before restraint stress (10 h/day) once daily for 3 days. Biochemical parameters, intestinal mucosal integrity, tissues antioxidant ability and autophagic proteins levels were determined.Results: Mice subjected to restraint stress elevated NE level by 141.41% and decreased MT content by 38.82% in plasma. Consistent with the decrease in MT level, we observed a reduction in the antioxidant ability and an increase in autophagic proteins by 14.29-46.74% in the gut, resulting in injury to intestinal mucosa which was manifested by reductions in villus height and villus height/crypt depth (V/C) ratio, number of goblet and PCAN-positive cells, and expression of tight junction protein (ZO-1, occludin and claudin-1). In contrast, MT reversed these changes caused by restraint stress and improved the intestinal mucosal injury. However, there was no significant difference between MT (positive control) and control group.Discussion and conclusion: Our results suggest that MT effectively mitigates psychological stress-induced injury to intestinal mucosa, providing evidence demonstrating the potential for using MT as therapy against intestinal impairment associated with psychological stress.
Collapse
Affiliation(s)
- Rutao Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Zixu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Jing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Ting Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Yulan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| | - Yaoxing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Haidian, China
| |
Collapse
|
6
|
Qu C, Liu X, Guo Y, Fo Y, Chen X, Zhou J, Yang B. MiR-128-3p inhibits vascular smooth muscle cell proliferation and migration by repressing FOXO4/MMP9 signaling pathway. Mol Med 2020; 26:116. [PMID: 33238881 PMCID: PMC7687681 DOI: 10.1186/s10020-020-00242-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been identified as important participants in the development of atherosclerosis (AS). The present study explored the role of miR-128-3p in the dysfunction of vascular smooth muscle cells (VSMCs) and the underlying mechanism. Methods Human VSMCs and ApoE knockout (ApoE−/−) C57BL/6J mice were used to establish AS cell and animal models, respectively. Expression levels of miR-128-3p, forkhead box O4 (FOXO4) and matrix metallopeptidase 9 (MMP9) were detected using qRT-PCR and Western blot, respectively. CCK-8, BrdU, and Transwell assays as well as flow cytometry analysis were performed to detect the proliferation, migration and apoptosis of VSMCs. Levels of inflammatory cytokines and lipids in human VSMCs, mice serum and mice VSMCs were also determined. The binding site between miR-128-3p and 3′UTR of FOXO4 was confirmed using luciferase reporter gene assay. Results MiR-128-3p was found to be decreased in AS patient serum, ox-LDL-treated VSMCs, AS mice serum and VSMCs of AS mice. Transfection of miR-128-3p mimics suppressed the proliferation and migration of VSMCs, accompanied by the promoted apoptosis and the decreased levels of inflammatory cytokines. Further experiments confirmed the interaction between miR-128-3p and FOXO4. Augmentation of FOXO4 or MMP9 reversed the effects of miR-128-3p. Besides, miR-128-3p inhibited triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) but increased high-density lipoprotein cholesterol (HDL-C) in the serum of AS mice. Conclusion MiR-128-3p repressed the proliferation and migration of VSMCs through inhibiting the expressions of FOXO4 and MMP9.
Collapse
Affiliation(s)
- Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
7
|
Al-Shaer AE, Flentke GR, Berres ME, Garic A, Smith SM. Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder. PLoS Comput Biol 2019; 15:e1006937. [PMID: 30973878 PMCID: PMC6478348 DOI: 10.1371/journal.pcbi.1006937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a prominent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq) offer insights into mechanisms underlying FASD, but gene-level analysis provides limited information regarding complex transcriptional processes such as alternative splicing and non-coding RNAs. Moreover, traditional analytical approaches that use multiple hypothesis testing with a false discovery rate adjustment prioritize genes based on an adjusted p-value, which is not always biologically relevant. We address these limitations with a novel approach and implemented an unsupervised machine learning model, which we applied to an exon-level analysis to reduce data complexity to the most likely functionally relevant exons, without loss of novel information. This was performed on an RNA-Seq paired-end dataset derived from alcohol-exposed neural fold-stage chick crania, wherein alcohol causes facial deficits recapitulating those of FASD. A principal component analysis along with k-means clustering was utilized to extract exons that deviated from baseline expression. This identified 6857 differentially expressed exons representing 1251 geneIDs; 391 of these genes were identified in a prior gene-level analysis of this dataset. It also identified exons encoding 23 microRNAs (miRNAs) having significantly differential expression profiles in response to alcohol. We developed an RDAVID pipeline to identify KEGG pathways represented by these exons, and separately identified predicted KEGG pathways targeted by these miRNAs. Several of these (ribosome biogenesis, oxidative phosphorylation) were identified in our prior gene-level analysis. Other pathways are crucial to facial morphogenesis and represent both novel (focal adhesion, FoxO signaling, insulin signaling) and known (Wnt signaling) alcohol targets. Importantly, there was substantial overlap between the exomes themselves and the predicted miRNA targets, suggesting these miRNAs contribute to the gene-level expression changes. Our novel application of unsupervised machine learning in conjunction with statistical analyses facilitated the discovery of signaling pathways and miRNAs that inform mechanisms underlying FASD.
