1
|
Yang Y, Cao G, Tang L. Selection and validation of reference genes for qRT-PCR normalization in dayflower (Commelina communis) based on the transcriptome profiling. BMC PLANT BIOLOGY 2024; 24:1131. [PMID: 39592924 PMCID: PMC11600965 DOI: 10.1186/s12870-024-05853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Dayflower (Commelina communis), a widely invasive weed, thrives well under a variety of abiotic stresses, including drought and herbicides, and harms the growth of crops such as maize and soybean. Gene expression in dayflower is an important but understudied area due to the lack of reliable reference genes. RESULTS Fifteen candidate reference genes, which are common reference genes and homologous to those used in other plants, were selected through RNA-seq datasets of dayflower. The expression stability of these screened reference genes was evaluated under three abiotic stresses (drought, herbicide and copper) and in five organs (roots, stems, leaves, flowers and seeds) using five commonly used software programs (geNorm, NormFinder, BestKeeper, ΔCt and RefFinder). The results showed that API5 and SAND had the highest stability in stems, while SAND, EF1A and API5 had the highest stability in roots. Moreover, SAND, ALDH113 and API5 were most stably expressed under copper stress, and EF1A, SAND and API5 were most stable under drought stress. SAND was consistently the most stably expressed gene in both the organs and all samples. Notably, The SAND gene ranked among the top three in terms of stability in all abiotic treatments and in various organs. This result indicates that the SAND gene is suitable for qRT-PCR experimentation in diverse tissues and under multiple (drought, herbicide and copper) abiotic stress conditions in dayflower. CONCLUSION This study identified the most stably expressed reference genes under three abiotic stresses and in five organs of dayflower, and SAND showed high expression stability under various experimental conditions, making it a reliable reference gene for gene expression analysis experiments under different conditions in dayflower. This study will enhance the precision of the qRT-PCR quantification of candidate genes related to the adaptation significance of dayflower.
Collapse
Affiliation(s)
- Yuejiao Yang
- School of Life Sciences, Central South University, Changsha City, Hunan Province, China
| | - Gaohui Cao
- School of Life Sciences, Central South University, Changsha City, Hunan Province, China
| | - Lulu Tang
- School of Life Sciences, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
2
|
Bunde TT, Pedra ACK, de Oliveira NR, Dellagostin OA, Bohn TLO. A systematic review on the selection of reference genes for gene expression studies in rodents: are the classics the best choice? Mol Biol Rep 2024; 51:1017. [PMID: 39327364 DOI: 10.1007/s11033-024-09950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.
Collapse
Affiliation(s)
- Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Cianci V, Mondello C, Sapienza D, Guerrera MC, Cianci A, Cracò A, Omero F, Gioffrè V, Gualniera P, Asmundo A, Germanà A. Potential Role of mRNA in Estimating Postmortem Interval: A Systematic Review. Int J Mol Sci 2024; 25:8185. [PMID: 39125753 PMCID: PMC11311348 DOI: 10.3390/ijms25158185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Although the postmortem interval estimation still represents one of the main goals of forensic medicine, there are still several limitations that weigh on the methods most used for its determination: for this reason, even today, precisely estimating the postmortem interval remains one of the most important challenges in the forensic pathology field. To try to overcome these limitations, in recent years, numerous studies have been conducted on the potential use of the mRNA degradation time for reaching a more precise post mortem interval (PMI) estimation. An evidence-based systematic review of the literature has been conducted to evaluate the state of the art of the knowledge focusing on the potential correlation between mRNA degradation and PMI estimation. The research has been performed using the electronic databases PubMed and Scopus. The analysis conducted made it possible to confirm the potential applicability of mRNA for reaching a more precise PMI estimation. The analysis of the results highlighted the usefulness of some mRNAs, such as β-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA, especially in short time frames, within a few hours or days of death. The matrices on which these analyses were conducted were also analyzed, resulting in less exposure to the external environment, including the heart, brain, and dental pulp. The major limitations were also reported, including the short time intervals analyzed in most of the articles, the lack of mathematical models, and the failure to report the error rate between the mRNA degradation time and PMI. Given the still small number of published articles, the lack of globally recognized standardized methods, and the numerous techniques used to evaluate the mRNA degradation times, numerous and larger studies are still necessary to reach more solid and shared evidence.
Collapse
Affiliation(s)
- Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.C.G.); (A.G.)
| | - Alessio Cianci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Annalisa Cracò
- Diagnostic and Interventional Radiology Unit, Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98125 Messina, Italy;
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Vittorio Gioffrè
- Department of Otorhinolaryngology-Head and Neck Surgery, IRCCS San Raffaele, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy;
| | - Patrizia Gualniera
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.C.G.); (A.G.)
| |
Collapse
|
4
|
Strnadová M, Thor D, Kaczmarek I. Protocol for changing gene expression in 3T3-L1 (pre)adipocytes using siRNA-mediated knockdown. STAR Protoc 2024; 5:103075. [PMID: 38805394 PMCID: PMC11153903 DOI: 10.1016/j.xpro.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
3T3-L1 is a model cell line which can be differentiated from preadipocytes into mature adipocytes. Here, we present a protocol for changing gene expression in 3T3-L1 (pre)adipocytes using small interfering RNA (siRNA)-mediated knockdown. We describe steps to perform the knockdown of a certain gene prior to differentiation (day 4) to analyze the impact on adipogenesis. We then detail procedures for knockdown on day 8 of differentiation to study the role of a certain gene in mature adipocyte function. For complete details on the use and execution of this protocol, please refer to Kaczmarek et al.1.
