1
|
Gina NNT, Kuo JL, Wu ML, Chuang SM. Sesamin and sesamolin potentially inhibit adipogenesis through downregulating the peroxisome proliferator-activated receptor γ protein expression and activity in 3T3-L1 cells. Nutr Res 2024; 123:4-17. [PMID: 38228077 DOI: 10.1016/j.nutres.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Sesamin and sesamolin are major sesame lignans that have demonstrated anti-inflammatory, anticancer, and neuroprotective properties and potential benefits in the liver, cardiovascular diseases, and metabolic syndrome. However, despite previous research on their antiobesity effects and underlying mechanisms, a comprehensive investigation of these aspects is still lacking. In this study, we evaluated the regulatory effects of 20 to 80 µM sesamin and sesamolin on adipogenesis in vitro using 3T3-L1 cells as a model cell line. We hypothesized that the lignans would inhibit adipogenic differentiation in 3T3-L1 cells through the regulation of peroxisome proliferator-activated receptor γ (PPARγ). Our data indicate that sesamin and sesamolin inhibited the adipogenic differentiation of 3T3-L1 cells by dose-dependently decreasing lipid accumulation and triglyceride formation. Sesamin and sesamolin reduced the mRNA and protein expression of the adipogenesis-related transcription factors, PPARγ and CCAAT/enhancer-binding protein α, leading to the dose-dependent downregulations of their downstream targets, fatty acid binding protein 4, hormone-sensitive lipase, lipoprotein lipase, and glucose transporter 4. In addition, glucose uptake was dose-dependently attenuated by sesamin and sesamolin in both differentiated 3T3-L1 cells and HepG2 cells. Interestingly, our results suggested that sesamin and sesamolin might directly bind to PPARγ to inhibit its transcriptional activity. Finally, sesamin and sesamolin decreased the phosphorylation of 3 mitogen-activated protein kinase signaling components in differentiated 3T3-L1 cells. Taken together, our findings suggest that sesamin and sesamolin may exhibit antiobesity effects by potentially downregulating PPARγ and its downstream genes through the mitogen-activated protein kinase signaling pathway, offering important insights into the molecular mechanisms underlying the potential antiobesity effects of sesamin and sesamolin.
Collapse
Affiliation(s)
- Nelma Nyvonne Tiqu Gina
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan
| | - Jui-Ling Kuo
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan
| | - Mei-Li Wu
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Department of Law, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Gao H, Wang Z, Zhu D, Zhao L, Xiao W. Dioscin: Therapeutic potential for diabetes and complications. Biomed Pharmacother 2024; 170:116051. [PMID: 38154275 DOI: 10.1016/j.biopha.2023.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetes mellitus is a widespread metabolic disorder with increasing incidence worldwide, posing a considerable threat to human health because of its complications. Therefore, cost-effective antidiabetic drugs with minimal side effects are urgently needed. Dioscin, a naturally occurring compound, helps to reduce the complications of diabetes mellitus by regulating glucose and lipid metabolism, protecting islet β cells, improving insulin resistance, and inhibiting oxidative stress and inflammatory response. Plant-derived dioscin reduces the risk of toxicity and side effects associated with chemically synthesized drugs. It is a promising option for treating diabetes mellitus because of its preventive and therapeutic effects, which may be attributed to a variety of underlying mechanisms. However, data compiled by current studies are preliminary. Information about the molecular mechanism of dioscin remains limited, and no high-quality human experiments and clinical trials for testing its safety and efficacy have been conducted. As a resource for research in this area, this review is expected to provide a systematic framework for the application of dioscin in the treatment of diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Haoyang Gao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ze Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Danlin Zhu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Linlin Zhao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; School of Physical Education, Shanghai Normal University, Shanghai 200234, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Park YK, Jang BC. The Receptor Tyrosine Kinase c-Met Promotes Lipid Accumulation in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:ijms24098086. [PMID: 37175792 PMCID: PMC10179087 DOI: 10.3390/ijms24098086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The receptor tyrosine kinase c-Met is elaborated in embryogenesis, morphogenesis, metabolism, cell growth, and differentiation. JNJ38877605 (JNJ) is an inhibitor of c-Met with anti-tumor activity. The c-Met expression and its role in adipocyte differentiation are unknown. Here, we investigated the c-Met expression and phosphorylation, knockdown (KD) effects, and pharmacological inhibition of c-Met by JNJ on fat