Collapse
Affiliation(s)
- Abrar E. Al-Shaer
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - George R. Flentke
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| |
Collapse
|
8
|
Terciolo C, Dapoigny M, Andre F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin Exp Gastroenterol 2019; 12:67-82. [PMID: 30804678 PMCID: PMC6375115 DOI: 10.2147/ceg.s181590] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier defects lead to "leaky gut syndrome", defined as an increase in intestinal permeability that allows the passage of luminal content into intestinal tissue and the bloodstream. Such a compromised intestinal barrier is the main factor underlying the pathogenesis of inflammatory bowel disease, but also commonly occurs in various systemic diseases such as viral infections and metabolic syndrome. The non-pathogenic yeast Saccharomyces boulardii CNCM I-745 has demonstrated its effectiveness as a probiotic in the prevention and treatment of antibiotic-associated, infectious and functional diarrhea. Via multiple mechanisms of action implicated in intestinal barrier function, S. boulardii has beneficial effects on altered intestinal microbiota and epithelial barrier defects in different pathologies. The well-studied probiotic yeast S. boulardii plays a crucial role in the preservation and/or restoration of intestinal barrier function in multiple disorders. This could be of major interest in diseases characterized by alterations in intestinal barrier function.
Collapse
Affiliation(s)
- Chloe Terciolo
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France,
- Aix-Marseille Université, INSERM, UMR 911, CRO2, Marseille, France,
| | - Michel Dapoigny
- Médecine Digestive, CHU Estaing, CHU Clermont-Ferrand, Université Clermont Auvergne, INSERM UMR 1107, Neuro-Dol, Clermont-Ferrand, France
| | - Frederic Andre
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc scientifique et technologique de Luminy, Marseille, France
| |
Collapse
|
9
|
Meng X, Li S, Li Y, Gan RY, Li HB. Gut Microbiota's Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018; 10:E1457. [PMID: 30297615 PMCID: PMC6213031 DOI: 10.3390/nu10101457] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
A variety of dietary natural products have shown hepatoprotective effects. Increasing evidence has also demonstrated that gut microorganisms play an important role in the hepatoprotection contributed by natural products. Gut dysbiosis could increase permeability of the gut barrier, resulting in translocated bacteria and leaked gut-derived products, which can reach the liver through the portal vein and might lead to increased oxidative stress and inflammation, thereby threatening liver health. Targeting gut microbiota modulation represents a promising strategy for hepatoprotection. Many natural products could protect the liver from various injuries or mitigate hepatic disorders by reverting gut dysbiosis, improving intestinal permeability, altering the primary bile acid, and inhibiting hepatic fatty acid accumulation. The mechanisms underlying their beneficial effects also include reducing oxidative stress, suppressing inflammation, attenuating fibrosis, and decreasing apoptosis. This review discusses the hepatoprotective effects of dietary natural products via modulating the gut microbiota, mainly focusing on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Liu G, Li M, Saeed M, Xu Y, Ren Q, Sun C. αMSH inhibits adipose inflammation via reducing FoxOs transcription and blocking Akt/JNK pathway in mice. Oncotarget 2018; 8:47642-47654. [PMID: 28514752 PMCID: PMC5564594 DOI: 10.18632/oncotarget.17465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha melanocyte stimulating hormone (αMSH) abates inflammation in multiple tissues, while Forkhead box proteins O (FoxOs) stimulate inflammatory cascade. However, the relationship between αMSH