Collapse
Affiliation(s)
- Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| |
Collapse
|
5
|
Choi YR, Na HJ, Lee J, Kim YS, Kim MJ. Isoeugenol Inhibits Adipogenesis in 3T3-L1 Preadipocytes with Impaired Mitotic Clonal Expansion. Nutrients 2024; 16:1262. [PMID: 38732509 PMCID: PMC11085592 DOI: 10.3390/nu16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Jaekwang Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| |
Collapse
|
6
|
Sawamoto A, Okada M, Matsuoka N, Okuyama S, Nakajima M. Tipepidine activates AMPK and improves adipose tissue fibrosis and glucose intolerance in high-fat diet-induced obese mice. FASEB J 2024; 38:e23542. [PMID: 38466234 DOI: 10.1096/fj.202301861rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Tipepidine (3-[di-2-thienylmethylene]-1-methylpiperidine) (TP) is a non-narcotic antitussive used in Japan. Recently, the potential application of TP in the treatment of neuropsychiatric disorders, such as depression and attention deficit hyperactivity disorder, has been suggested; however, its functions in energy metabolism are unknown. Here, we demonstrate that TP exhibits a metabolism-improving action. The administration of TP reduced high-fat diet-induced body weight gain in mice and lipid accumulation in the liver and increased the weight of epididymal white adipose tissue (eWAT) in diet-induced obese (DIO) mice. Furthermore, TP inhibited obesity-induced fibrosis in the eWAT. We also found that TP induced AMP-activated protein kinase (AMPK) activation in the eWAT of DIO mice and 3T3-L1 cells. TP-induced AMPK activation was abrogated by the transfection of liver kinase B1 siRNA in 3T3-L1 cells. The metabolic effects of TP were almost equivalent to those of metformin, an AMPK activator that is used as a first-line antidiabetic drug. In summary, TP is a potent AMPK activator, suggesting its novel role as an antidiabetic drug owing to its antifibrotic effect on adipose tissues.
Collapse
Affiliation(s)
- Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Madoka Okada
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Nanako Matsuoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| |
Collapse
|
7
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
8
|
Ren P, Chen M, Liu Q, Wu J, Li R, Lin Z, Li J. Gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes. Br Poult Sci 2024; 65:34-43. [PMID: 37807894 DOI: 10.1080/00071668.2023.2264807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
1. Intramuscular fat (IMF) is a key parameter for chicken meat quality. IMF deposition is driven by genetic, nutritional and management factors, with genetics being the determining factor. Previous whole transcriptome sequencing revealed that microRNA gga-let-7a-3p was related to lipid metabolism in breast muscle. This study further investigated the potential role of gga-let-7a-3p in IMF deposition.2. The mimic and inhibitor of gga-let-7a-3p were individually transfected into chicken intramuscular preadipocytes. Subsequently, the proliferation and differentiation states of the cells were detected. Transcriptome sequencing was performed on cells transfected with gga-let-7a-3p mimic.3. The results indicated that gga-let-7a-3p suppressed the mRNA levels of proliferation and differentiation-related genes, as well as the protein levels. EdU and Oil Red O assays revealed that gga-let-7a-3p restrained preadipocyte proliferation and differentiation. In addition, a total of 333 up-regulated genes and 807 down-regulated genes were identified in cells transfected with gga-let-7a-3p mimic. Using Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis, differential genes were found to be enriched in processes such as the peroxisome proliferator activated receptor (PPAR) signalling pathway and oxidative phosphorylation.4. The study demonstrated that gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes, which provides new understanding to further unravel the function of gga-let-7a-3p.
Collapse
Affiliation(s)
- P Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - M Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Q Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - J Wu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - R Li
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - Z Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - J Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
9
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Diao J, Chen X, Mou P, Ma X, Wei R. Potential Therapeutic Activity of Berberine in Thyroid-Associated Ophthalmopathy: Inhibitory Effects on Tissue Remodeling in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36094643 PMCID: PMC9482321 DOI: 10.1167/iovs.63.10.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Berberine (BBR), an alkaloid produced by a traditional Chinese plant, was recently attributed multiple effects on lipometabolism, inflammation, and fibrosis. Thyroid-associated ophthalmopathy (TAO) is highly associated with these pathologic changes. Thus, we aimed to examine the potential therapeutic effect of BBR in an in vitro model of TAO. Methods Orbital fibroblasts (OFs) obtained from control donors (n = 6) or patients with TAO (n = 6) were cultured. The CCK-8 assay was conducted for assessing the optimal concentration range. Oil Red O staining, Western blotting, and quantitative RT-PCR (qRT-PCR) were conducted to assess adipogenesis in OFs. RNA sequencing (RNA-seq) was used to screen the key pathways of the antiadipogenic effect mediated by BBR. Along with incremental concentrations of BBR, IL-1β–induced expression of proinflammatory molecules was determined by ELISA and qRT-PCR. In addition, TGF-β–induced hyaluronan (HA) production and fibrosis were evaluated by ELISA, qRT-PCR, and Western blotting. Results TAO-OFs, but not control fibroblasts (CON-OFs), were readily differentiated into adipocytes with the commercial medium. Intracellular lipid accumulation was dose-dependently decreased by BBR, and adipogenic markers were also downregulated. Moreover, the PPARγ and AMPK pathways were screened out by RNA-seq and their downstream effectors were suppressed by BBR. Besides, BBR attenuated IL-1β–induced expression of proinflammatory molecules in both TAO-OFs and CON-OFs by blocking nuclear factor–κB signaling. BBR's inhibitory effect on TGF-β–mediated tissue remodeling was also confirmed in OFs. Conclusions These findings demonstrate BBR has outstanding capabilities of controlling adipogenesis, inflammation, HA production, and fibrosis in OFs, highlighting its potential therapeutic role in TAO management.