accumulation in murine preadipocyte 3T3-L1 cells. During 3T3-L1 preadipocyte differentiation, strikingly, c-Met expression at the protein and mRNA levels and the protein phosphorylation on Y1234/1235 and Y1349 is crucial for inducing its kinase catalytic activity and activating a docking site for signal transducers were increased in a time-dependent manner. Of note, JNJ treatment at 20 μM that strongly inhibits c-Met phosphorylation without altering its total expression resulted in less lipid accumulation and triglyceride (TG) content with no cytotoxicity. JNJ further reduced the expression of adipogenic regulators, including CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A. Moreover, JNJ treatment increased cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) phosphorylation but decreased ATP levels. Significantly, KD of c-Met suppressed fat accumulation and triglyceride (TG) quantity and reduced the expression of C/EBP-α, PPAR-γ, FAS, ACC, and perilipin A. Collectively, the present results demonstrate that c-Met is a novel, highly conserved mediator of adipogenesis regulating lipid accumulation in murine adipocytes.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
- Department of Physiology, Senotherapy-Based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170, Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Shih MK, Hsieh SL, Huang YW, Patel AK, Dong CD, Hou CY. Resveratrol butyrate esters inhibit lipid biosynthesis in 3T3-L1 cells by AMP-activated protein kinase phosphorylation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1015-1025. [PMID: 36908355 PMCID: PMC9998790 DOI: 10.1007/s13197-022-05436-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 μM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05436-x.
Collapse
Affiliation(s)
- Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, No.1, Songhe Rd., Xiaogang Dist., Kaohsiung, 812301 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Anil Kumar Patel
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Cheng-di Dong
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| |
Collapse
|
6
|
Yao SJ, Lan TH, Zhang XY, Zeng QH, Xu WJ, Li XQ, Huang GB, Liu T, Lyu WH, Jiang W. LOX-1 Regulation in Anti-atherosclerosis of Active Compounds of Herbal Medicine: Current Knowledge and the New Insight. Chin J Integr Med 2023; 29:179-185. [PMID: 36342592 DOI: 10.1007/s11655-022-3621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.
Collapse
Affiliation(s)
- Si-Jie Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tao-Hua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin-Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Qiao-Huang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Jing Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Xiao-Qing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Gui-Bao Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tong Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Wei-Hui Lyu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China. .,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Sahin I, Ceylan Ç, Bayraktar O. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Arch Biochem Biophys 2023; 733:109481. [PMID: 36522815 DOI: 10.1016/j.abb.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.
Collapse
Affiliation(s)
- Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Çağatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
8
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
9
|
Kim JY, Park EJ, Lee HJ. Ameliorative Effects of Lactobacillus plantarum HAC01 Lysate on 3T3-L1 Adipocyte Differentiation via AMPK Activation and MAPK Inhibition. Int J Mol Sci 2022; 23:ijms23115901. [PMID: 35682579 PMCID: PMC9180524 DOI: 10.3390/ijms23115901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus plantarum HAC01 has been shown to effectively treat metabolic diseases. However, the precise pharmacological effects and molecular mechanisms of L. plantarum HAC01 remain unclear. In this study, we investigate the anti-adipogenic effects of L. plantarum HAC01 lysate and its associated mechanism of action. To induce lipid accumulation, 3T3-L1 cells were incubated in differentiation media with or without L. plantarum HAC01 lysate. Our results show that L. plantarum HAC01 lysate treatment not only reduced lipid accumulation during the differentiation of 3T3-L1 cells, but also decreased the expression of adipogenic and lipogenic genes involved in lipid metabolism in a dose-dependent manner. Additionally, L. plantarum HAC01 lysate inhibited CCAAT/enhancer-binding protein (C/EBP) beta within 4 h of differentiation induction and inhibited peroxisome proliferator-activated receptor gamma, C/EBP alpha, and sterol regulatory element-binding proteins within 2 d. Moreover, treatment with L. plantarum HAC01 lysate increased the phosphorylation of adenosine monophosphate-activated protein kinase, an important regulator of energy metabolism, and decreased the phosphorylation of mitogen-activated protein kinase. These results indicate that L. plantarum HAC01 lysate may have anti-adipogenic effects and support its potential as a useful agent for the treatment of obesity.