and FoxOs in adipose inflammation remains unclear. In this study, we used LPS-induced inflammation model, attempted to interpret the function of αMSH in inflammation and the interactions with FoxOs. Results indicated that upon inflammatory situation, the secretion of αMSH and the expression of its receptor MC5R were greatly decreased, but FoxOs expressions were elevated. After the treatment with αMSH, LPS-induced adipose inflammation together with FoxOs expressions was significantly reduced. Conversely, when Foxo1, Foxo3a or Foxo4 overexpressed in αMSH treated inflammatory mouse model, all the anti-inflammatory impacts of αMSH were found disappeared. We further studied the mechanisms by which αMSH exerts its anti-inflammatory impacts and how FoxOs reverse αMSH's function. Foxo4 was found as a negative regulator for MC5R transcription in αMSH inhibited inflammation. Moreover, a negative role was found of αMSH in regulating both Akt and JNK signal pathways by observing the enhanced the anti-inflammatory impacts of pathway-specific inhibitors with αMSH treatment. Our findings demonstrate αMSH plays a key role in the prevention of adipose inflammation and inflammatory diseases by down-regulating Akt/JNK signal pathway and negatively interacting with FoxOs, which brings up αMSH as a novel candidate factor in the adipose anti-inflammation process in obesity.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Liu S, Tian L, Chai G, Wen B, Wang B. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation. Food Funct 2018; 9:4184-4193. [PMID: 29993075 DOI: 10.1039/c8fo00650d] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quercetin can ameliorate alcohol-induced acute liver injury via inducing heme oxygenase-1 and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shu Liu
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| | - Lei Tian
- Department of Gastroenterology
- The First Affiliated Hospital of Jinzhou Medical University
- China
| | - Guangrui Chai
- Department of Ophthalmology
- Shengjing Hospital of China Medical University
- China
| | - Bo Wen
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| | - Bingyuan Wang
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| |
Collapse
|
12
|
Kappa-opioid receptor agonist U50448H protects against renal ischemia-reperfusion injury in rats via activating the PI3K/Akt signaling pathway. Acta Pharmacol Sin 2018; 39:97-106. [PMID: 28770825 DOI: 10.1038/aps.2017.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is regarded as a leading cause of acute kidney failure and renal dysfunction. Previous studies show that kappa opioid receptor (KOR) agonists can attenuate IRI in cardiomycytes and neuronal cells. In this study we explored the effects of a KOR agonist on renal IRI and the underlying mechanisms in vivo and in vitro. An IRI model was established in SD rats, which were intravenously pretreated with a KOR agonist U50448H (1 mg/kg), a KOR antagonist Nor-BNI (2 mg/kg) followed by U50448H (1 mg/kg), or the PI3K inhibitor wortmannin (1.4 mg/kg) followed by U50448H (1 mg/kg). U50448H pretreatment significantly decreased the serum levels of creatinine (Cr) and BUN, the renal tubular injury scores and the apoptotic index (AI) in IRI model rats. Furthermore, U50448H significantly increased SOD activity and NO levels, and reduced the MDA levels in the kidney tissues of IRI model rats. Moreover, U50448H significantly increased the phosphorylation of Akt, eNOS and PI3K in the kidney tissues of IRI model rats. All the beneficial effects of U50448H were blocked by Nor-BNI or wortmannin pre-administered. Similar results were observed in vitro in renal tubular epithelial NRK-52E cells subjected to a hypoxia-reoxygenation (HR) procedure. Our results demonstrate that the KOR agonist U50448H protects against renal IRI via activating the PI3K/Akt signaling pathway.