Collapse
Affiliation(s)
- Jiale Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xiaoye Ma
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| |
Collapse
|
11
|
Jafari F, Emami SA, Javadi B, Salmasi Z, Tayarani-Najjaran M, Tayarani-Najaran Z. Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115340. [PMID: 35551973 DOI: 10.1016/j.jep.2022.115340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron (Crocus sativus L.) has been introduced as a potential promising natural antioxidant with anti-obesity properties. In Persian Medicine, saffron has been used to control appetite and obesity. AIM OF THE STUDY The present study aims to investigate the effect of saffron and its bioactive compounds on adipocyte differentiation in human adipose-derived stem cells (ADSCs). MATERIALS AND METHODS Flow-Cytometric analysis was performed to quantify the cell surface markers. The extracts cytotoxicity on hASCs was measured using alamarBlue® assay whereas their activities against adipocyte differentiation were studied using Oil Red O staining. The level of Peroxisome proliferator-activated receptor-γ (PPARγ), Fatty Acid Synthetase (FAS), and Glyceraldehyde-3-phosphate dehydrogenase (GAPHD) which are key proteins in cell differentiation was investigated by western blot analysis. RESULTS Flow-cytometry revealed the mesenchymal stem cells markers, CD44 and CD90, on ADSCs surface. The saffron, crocin, and crocetin significantly inhibited adipocyte differentiation while saffron up to 20 μg/mL and crocin, crocetin and safranal up to 20 μM did not exhibit cytotoxicity. The western blotting analysis revealed a remarkable reduction in the level of PPARγ, GAPDH, and FAS proteins by 10 and 20 μM of crocin and 2.5 and 5 μM of crocetin. CONCLUSION It seems that saffron, crocin, and crocetin could efficiently inhibit the differentiation of hASCs with benefits for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Analysis of stability of reference genes for qPCR in bovine preadipocytes during proliferation and differentiation in vitro. Gene X 2022; 830:146502. [PMID: 35483498 DOI: 10.1016/j.gene.2022.146502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
The stability of internal reference genes is crucial to the reliability of gene expression results using real-time fluorescence quantitative PCR (qRT-PCR). Inappropriate reference genes may lead to inaccurate results or even wrong conclusions. This study aims to identify stable reference genes for analyzing the expression of proliferation-related and differentiation-inducing genes in bovine primary preadipocytes (BPPs) in vitro. In this study, the stability of 16 candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K, RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) for qRT-PCR at proliferation and differentiation stages of BPPs was investigated by three different algorithms (geNorm, NormFinder and BestKeeper). The expression of two marker genes, PCNA and LPL, was used to determine the validity of the candidate reference genes (RGs) at the proliferation and differentiation stages, respectively. The results showed that GAPDH and RPS15A were the most stable RGs in the proliferation of bovine primary preadipocyte, while PPIA was the least stable internal reference gene. RPLP0 and EIF3K were the most stable RGs in the differentiation induction of bovine primary preadipocyte, while GAPDH was the least stable internal reference gene. This study of RGs laid the foundation for subsequent research into the mechanism of proliferation and differentiation of BPPs in vitro using qRT-PCR.
Collapse
|
13
|
Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Sci Rep 2022; 12:5653. [PMID: 35383222 PMCID: PMC8983775 DOI: 10.1038/s41598-022-09476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The accuracy of sixteen commonly used internal reference genes was assessed in skeletal muscle-derived satellite cells of Qinchuan cattle at different stages of proliferation and induction of differentiation to determine the most suitable ones. Quantitative real-time PCR and three commonly used algorithmic programs, GeNorm, NormFinder and BestKeeper, were used to evaluate the stability of expression of the candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K , RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) in skeletal muscle-derived satellite cells at 0, 12, 24, 36 and 48 h of growth and after differentiation for 0, 2, 4, 6 and 8 days. The expression of two satellite cell marker genes, CCNA2 and MYF5, was used for validation analysis. The results of the software analyses showed that GAPDH and RPS15A were the most stable reference gene combinations during in vitro proliferation of bovine skeletal muscle-derived satellite cells, RPS15A and RPS9 were the most stable reference gene combinations during in vitro induction of differentiation of the cells, and PPIA was the least stable reference gene during proliferation and differentiation and was not recommended. This study lays the foundation for the selection of reference genes for qRT-PCR during the proliferation and induction of differentiation of bovine skeletal muscle-derived satellite cells.
Collapse
|
14
|
Cen HH, Hussein B, Botezelli JD, Wang S, Zhang JA, Noursadeghi N, Jessen N, Rodrigues B, Timmons JA, Johnson JD. Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. FASEB J 2022; 36:e22088. [PMID: 34921686 PMCID: PMC9255858 DOI: 10.1096/fj.202100497rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
Collapse
Affiliation(s)
- Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nilou Noursadeghi
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Timmons
- Augur Precision Medicine LTD, Stirling University Innovation Park, Stirling, Scotland.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Effect of Metformin and Simvastatin in Inhibiting Proadipogenic Transcription Factors. Curr Issues Mol Biol 2021; 43:2082-2097. [PMID: 34940118 PMCID: PMC8929042 DOI: 10.3390/cimb43030144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial chronic disease characterized by the excessive accumulation of fat in adipose tissue driven by hypertrophy and hyperplasia of adipocytes through adipogenesis. Adipogenesis plays a key role in the development of obesity and related metabolic disorders, which makes it potential target for the therapeutic approach to obesity. An increasing number of studies confirm the pleiotropic action of the combined treatment with metformin and statins, suggesting their anti-hypertensive, anti-inflammatory, and anti-adipogenic effect. The aim of this study was to analyze the effect of different doses of metformin (MET) and simvastatin (SIM) on the expression of key transcription factors of adipogenesis. Mouse 3T3-L1 preadipocytes were induced to differentiation in adipogenic medium with sustained MET and SIM treatment to assess the effect on adipogenesis. Nine days after initiating adipogenesis, the cells were prepared for further experiments, including Oil Red O staining, RT-PCR, Western blotting, and immunocytochemistry. Treating the cells with the combination of MET and SIM slightly reduced the intensity of Oil Red O staining compared with the control group, and down-regulated mRNA and protein expression of PPARγ, C/EBPα, and SREBP-1C. In conclusion, the inhibitory effect of MET and SIM on adipocyte differentiation, as indicated by decreased lipid accumulation, appears to be mediated through the down-regulation of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding pro-tein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP-1C).