Collapse
Affiliation(s)
- Jong-Yeon Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| | - Eun-Jung Park
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (E.-J.P.); or (H.-J.L.); Tel.: +82-31-724-4408 (E.-J.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (E.-J.P. & H.-J.L.)
| | - Hae-Jeung Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (E.-J.P.); or (H.-J.L.); Tel.: +82-31-724-4408 (E.-J.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (E.-J.P. & H.-J.L.)
| |
Collapse
|
10
|
Dracunculin Inhibits Adipogenesis in Human Bone Marrow-Derived Mesenchymal Stromal Cells by Activating AMPK and Wnt/β-Catenin Signaling. Int J Mol Sci 2022; 23:ijms23020653. [PMID: 35054838 PMCID: PMC8776130 DOI: 10.3390/ijms23020653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Increased bone marrow adiposity is widely observed in patients with obesity and osteoporosis and reported to have deleterious effects on bone formation. Dracunculin (DCC) is a coumarin isolated from Artemisia spp. but, until now, has not been studied for its bioactive potential except antitrypanosomal activity. In this context, current study has reported the anti-adipogenic effect of DCC in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). DCC dose-dependently inhibited the lipid accumulation and expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) in hBM-MSCs induced to undergo adipogenesis. To elucidate its action mechanism, the effect of DCC on Wnt/β-catenin and AMPK pathways was examined. Results showed that DCC treatment activated Wnt/β-catenin signaling pathway via AMPK evidenced by increased levels of AMPK phosphorylation and Wnt10b expression after DCC treatment. In addition, DCC treated adipo-induced hBM-MSCs exhibited significantly increased nuclear levels of β-catenin compared with diminished nuclear PPARγ levels. In conclusion, DCC was shown to be able to hinder adipogenesis by activating the β-catenin via AMPK, providing potential utilization of DCC as a nutraceutical against bone marrow adiposity.
Collapse
|
11
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Chauhan N, Porte S, Joshi V, Shah K. Plants' steroidal saponins - A review on its pharmacology properties and analytical techniques. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
14
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Zhuoyue Z, Ruangaram W, Kato E. Saponins are responsible for the anti-obesogenic activity of Acacia concinna. J Nat Med 2021; 75:1005-1013. [PMID: 34019225 DOI: 10.1007/s11418-021-01530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
Acacia concinna (Willd.) DC. is a medicinal plant sourced mainly from Southeast Asia. The pods of Acacia concinna (A. concinna) are a potential candidate to treat or prevent obesity; however, these medicinal attributes have not been examined in detail. In this study, the anti-obesogenic compounds in A. concinna pods were investigated. Chromatographic separation of the pod extract guided by pancreatic lipase inhibitory activity led to the isolation of saponins. Decomposition analysis of the saponins revealed their chemical composition to be acacic acid, monoterpenes, and five types of sugars (glucose, xylose, rhamnose, quinovose, arabinose). The predicted structures of the saponins from decomposition analysis were confirmed by LC-MS analysis, showing that these saponins are mixture of various derivatives of monoterpenes and sugar units. These saponins inhibited pancreatic lipase activity strongly with an IC50 of 7.9 μg/mL, and reduced lipid accumulation in 3T3-L1 adipocytes at 6.3 μg/mL. The saponins also enhanced lipolysis of 3T3-L1 adipocytes at 3.1 or 6.3 μg/mL by mediating the activity of protein kinase A and extracellular signal-regulated kinase pathways, suggesting that this mechanism is partly responsible for the observed reduction of lipid content in adipocytes. The results underline A. concinna as a potential source of the anti-obesogenic candidates for the future treatment and prevention of obesity.
Collapse
Affiliation(s)
- Zhao Zhuoyue
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Wijitrapha Ruangaram
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Eisuke Kato
- Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
16
|
Yadav AK, Jang BC. Inhibition of Lipid Accumulation and Cyclooxygenase-2 Expression in Differentiating 3T3-L1 Preadipocytes by Pazopanib, a Multikinase Inhibitor. Int J Mol Sci 2021; 22:ijms22094884. [PMID: 34063048 PMCID: PMC8125232 DOI: 10.3390/ijms22094884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pazopanib is a multikinase inhibitor with anti-tumor activity. As of now, the anti-obesity effect and mode of action of pazopanib are unknown. In this study, we investigated the effects of pazopanib on lipid accumulation, lipolysis, and expression of inflammatory cyclooxygenase (COX)-2 in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte. Of note, pazopanib at 10 µM markedly decreased lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, pazopanib inhibited not only expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and perilipin A but also phosphorylation of signal transducer and activator of transcription (STAT)-3 during 3T3-L1 preadipocyte differentiation. In addition, pazopanib treatment increased phosphorylation of cAMP-activated protein kinase (AMPK) and its downstream effector ACC during 3T3-L1 preadipocyte differentiation. However, in differentiated 3T3-L1 adipocytes, pazopanib treatment did not stimulate glycerol release and hormone-sensitive lipase (HSL) phosphorylation, hallmarks of lipolysis. Moreover, pazopanib could inhibit tumor necrosis factor (TNF)-α-induced expression of COX-2 in both 3T3-L1 preadipocytes and differentiated cells. In summary, this is the first report that pazopanib has strong anti-adipogenic and anti-inflammatory effects in 3T3-L1 cells, which are mediated through regulation of the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, ACC, perilipin A, AMPK, and COX-2.