Collapse
|
13
|
Ozgocer T, Yildiz S, Elbe H, Vardi N. Endotoxin exposure and puberty in female rats: the role of nitric oxide and caspase-1 inhibition in neonates. Can J Physiol Pharmacol 2015; 93:603-14. [PMID: 26061900 DOI: 10.1139/cjpp-2014-0559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial toxins are widespread in the environment as well as in the digestive system of humans and animals. Toxin from Gram-negative bacteria (endotoxin or lipopolysaccharide; LPS) has a life-long programming effect on reproduction in rats, but the mediators have not been well-documented, so we investigated the effects of LPS on the timing of puberty in female rats. Because the levels of nitric oxide (NO) and interleukin 1β (IL-1β) increase following injection of LPS, we injected neonates (post-natal day (pnd) 7) with LPS, with or without NO or IL-1β inhibitors. Half of the prepubescent (pnd 30) animals received an additional LPS injection. Vaginal opening, number of ovarian follicles, and serum anti-LPS antibodies were determined. A single LPS injection was sufficient to reduce the primordial follicle pool, but puberty was delayed when rats received 2 LPS injections (at pnd 7 and 30). NO or IL-1β inhibitors improved both of these parameters, suggesting that the early detrimental effects of LPS on puberty and primordial follicle pool are mediated by NO and IL-1β.
Collapse
Affiliation(s)
- Tuba Ozgocer
- a Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Sedat Yildiz
- a Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Hulya Elbe
- c Department of Histology and Embryology, Faculty of Medicine, University of Muğla Sıtkı Koçman, Mugla, Turkey
| | - Nigar Vardi
- b Department of Histology and Embryology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| |
Collapse
|
14
|
Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015; 148:30-6. [PMID: 25447847 PMCID: PMC4274189 DOI: 10.1053/j.gastro.2014.10.042] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) has been among the leading causes of cirrhosis and liver-related death worldwide for decades. Early discoveries in alcoholic liver disease identified increased levels of bacterial endotoxin in the portal circulation, suggesting a role for gut-derived toxins in ALD. Indeed, alcohol consumption can disrupt the intestinal epithelial barrier and result in increased gut permeability that increasingly is recognized as a major factor in ALD. Bacterial endotoxin, lipopolysaccharide, is a prototypic microbe-derived inflammatory signal that contributes to inflammation in ALD through activation of the Toll-like receptor 4. Recent studies also have shown that alcohol consumption is associated with alterations in the gut microbiome, and the dysbalance of pathogenic and commensal organisms in the intestinal microbiome may contribute to the abnormal gut-liver axis in ALD. Indeed, bacterial decontamination improves ALD both in human and animal models. This short review summarizes recent findings and highlights emerging trends in the gut-liver axis relevant to ALD.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
15
|
Wang H, Li X, Wang C, Zhu D, Xu Y. Abnormal ultrastructure of intestinal epithelial barrier in mice with alcoholic steatohepatitis. Alcohol 2014; 48:787-93. [PMID: 25454538 DOI: 10.1016/j.alcohol.2014.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Intestinal barrier dysfunction caused by chronic alcohol consumption is closely associated with disruption of the intestinal epithelial apical junction complex. The present study was undertaken to directly display by transmission electron microscopy the abnormal ultrastructure of the intestinal epithelial barrier in mice with alcoholic steatohepatitis. The results showed that chronic alcohol consumption could induce obvious liver injury, with diffuse lipid accumulation and focal inflammatory cell infiltration in the liver, assessed by hematoxylin and eosin staining. The indicators of intestinal barrier dysfunction, d-lactic acid and lipopolysaccharide, were significantly higher in alcohol-fed mice than in control mice. Alcohol exposure obviously caused high permeability in the ileum to fluorescein isothiocyanate-dextran (FD-4; molecular weight 4000). Transmission electron microscopy demonstrated that tight junctions and adherens junctions expanded noticeably in alcohol-fed mice. Although the tight junction (TJ) length of alcohol-fed mice had no significant difference compared with control mice, the adherens junction (AJ) length of alcohol-fed mice significantly decreased compared with control mice. Additionally, the ratios of both TJmax/TJmin and AJmax/AJmin were significantly larger in alcohol-fed mice than in control liquid-fed mice. In conclusion, high intestinal permeability caused by alcohol attributes to the irregular ultrastructure of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Xin Li
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Chen Wang
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China
| | - Dong Zhu
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China.
| | - Youqing Xu
- Department of Gastroenterology, Beijing Tian Tan Hospital, Capital Medical University, 6 Xili, Tiantan, Dongcheng District, Beijing 100050 PR China.
| |
Collapse
|