Collapse
|
16
|
Mehta N, Shaik S, Prasad A, Chaichi A, Sahu SP, Liu Q, Hasan SMA, Sheikh E, Donnarumma F, Murray KK, Fu X, Devireddy R, Gartia MR. Multimodal Label-Free Monitoring of Adipogenic Stem Cell Differentiation Using Endogenous Optical Biomarkers. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103955. [PMID: 34924914 PMCID: PMC8680429 DOI: 10.1002/adfm.202103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 05/13/2023]
Abstract
Stem cell-based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non-destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping-based machine learning analysis is reported to distinguish differentiating human adipose-derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single-cell resolution. The label-free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton-based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix-assisted laser desorption/ionization-mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label-free identification of stem cell differentiation with high spatial and chemical resolution.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shahensha Shaik
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Na W, Wang Y, Gong P, Zhang X, Zhang K, Zhang H, Wang N, Li H. Screening of Reference Genes for RT-qPCR in Chicken Adipose Tissue and Adipocytes. Front Physiol 2021; 12:676864. [PMID: 34054585 PMCID: PMC8160385 DOI: 10.3389/fphys.2021.676864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Reverse transcription quantitative real-time PCR is the most commonly used method to detect gene expression levels. In experiments, it is often necessary to correct and standardize the expression level of target genes with reference genes. Therefore, it is very important to select stable reference genes to obtain accurate quantitative results. Although application examples of reference genes in mammals have been reported, no studies have investigated the use of reference genes in studying the growth and development of adipose tissue and the proliferation and differentiation of preadipocytes in chickens. In this study, GeNorm, a reference gene stability statistical algorithm, was used to analyze the expression stability of 14 candidate reference genes in the abdominal adipose tissue of broilers at 1, 4, and 7 weeks of age, the proliferation and differentiation of primary preadipocytes, as well as directly isolated preadipocytes and mature adipocytes. The results showed that the expression of the TATA box binding protein (TBP) and hydroxymethylbilane synthase (HMBS) genes was most stable during the growth and development of abdominal adipose tissue of broilers, the expression of the peptidylprolyl isomerase A (PPIA) and HMBS genes was most stable during the proliferation of primary preadipocytes, the expression of the TBP and RPL13 genes was most stable during the differentiation of primary preadipocytes, and the expression of the TBP and HMBS genes was most stable in directly isolated preadipocytes and mature adipocytes. These results provide reference bases for accurately detecting the mRNA expression of functional genes in adipose tissue and adipocytes of chickens.
Collapse
Affiliation(s)
- Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ke Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Wang Z, Li K, Maskey AR, Huang W, Toutov AA, Yang N, Srivastava K, Geliebter J, Tiwari R, Miao M, Li X. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. FASEB J 2021; 35:e21360. [PMID: 33749932 PMCID: PMC8250068 DOI: 10.1096/fj.202001792r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.
Collapse
Affiliation(s)
- Zhen‐Zhen Wang
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Kun Li
- Department of PediatricsUniversity of IowaIowa CityIAUSA
| | - Anish R. Maskey
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Weihua Huang
- Department of PathologyNew York Medical CollegeValhallaNYUSA
| | | | - Nan Yang
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Kamal Srivastava
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Jan Geliebter
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Raj Tiwari
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Mingsan Miao
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xiu‐Min Li
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| |
Collapse
|
19
|
Kamikawa Y, Yokota K, Oikawa K, Sato F, Muragaki Y. Suppression of MKL1 promotes adipocytic differentiation and reduces the proliferation of myxoid liposarcoma cells. Oncol Lett 2020; 20:369. [PMID: 33154767 DOI: 10.3892/ol.2020.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/23/2020] [Indexed: 11/05/2022] Open
Abstract
Myxoid liposarcoma (MLS) is thought to occur due to defective adipocytic differentiation in mesenchymal stem cells. A promising strategy for MLS treatment is the prevention of sarcomagenesis by promoting the terminal differentiation of MLS cells into adipocytes. Previous studies have reported that the suppression of megakaryoblastic leukemia 1 (MKL1) expression induces adipocytic differentiation in preadipocyte cell lines. The present study aimed to investigate the effects of MKL1 suppression on MLS cells. In the present study, MKL1 knockdown was demonstrated to promote the adipocytic differentiation of an MLS-derived cell line, designated 1955/91, under adipogenic conditions. This suggests that therapeutic targeting of the MKL1-associated molecular pathway has potential as a promising method of MLS treatment. However, the induction of adipogenesis by MKL knockdown was incomplete, and Oil Red O staining indicated that intracellular lipid droplets were only sporadically generated. Conversely, MKL1 knockdown reduced the growth of the MLS cells. As adipocytic differentiation in vitro requires cellular confluence, the decreased growth rate of the MLS cells following MKL1 knockdown could be attributed to the incomplete induction of adipogenesis. Translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP) is an MLS-specific oncoprotein that is thought to play key roles in sarcomagenesis and the suppression of adipocytic differentiation. However, the results of western blotting analyses suggest that TLS-CHOP has limited effects on MKL1 expression in MLS cells and that MKL1 knockdown hardly affects TLS-CHOP expression. Thus, it is postulated that the inhibitory effect of TLS-CHOP on adipogenesis is not associated with MKL1 expression. However, MKL1 and the molecular pathway involving MKL1 appear to be attractive targets for the differentiation therapy of MLS.