Collapse
|
17
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
18
|
Wang L, Shang C, Pan H, Yang H, Zhu H, Gong F. MicroRNA Expression Profiles in the Subcutaneous Adipose Tissues of Morbidly Obese Chinese Women. Obes Facts 2021; 14:1-15. [PMID: 33550286 PMCID: PMC7983571 DOI: 10.1159/000511772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Obesity is a main global health issue and an outstanding cause of morbidity and mortality. Exploring miRNA profiling may help further studies on obesity. METHODS Three morbidly obese and 5 normal-weight Chinese women were enrolled in the microarray testing group. Abdominal subcutaneous adipose tissue (SAT) samples were excised. Total RNAs including miRNAs were extracted. Affymetrix GeneChip miRNA 4.0 Array was used to compare the expression profiles of miRNAs between the 2 groups. Two algorithms, miRanda and TargetScan, were used to predict target messenger RNAs (mRNAs). Bioinformatics analysis was then done based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The sample sizes were further expanded to 8 morbidly obese and 9 normal-weight subjects, and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression of differential miRNAs and target genes. RESULTS As per the microarray assay, 58 miRNAs were differentially expressed in the SAT from the morbidly obese and normal-weight groups (Fold >4, p < 0.01, FDR <0.05); 54 of these were downregulated and 4 were upregulated in morbidly obese subjects. A total of 1,333 target genes were jointly predicted by miRanda and TargetScan. Further bioinformatics analysis showed that the differential miRNAs were involved in 269 significant biological functions and 89 significant signaling pathways. The validation experiment by qRT-PCR showed that the expression levels of miRNA-143-5p, miRNA-143-3p, miRNA-145-5p, and let-7a-5p were downregulated in morbidly obese subjects, consistent with the microarray detection. High-mobility group A2 (HMGA2), a target gene of the downregulated miRNA let-7a-5p, was first found to be upregulated 3.19-fold in the SAT of morbidly obese Chinese women when compared to normal-weight controls. CONCLUSIONS MiRNA downregulation is a hallmark of intact SAT in a morbidly obese state. Transcription (DNA-dependent), small-molecule metabolic processes, the MAPK signaling pathway, and cancer-related pathways may play important roles in the occurrence and development of obesity. For the first time, we proved that HMGA2, a target gene of let-7a-5p, is upregulated in the SAT of morbidly obese Chinese women.
Collapse
Affiliation(s)
- Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| |
Collapse
|
19
|
Kwon HS, Jeong GS, Jang BC. Cudratricusxanthone A Inhibits Lipid Accumulation and Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes. Int J Mol Sci 2021; 22:ijms22020505. [PMID: 33419132 PMCID: PMC7825570 DOI: 10.3390/ijms22020505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Cudratricusxanthone A (CTXA) is a natural bioactive compound extracted from the roots of Cudrania tricuspidata Bureau and has been shown to possess anti-inflammatory, anti-proliferative, and hepatoprotective activities. However, at present, anti-adipogenic and anti-inflammatory effects of CTXA on adipocytes remain unclear. In this study, we investigated the effects of CTXA on lipid accumulation and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, two known inflammatory enzymes, in 3T3-L1 preadipocytes. Strikingly, CTXA at 10 µM markedly inhibited lipid accumulation and reduced triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. On mechanistic levels, CTXA at 10 µM suppressed not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A, but also phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during 3T3-L1 preadipocyte differentiation. In addition, CTXA at 10 µM up-regulated phosphorylation levels of cAMP-activated protein kinase (AMPK) while down-regulating expression and phosphorylation levels of acetyl-CoA carboxylase (ACC) during 3T3-L1 preadipocyte differentiation. Moreover, CTXA at 10 µM greatly attenuated tumor necrosis factor (TNF)-α-induced expression of iNOS, but not COX-2, in 3T3-L1 preadipocytes. These results collectively demonstrate that CTXA has strong anti-adipogenic and anti-inflammatory effects on 3T3-L1 cells through control of the expression and phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3/5, AMPK, and iNOS.
Collapse
Affiliation(s)
- Hyo-Shin Kwon
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-258-7404
| |
Collapse
|
20
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
21
|
Luo Z, Xu W, Zhang Y, Di L, Shan J. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacol Res 2020; 160:105088. [PMID: 32683035 DOI: 10.1016/j.phrs.2020.105088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) is a series of symptoms including insulin resistance, obesity, dyslipidemia, elevated fasting blood glucose levels, and hepatic steatosis. As a key criterion in MetS, the onset of insulin resistance is related to abnormal levels of circulating free fatty acids and adipokines. It has been discovered in recent years that metabolites and pathogen-associated molecular patterns of intestinal/gut microbiota are also important factors that cause insulin resistance and MetS. Saponins are the main components of many botanicals and traditional Chinese medicines (TCMs), such as ginseng, platycodon, licorice, and alfalfa. They have poor bioavailability, but can be transformed into secondary glycosides and aglycones by intestinal microbiota, further being absorbed. Based on in vivo and in vitro data, we found that saponins and their secondary metabolites have a preventive effect on MetS, and the effective targets are distributed in the intestine and other organs in human body. Intestinal targets involve pancreatic lipase, dietary cholesterol, and intestinal microbiota. Other targets include central appetite, nuclear receptors such as PPAR and LXR, AMPK signaling pathway and adipokines levels, etc. In view of the poor bioavailability of saponins, it is inferred that targets for prototype-saponins to interfere with MetS is mainly located in the intestine, and the activation of other targets may be related to secondary glycosides and aglycones transformed from saponins by intestinal flora. We suggest that the role of intestinal microbiota in saponin intervention in MetS should be further investigated.
Collapse
Affiliation(s)
- Zichen Luo
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, CA, 95616, USA
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2020; 61:2061-2077. [PMID: 32462901 DOI: 10.1080/10408398.2020.1769548] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Jeepipalli SPK, Du B, Sabitaliyevich UY, Xu B. New insights into potential nutritional effects of dietary saponins in protecting against the development of obesity. Food Chem 2020; 318:126474. [PMID: 32151922 DOI: 10.1016/j.foodchem.2020.126474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/10/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022]
Abstract
Excessive energy intake, poor physical exercise and genetics/epigenetics are instrumental for the development of obesity. Because of rapidly emerging evidences related to off-target effects and toxicity of anti-obesity drugs, there is a need to search for more effective and targeted drugs for treatment of obesity. Substantial studies have found the nutritional effects of dietary saponins (bio-detergents) in terms of decreasing the synthesis of lipids, suppressing adipogenesis, inhibiting intestinal absorption of lipids, and promoting fecal excretion of bile acids and triglycerides. Dietary saponin have been approved as potent pancreatic lipase inhibitors, disaccharidase enzyme inhibitors, antagonistic to in vitro lipogenesis and in vivo appetite suppressants, antioxidants, immune-regulators, prevent fatty liver formation, protects epithelial vasculature and regulate body weight. Many dietary saponins, such as sibutramine, morgoside, sessiloside, soysaponin B, and diosgenin, have treatment potential against the development of obesity. Excellent scientific achievements have been developed for a better understanding the mechanism of saponins in preventing obesity.