Collapse
Affiliation(s)
- Yohei Kamikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kento Yokota
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fuyuki Sato
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
20
|
Figueira da Costa TN, Andreotti S, de Farias TDSM, Lima FB, Bargi-Souza P. The Influence of Melatonin on the Daily 24-h Rhythm of Putative Reference Gene Expression in White Adipose Tissues. J Biol Rhythms 2020; 35:530-541. [PMID: 32886018 DOI: 10.1177/0748730420949337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In adipose tissue, the expression of hundreds of genes exhibits circadian oscillation, which may or may not be affected by circulating melatonin levels. Using control and pinealectomized rats, we investigated the daily expression profile of Actb, Hprt-1, B2m, and Rpl37a, genes that are commonly used as reference genes for reverse transcription quantitative polymerase chain reaction (RT-qPCR), in epididymal (EP), retroperitoneal (RP), and subcutaneous (SC) adipose tissues. In control rats, Actb expression presented a daily oscillation in all adipose tissues investigated, Hprt-1 showed 24-h fluctuations in only RP and SC depots, B2m was stable over 24 h for EP and RP but oscillated over 24 h in SC adipose tissue, and Rpl37a presented a daily oscillation in only RP fat. In the absence of melatonin, the rhythmicity of Actb in all adipose depots was abolished, the daily rhythmicity of Hprt-1 and B2m was disrupted in SC fat, the peak expression of Rpl37a and Hprt-1 was delayed, and the amplitude of Rpl37a was reduced in RP adipose tissue. Collectively, our results demonstrate that the expression of putative reference genes displays a daily rhythm influenced by melatonin levels in a manner specific to the adipose depot. Thus, the proper standardization and daily profile expression of reference genes should be performed carefully in temporal studies using RT-qPCR analysis.
Collapse
Affiliation(s)
- Tatienne Neder Figueira da Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Federal University of Tocantins, Palmas, TO, Brazil
| | - Sandra Andreotti
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Suchý T, Zieschang C, Popkova Y, Kaczmarek I, Weiner J, Liebing AD, Çakir MV, Landgraf K, Gericke M, Pospisilik JA, Körner A, Heiker JT, Dannenberger D, Schiller J, Schöneberg T, Liebscher I, Thor D. The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int J Obes (Lond) 2020; 44:2124-2136. [PMID: 32203115 PMCID: PMC7508673 DOI: 10.1038/s41366-020-0570-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCR) are well-characterized regulators of a plethora of physiological functions among them the modulation of adipogenesis and adipocyte function. The class of Adhesion GPCR (aGPCR) and their role in adipose tissue, however, is poorly studied. With respect to the demand for novel targets in obesity treatment, we present a comprehensive study on the expression and function of this enigmatic GPCR class during adipogenesis and in mature adipocytes. METHODS The expression of all aGPCR representatives was determined by reanalyzing RNA-Seq data and by performing qPCR in different mouse and human adipose tissues under low- and high-fat conditions. The impact of aGPCR expression on adipocyte differentiation and lipid accumulation was studied by siRNA-mediated knockdown of all expressed members of this receptor class. The biological characteristics and function of mature adipocytes lacking selected aGPCR were analyzed by mass spectrometry and biochemical methods (lipolysis, glucose uptake, adiponectin secretion). RESULTS More than ten aGPCR are significantly expressed in visceral and subcutaneous adipose tissues and several aGPCR are differentially regulated under high-caloric conditions in human and mouse. Receptor knockdown of six receptors resulted in an impaired adipogenesis indicating their expression is essential for proper adipogenesis. The altered lipid composition was studied in more detail for two representatives, ADGRG2/GPR64 and ADGRG6/GPR126. While GPR126 is mainly involved in adipocyte differentiation, GPR64 has an additional role in mature adipocytes by regulating metabolic processes. CONCLUSIONS Adhesion GPCR are significantly involved in qualitative and quantitative adipocyte lipid accumulation and can control lipolysis. Factors driving adipocyte formation and function are governed by signaling pathways induced by aGPCR yielding these receptors potential targets for treating obesity.