Collapse
Affiliation(s)
- Syam P K Jeepipalli
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Bin Du
- Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066600, China
| | | | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
24
|
Lee YS, Park JS, Lee DH, Han J, Bae SH. Ezetimibe ameliorates lipid accumulation during adipogenesis by regulating the AMPK-mTORC1 pathway. FASEB J 2019; 34:898-911. [PMID: 31914598 DOI: 10.1096/fj.201901569r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
Adipogenesis, a critical process that converts adipocyte precursors into adipocytes, is considered a potential therapeutic target for the treatment of obesity. Ezetimibe, a drug approved by the United States Food and Drug Administration, is used for the treatment of hypercholesterolemia. Recently, it was reported to ameliorate high fat diet-induced dyslipidemia in mice and reduce lipid accumulation in hepatocytes through the activation of AMPK. However, the anti-adipogenic effects of ezetimibe and the underlying molecular mechanism have not yet been elucidated. Here, we found that ezetimibe reduced lipid accumulation via activating AMPK during the early phase of adipogenesis. We also observed that ezetimibe inhibited peroxisome proliferator-activated receptor γ, which is a major transcription factor of adipogenesis. Furthermore, ezetimibe-mediated AMPK activation reduced lipid accumulation by inhibiting mTORC1 signaling, leading to the downregulation of lipogenesis-related genes. Mitotic clonal expansion, required for adipogenesis, accelerates cell cycle progression and cell proliferation. We additionally observed that ezetimibe prevented the progression of mitotic clonal expansion by arresting the cell cycle at the G0/G1 phase, which was followed by the inhibition of cell proliferation. Collectively, ezetimibe-mediated inhibition of adipogenesis is dependent on the AMPK-mTORC1 pathway. Thus, we suggest that ezetimibe might be a promising drug for the treatment of obesity.
Collapse
Affiliation(s)
- Yu Seol Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Hyun Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jisu Han
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
26
|
Li H, Yue B. Effects of various antimicrobial agents on multi-directional differentiation potential of bone marrow-derived mesenchymal stem cells. World J Stem Cells 2019; 11:322-336. [PMID: 31293715 PMCID: PMC6600849 DOI: 10.4252/wjsc.v11.i6.322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial drugs of several classes play an important role in the treatment of bone and joint infections. In addition to fighting pathogenic microorganisms, the effects of drugs on local tissues and cells are also related to the course and prognosis of bone and joint infections. The multi-directional differentiation potential of bone marrow-derived mesenchymal stem cells (MSCs) is essential for tissue repair after local injury, which is directly related to the recovery of bone, cartilage, and medullary adipose tissue. Our previous studies and the literature indicate that certain antimicrobial agents can regulate the differentiation potential of bone marrow-derived MSCs. Here, in order to systematically analyze the effects of various antimicrobial drugs on local tissue regeneration, we comprehensively review the studies on the effects of these drugs on MSC differentiation, and classify them according to the three differentiation directions (osteogenesis, chondrogenesis, and adipogenesis). Our review demonstrates the specific effects of different antimicrobial agents on bone marrow-derived MSCs and the range of concentrations at which they work, and provides a basis for drug selection at different sites of infection.
Collapse
Affiliation(s)
- Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
27
|
Ko SC, Ding Y, Kim J, Ye BR, Kim EA, Jung WK, Heo SJ, Lee SH. Bromophenol (5-bromo-3,4-dihydroxybenzaldehyde) isolated from red alga Polysiphonia morrowii inhibits adipogenesis by regulating expression of adipogenic transcription factors and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Phytother Res 2018; 33:737-744. [PMID: 30570192 DOI: 10.1002/ptr.6266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to investigate the effect of 5-bromo-3,4-dihydroxybenzaldehyde (BD) isolated from Polysiphonia morrowii on adipogenesis and differentiation of 3T3-L1 preadipocytes into mature adipocytes and its possible mechanism of action. Levels of lipid accumulation and triglyceride were significantly lower in BD treated cells than those in untreated cells. In addition, BD treatment reduced protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding proteins α, and sterol regulatory element-binding protein 1 compared with control (no treatment). It also reduced expression levels of adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. AMP-activated protein kinase activation was found to be one specific mechanism involved in the effect of BD. These results demonstrate that BD possesses inhibitory effect on adipogenesis through activating AMP-activated protein kinase signal pathway.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yuling Ding
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Junseong Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Bo-Ram Ye
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Eun-A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
- Department of Marine Biology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
28
|
Tao X, Yin L, Xu L, Peng J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018; 137:259-269. [DOI: 10.1016/j.phrs.2018.09.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
|
29
|
Lu HY, Zeng H, Zhang L, Porres JM, Cheng WH. Fecal fermentation products of common bean-derived fiber inhibit C/EBPα and PPARγ expression and lipid accumulation but stimulate PPARδ and UCP2 expression in the adipogenesis of 3T3-L1 cells. J Nutr Biochem 2018; 60:9-15. [DOI: 10.1016/j.jnutbio.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
|
30
|
Morusin Functions as a Lipogenesis Inhibitor as Well as a Lipolysis Stimulator in Differentiated 3T3-L1 and Primary Adipocytes. Molecules 2018; 23:molecules23082004. [PMID: 30103469 PMCID: PMC6222347 DOI: 10.3390/molecules23082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Conflicting results for morusin activity during adipogenic differentiation are reported in 3T3-L1 adipocytes and cancer cells. To elucidate the influence of morusin on fat metabolism, their anti-obesity effects and molecular mechanism were investigated in 3T3-L1 cells and primary adipocytes. Morusin at a dose of less than 20 µM does not induce any significant change in the viability of 3T3-L1 adipocytes. The accumulation of intracellular lipid droplets in 3T3-L1 adipocytes stimulated with 0.5 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 10 µg/mL insulin in DMEM containing 10% FBS (MDI)-significantly reduces in a dose-dependent manner after morusin treatment. The phosphorylation level of members in the MAP kinase signaling pathway under the insulin receptor downstream also decrease significantly in the MDI + morusin-treated group compared to MDI + vehicle-treated group. Also, the expression of adipogenic transcription factors (PPARγ and C/EBPα) and lipogenic proteins (aP2 and FAS) are significantly attenuated by exposure to the compound in MDI-stimulated 3T3-L1 adipocytes. Furthermore, the decrease in the G0/G1 arrest of cell cycle after culturing in MDI medium was dramatically recovered after co-culturing in MDI + 20 µM morusin. Moreover, morusin treatment induces glycerol release in the primary adipocytes of SD rats and enhances lipolytic protein expression (HSL, ATGL, and perilipin) in differentiated 3T3-L1 adipocytes. Overall, the results of the present study provide strong evidence that morusin inhibits adipogenesis by regulating the insulin receptor signaling, cell cycle and adipogenic protein expression as well as stimulating lipolysis by enhancing glycerol release and lipolytic proteins expression.
Collapse
|
31
|
Ishii T, Miyauchi K, Nitta Y, Kaneko K, Maruyama T, Sato T. Mechanism for Decreased Gene Expression of β4-Galactosyltransferase 5 upon Differentiation of 3T3-L1 Mouse Preadipocytes to Adipocytes. Biol Pharm Bull 2018; 41:1463-1470. [PMID: 29984736 DOI: 10.1248/bpb.b18-00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon differentiation of cells, remarkable changes in the structures of glycans linked to lipids on cell surface have been observed. Lactosylceramide (Lac-Cer) serves as a common precursor for a series of glycosphingolipids with diverse structures. In the present study, we examined the underlying mechanism for the biosynthesis of Lac-Cer upon differentiation of 3T3-L1 mouse preadipocytes to adipocytes. TLC analysis showed that the amounts of Lac-Cer decrease in 3T3-L1 adipocytes compared to 3T3-L1 preadipocytes. In accordance with this change, the gene expression level of β4-galactosyltransferase (β4GalT) 5, which was identified as Lac-Cer synthase, decreased drastically upon differentiation of 3T3-L1 preadipocytes. The analysis of the transcriptional mechanism of the β4GalT5 gene demonstrated that the core promoter region is identified between nucleotides -299 and -1 relative to the translational start site. During adipocyte differentiation, the expression levels and promoter activities of the β4GalT5 gene decreased dramatically. Since the Specificity protein 1 (Sp1)-binding sites in the promoter region were critical for the promoter activity, it is suggested that Sp1 plays an important role for the expression of the β4GalT5 gene in 3T3-L1 cells. The gene and protein expression of Sp1 decreased significantly upon differentiation of 3T3-L1 preadipocytes. Taken together, the present study suggest that the expression of the β4GalT5 gene decreases through reduced expression of the Sp1 gene and protein upon differentiation of 3T3-L1 peradipocytes to adipocytes, which may lead to the decreased amounts of Lac-Cer in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Takayuki Ishii
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kana Miyauchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Yoshiharu Nitta
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kazuhiro Kaneko
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takuro Maruyama
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
32
|