Collapse
Affiliation(s)
- Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Christian Zieschang
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Juliane Weiner
- Department of Endocrinology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mehmet Volkan Çakir
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute for Anatomy and Cell biology, Medical Faculty, Halle University, Halle (Saale), Germany
| | | | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - John T Heiker
- IFB Adiposity Diseases, Leipzig University, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Dummerstorf, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
22
|
GAPDH, rhbC, and vapA gene expression in Rhodococcus equi cultured under different iron concentrations. Microb Pathog 2019; 139:103885. [PMID: 31790793 DOI: 10.1016/j.micpath.2019.103885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
The ability of Rhodococcus equi to survive in macrophages and cause pneumonia in foals depends on vapA and rhbC genes, which produce the virulence-associated protein A (VapA) and the rhequichelin siderophore, respectively. Virulent R. equi acquires Fe from transferrin by unknown mechanisms. Our objectives were to determine the role of GAPDH in Fe homeostasis, to further characterize GAPDH, rhbC, and vapA expression under iron homeostasis, and to document the occurrence of rhbC gene in R. equi isolates. Therefore, vapA + R. equi was cultured under excessive, physiologic, and restricted iron concentrations, and quantitative culture and gene expression were performed. The relative expression of GAPDH, rhbC, and vapA after 48 h of culture were analyzed by qPCR. To determine the rhbC occurrence, total DNA was extracted from R. equi isolated from foals with clinical rhodococcosis (n = 22), healthy horses (feces, n = 16; nasal swab, n = 9), soil (n = 6), and 2 ATCC reference strains. Conventional PCR was performed to identify genus/species, vapA, and rhbC genes. Iron restriction proportionally decreased R. equi growth rates, and induced high expression of both GAPDH and vapA. The putative role of GAPDH in R. equi iron homeostasis should be further investigated. rhbC was significantly up-regulated under both Fe excess and critical starvation. The rhbC gene was identified in all clinical isolates and soil, but it was absent in 2 isolates from healthy horses, suggesting that rhequichelin is not required for R. equi nasal and intestinal colonization.
Collapse
|
23
|
Dessels C, Pepper MS. Reference Gene Expression in Adipose-Derived Stromal Cells Undergoing Adipogenic Differentiation. Tissue Eng Part C Methods 2019; 25:353-366. [PMID: 31062665 PMCID: PMC6589494 DOI: 10.1089/ten.tec.2019.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
IMPACT STATEMENT As the use of adipose-derived stromal cells (ASCs) in clinical trials increases, so does the amount of experimental data from research groups, many of which use human ASCs to study adipogenesis in obesity. Different conditions are constantly being applied to ASCs in vitro, to obtain a therapeutic product for potential downstream applications. Few articles have looked at the effect of different conditions on ASC reference gene (RG) expression and stability, which was the aim of this research, as such this article will assist other researchers to make an informed decision about RG selection for gene expression studies using ASCs including those for adipogenesis.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
25
|
Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clin Nutr 2019; 39:1067-1076. [PMID: 31036413 DOI: 10.1016/j.clnu.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Membrane-derived extracellular vesicles (EVs) are released to the circulation by cells found in adipose tissue, transferring microRNAs (miRNAs) that may mediate the adaptive response of recipient cells. This study investigated plasma EVs from obese vs. nonobese women and their functional impact in adipocytes. METHODS Plasma EVs were isolated by differential centrifugation. Concentration and size were examined by nanoparticle tracking analysis (NanoSight). RNA was purified from plasma and plasma EVs of 45 women (47 ± 12 years, 58% of obesity) and profiles of mature miRNAs were assessed. Functional analyses were performed in human adipocytes. FINDINGS Smaller plasma EVs were found in obese when compared to nonobese women. Positive associations were identified between circulating EVs numbers and parameters of impaired glucose tolerance. Almost 40% of plasma cell-free miRNAs were also found in isolated plasma EVs, defined as Ct values < 37 in ≥75% of samples. BMI together with parameters of insulin resistance were major contributors to EVs-contained miRNA patterns. Treatments of cultured human adipocytes with EVs from obese women led to a significant reduction of genes involved in lipid biosynthesis, while increasing the expression of IRS1 (12.3%, p = 0.002). INTERPRETATION Size, concentration and the miRNA cargo of plasma EVs are associated with obesity and parameters of insulin resistance. Plasma EVs may mediate intercellular communication relevant to metabolism in adipocytes.
Collapse
|
26
|
Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P, Forte G. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 2019; 205:64-80. [PMID: 30904599 DOI: 10.1016/j.biomaterials.2019.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
The mechanoregulated proteins YAP/TAZ are involved in the adipogenic/osteogenic switch of mesenchymal stem cells (MSCs). MSC fate decision can be unbalanced by controlling substrate mechanics, in turn altering the transmission of tension through cell cytoskeleton. MSCs have been proposed for orthopedic and reconstructive surgery applications. Thus, a tight control of their adipogenic potential is required in order to avoid their drifting towards fat tissue. Substrate mechanics has been shown to drive MSC commitment and to regulate YAP/TAZ protein shuttling and turnover. The mechanism by which YAP/TAZ co-transcriptional activity is mechanically regulated during MSC fate acquisition is still debated. Here, we design few bioengineering tools suited to disentangle the contribution of mechanical from biological stimuli to MSC adipogenesis. We demonstrate that the mechanical repression of YAP happens through its phosphorylation, is purely mediated by cell spreading downstream of substrate mechanics as dictated by dimensionality. YAP repression is sufficient to prompt MSC adipogenesis, regardless of a permissive biological environment, TEAD nuclear presence or focal adhesion stabilization. Finally, by harnessing the potential of YAP mechanical regulation, we propose a practical example of the exploitation of adipogenic transdifferentiation in tumors.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic
| | - Giorgia Nardone
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Vrbsky
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Francesco Capradossi
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Katarína Melajová
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | | | - Giancarlo Forte
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic; Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
| |
Collapse
|
27
|
Cappato S, Giacopelli F, Tonachini L, Ravazzolo R, Bocciardi R. Identification of reference genes for quantitative PCR during C3H10T1/2 chondrogenic differentiation. Mol Biol Rep 2019; 46:3477-3485. [PMID: 30847849 PMCID: PMC6548758 DOI: 10.1007/s11033-019-04713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
C3H10T1/2, a mouse mesenchymal stem cell line, is a well-known in vitro model of chondrogenesis that can be easily employed to recapitulate some of the mechanisms intervening in this process. Moreover, these cells can be used to validate the effect of candidate molecules identified by high throughput screening approaches applied to the development of targeted therapy for human disorders in which chondrogenic differentiation may be involved, as in conditions characterized by heterotopic endochondral bone formation. Chondrogenic differentiation of C3H10T1/2 cells can be monitored by applying quantitative polymerase chain reaction (qPCR), one of the most sensitive methods that allows detection of small dynamic changes in gene expression between samples obtained under different experimental conditions. In this work, we have used qPCR to monitor the expression of specific markers during chondrogenic differentiation of C3H10T1/2 cells in micromass cultures. Then we have applied the geNorm approach to identify the most stable reference genes suitable to get a robust normalization of the obtained expression data. Among 12 candidate reference genes (Ap3d1, Csnk2a2, Cdc40, Fbxw2, Fbxo38, Htatsf1, Mon2, Pak1ip1, Zfp91, 18S, ActB, GAPDH) we identified Mon2 and Ap3d1 as the most stable ones during chondrogenesis. ActB, GAPDH and 18S, the most commonly used in the literature, resulted to have an expression level too high compared to the differentiation markers (Sox9, Collagen type 2a1, Collagen type 10a1 and Collagen type 1a1), therefore are actually less recommended for these experimental conditions. In conclusion, we identified nine reference genes that can be equally used to obtain a robust normalization of the gene expression variation during the C3H10T1/2 chondrogenic differentiation.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Laura Tonachini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy.,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy. .,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy.
| |
Collapse
|
28
|
Lu HY, Zeng H, Zhang L, Porres JM, Cheng WH. Fecal fermentation products of common bean-derived fiber inhibit C/EBPα and PPARγ expression and lipid accumulation but stimulate PPARδ and UCP2 expression in the adipogenesis of 3T3-L1 cells. J Nutr Biochem 2018; 60:9-15. [DOI: 10.1016/j.jnutbio.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
|
29
|
de Carvalho TG, Garcia VB, de Araújo AA, da Silva Gasparotto LH, Silva H, Guerra GCB, de Castro Miguel E, de Carvalho Leitão RF, da Silva Costa DV, Cruz LJ, Chan AB, de Araújo Júnior RF. Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int J Pharm 2018; 548:1-14. [DOI: 10.1016/j.ijpharm.2018.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
30
|
Ishii T, Miyauchi K, Nitta Y, Kaneko K, Maruyama T, Sato T. Mechanism for Decreased Gene Expression of β4-Galactosyltransferase 5 upon Differentiation of 3T3-L1 Mouse Preadipocytes to Adipocytes. Biol Pharm Bull 2018; 41:1463-1470. [PMID: 29984736 DOI: 10.1248/bpb.b18-00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon differentiation of cells, remarkable changes in the structures of glycans linked to lipids on cell surface have been observed. Lactosylceramide (Lac-Cer) serves as a common precursor for a series of glycosphingolipids with diverse structures. In the present study, we examined the underlying mechanism for the biosynthesis of Lac-Cer upon differentiation of 3T3-L1 mouse preadipocytes to adipocytes. TLC analysis showed that the amounts of Lac-Cer decrease in 3T3-L1 adipocytes compared to 3T3-L1 preadipocytes. In accordance with this change, the gene expression level of β4-galactosyltransferase (β4GalT) 5, which was identified as Lac-Cer synthase, decreased drastically upon differentiation of 3T3-L1 preadipocytes. The analysis of the transcriptional mechanism of the β4GalT5 gene demonstrated that the core promoter region is identified between nucleotides -299 and -1 relative to the translational start site. During adipocyte differentiation, the expression levels and promoter activities of the β4GalT5 gene decreased dramatically. Since the Specificity protein 1 (Sp1)-binding sites in the promoter region were critical for the promoter activity, it is suggested that Sp1 plays an important role for the expression of the β4GalT5 gene in 3T3-L1 cells. The gene and protein expression of Sp1 decreased significantly upon differentiation of 3T3-L1 preadipocytes. Taken together, the present study suggest that the expression of the β4GalT5 gene decreases through reduced expression of the Sp1 gene and protein upon differentiation of 3T3-L1 peradipocytes to adipocytes, which may lead to the decreased amounts of Lac-Cer in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Takayuki Ishii
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kana Miyauchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Yoshiharu Nitta
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kazuhiro Kaneko
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takuro Maruyama
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
31
|
Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, Palermo FA, Bovolin P. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J Steroid Biochem Mol Biol 2018; 178:322-332. [PMID: 29410257 PMCID: PMC5993210 DOI: 10.1016/j.jsbmb.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis.
Collapse
Affiliation(s)
- Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Erik Russel Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| |
Collapse
|
32
|
Patel VS, Chan ME, Pagnotti GM, Frechette DM, Rubin J, Rubin CT. Incorporating Refractory Period in Mechanical Stimulation Mitigates Obesity-Induced Adipose Tissue Dysfunction in Adult Mice. Obesity (Silver Spring) 2017; 25:1745-1753. [PMID: 28840647 PMCID: PMC5675136 DOI: 10.1002/oby.21958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether inclusion of a refractory period between bouts of low-magnitude mechanical stimulation (LMMS) can curb obesity-induced adipose tissue dysfunction and sequelae in adult mice. METHODS A diet-induced obesity model that included a diet with 45% of kilocalories from fat was employed with intention to treat. C57BL/6J mice were weight matched into four groups: low-fat diet (LFD, n = 8), high-fat diet (HFD, n = 8), HFD with one bout of 30-minute LMMS (HFDv, n = 9), and HFD with two bouts of 15-minute LMMS with a 5-hour separation (refractory period, RHFDv, n = 9). Two weeks of diet was followed by 6 weeks of diet plus LMMS. RESULTS HFD and HFDv mice continued gaining body weight and visceral adiposity throughout the experiment, which was mitigated in RHFDv mice. Compared with LFD mice, HFD and HFDv mice had increased rates of adipocyte hypertrophy, increased immune cell infiltration (B cells, T cells, and macrophages) into adipose tissue, increased adipose tissue inflammation (tumor necrosis factor alpha gene expression), and a decreased proportion of mesenchymal stem cells in adipose tissue, all of which were rescued in RHFDv mice. Glucose intolerance and insulin resistance were elevated in HFD and HFDv mice, but not in RHFDv mice, as compared with LFD mice. CONCLUSIONS Incorporating a 5-hour refractory period between bouts of LMMS attenuates obesity-induced adipose tissue dysfunction and improves glucose metabolism.
Collapse
Affiliation(s)
- Vihitaben S. Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - M. Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | | | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T. Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model. PLoS One 2016; 11:e0163219. [PMID: 27668434 PMCID: PMC5036817 DOI: 10.1371/journal.pone.0163219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected “housekeeping” roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using “traditional” vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most stable reference genes in each particular experimental model.
Collapse
|
34
|
Dong X, Tang S, Zhang W, Gao W, Chen Y. GPR39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the PI3K/AKT cell signaling pathway. J Recept Signal Transduct Res 2015; 36:130-8. [PMID: 26524639 DOI: 10.3109/10799893.2015.1056308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The orphan G protein-coupled receptor (GPR) 39 was originally identified as the receptor of obestatin. In this study, the effects and mechanisms of GPR39 on cell proliferation and differentiation were investigated in cultured porcine intramuscular preadipocytes. METHODS Morphology of preadipocytes and accumulated lipid droplets within cells were identified by an inverted microscope. After transfected with constructed pCMV-GPR39 plasmid, cell proliferation was measured by using methyl thiazolyl tetrazolium method, mRNA expression of GPR39, CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-9 and adipocyte determination and differentiation factor-1 (ADD1) was determined by RNA preparation and reverse transcription polymerase chain reaction, protein expression of phosphoinositide-3 kinase (PI3K), 3-phosphoinositide-dependent protein kinase 1, phosphorylated glycogen synthase kinase 3 (pGSK3), total Akt and phosphorylated Akt (pAkt) was analyzed by Western blot. RESULTS It found that GPR39 mRNA and protein were expressed in porcine intramuscular preadipocytes and its expression was significantly up-regulated after treatment with Zn(2+) whose function is found to be mediated by GPR39. Furthermore, over-expression of GPR39 further promoted the optical density value of cells, enhanced mRNA expression of PPARγ, C/EBPα and ADD1, and inhibited mRNA expression of Caspase-9. Protein expression of pGSK3 and pAkt was also increased by GPR39 stimulation. In addition, GPR39-induced proliferation and differentiation of porcine intramuscular preadipocytes was partially blocked by the Akt inhibitor (PDTC) and the PI3K inhibitor (LY294002). CONCLUSION It indicated that GPR39 was a transducer of Zn(2+), and enhanced proliferation and differentiation of porcine intramuscular preadipocytes through activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoying Dong
- a College of Yingdong Agricultural Science and Engineering, Shaoguan University , Shaoguan , P.R. China
| | - Shengqiu Tang
- a College of Yingdong Agricultural Science and Engineering, Shaoguan University , Shaoguan , P.R. China
| | - Wei Zhang
- b Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Science , Wuhan , P.R. China
| | - Weihua Gao
- c College of Animal Science, Yangtze Univeisity , Jingzhou , P.R. China , and
| | - Yanfei Chen
- d College of Yingdong Life Science, Shaoguan University , Shaoguan , P.R. China
| |
Collapse
|
35
|
Brenner S, Bercovich Z, Feiler Y, Keshet R, Kahana C. Dual Regulatory Role of Polyamines in Adipogenesis. J Biol Chem 2015; 290:27384-27392. [PMID: 26396188 DOI: 10.1074/jbc.m115.686980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
Adipogenesis is a complex process, accompanied by a chain of interdependent events. Disruption of key events in this cascade may interfere with the correct formation of adipose tissue. Polyamines were demonstrated necessary for adipogenesis; however, the underlying mechanism by which they act has not been established. Here, we examined the effect of polyamine depletion on the differentiation of 3T3-L1 preadipocytes. Our results demonstrate that polyamines are required early in the adipogenic process. Polyamine depletion inhibited the second division of the mitotic clonal expansion (MCE), and inhibited the expression of PPARγ and C/EBPα, the master regulators of adipogenesis. However, it did not affect the expression of their transcriptional activator, C/EBPβ. Additionally, polyamine depletion resulted in elevation of mRNA and protein levels of the stress-induced C/EBP homologous protein (CHOP), whose dominant negative function is known to inhibit C/EBPβ DNA binding activity. Conditional knockdown of CHOP in polyamine-depleted preadipocytes restored PPARγ and C/EBPα expression, but failed to recover MCE and differentiation. Thus, our results suggest that the need for MCE in the adipogenic process is independent from the requirement for PPARγ and C/EBPα expression. We conclude that de novo synthesis of polyamines during adipogenesis is required for down-regulation of CHOP to allow C/EBPβ activation, and for promoting MCE.
Collapse
Affiliation(s)
- Shirley Brenner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippi Bercovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yulia Feiler
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rom Keshet
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaim Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|