Samuels JS, Shashidharamurthy R, Rayalam S. Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway. Nutr Metab (Lond) 2018; 15:42. [PMID: 29946343 PMCID: PMC6003190 DOI: 10.1186/s12986-018-0277-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity alters adipose tissue metabolic and endocrine functioning, leading to an increased adiposity and release of pro-inflammatory cytokines. Various phytochemicals have been reported to contribute to the beiging of white adipose tissue in order to ameliorate obesity by increasing thermogenesis. Here, we show that the prenylated chalcone, xanthohumol (XN), induces beiging of white adipocytes, stimulates lipolysis, and inhibits adipogenesis of murine 3T3-L1 adipocytes and primary human subcutaneous preadipocytes and these effects are partly mediated by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. METHODS 3T3-L1 adipocytes and primary human subcutaneous preadipocytes were differentiated using a standard protocol and were treated with various concentrations of XN, dorsomorphin, an AMPK inhibitor, or AICAR, an AMPK activator, to investigate the effects on adipogenesis, beiging and lipolysis. RESULTS XN induced beiging of white adipocytes as witnessed by the increased expression of beige markers CIDE-A and TBX-1. XN increased mitochondrial biogenesis, as evidenced by increased mitochondrial content, enhanced expression of PGC-1α, and the thermogenic protein UCP1. Following 24 h of treatment, XN also increased oxygen consumption rate. XN stimulated lipolysis of mature 3T3-L1 and primary human subcutaneous adipocytes and inhibited adipogenesis of maturing adipocytes. XN activated AMPK and in turn, XN-induced upregulation of UCP1, p-ACC, HSL, and ATGL was downregulated in the presence of dorsomorphin. Likewise, an XN-induced decrease in adipogenesis was reversed in the presence of dorsomorphin. CONCLUSIONS Taken together, XN demonstrates anti-obesity effects by not only inducing beiging but also decreasing adipogenesis and inducing lipolysis. The anti-obesity effects of XN are partly mediated by AMPK signaling pathway suggesting that XN may have potential therapeutic implications for obesity.
Collapse
Affiliation(s)
- Janaiya S. Samuels
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| |
Collapse
|
33
|
Poleti MD, Regitano LC, Souza GH, Cesar AS, Simas RC, Silva-Vignato B, Oliveira GB, Andrade SC, Cameron LC, Coutinho LL. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J Proteomics 2018; 179:30-41. [DOI: 10.1016/j.jprot.2018.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
|
34
|
Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, Song BJ, Kim DK, Lee YM. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med 2018; 15:5070-5076. [PMID: 29844801 DOI: 10.3892/etm.2018.6042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The present study was undertaken to investigate the mechanism behind the anti-obesity effect of the 50% ethanol extract of Chrysanthemum indicum L. flowers (CIEE) in a mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (six mice in each group) were administered CIEE (8, 40 and 200 mg/kg) for 6 weeks while being fed with a HFD. Garcinia cambogia (GC) was used as the positive control and was administered in the same manner as CIEE. Results demonstrated that oral administration of CIEE significantly reduced body weight, epididymal white adipose tissue (EWAT), liver weight and serum levels of total cholesterol and triglyceride (P<0.05). In addition, CIEE reduced serum leptin and increased adiponectin levels. CIEE significantly downregulated peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein-α and fatty acid synthase expression levels in EWAT, and upregulated the protein expression of PPARα in liver tissue of HFD-fed obese mice (P<0.05). These results suggested that Chrysanthemum indicum L. flowers may be a potentially effective therapeutic agent for obesity and its associated complications.
Collapse
Affiliation(s)
- Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang-Yong Choi
- Wonkwang Pharmaceutical Co., Ltd., Iksan, Jeonbuk 54588, Republic of Korea
| | - Jeong-Mo Yeon
- Wonkwang Pharmaceutical Co., Ltd., Iksan, Jeonbuk 54588, Republic of Korea
| | - Bong-Joon Song
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
35
|
Kang ES, Kim DS, Suhito IR, Lee W, Song I, Kim TH. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res 2018; 22:10. [PMID: 29619243 PMCID: PMC5879765 DOI: 10.1186/s40824-018-0120-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. Main text In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Conclusion Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Ee-Seul Kang
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Da-Seul Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Intan Rosalina Suhito
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wanhee Lee
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Inbeom Song
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Tae-Hyung Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea.,2Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
36
|
Nepali S, Kim DK, Lee HY, Ki HH, Kim BR, Hwang SW, Park M, Kim DK, Lee YM. Euphorbia supina extract results in inhibition of high‑fat‑diet‑induced obesity in mice. Int J Mol Med 2018; 41:2952-2960. [PMID: 29484428 DOI: 10.3892/ijmm.2018.3495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
The present study was undertaken to investigate the anti‑obesity effect of a 50% ethanol extract of Euphorbia supina (ESEE) in high‑fat‑diet (HFD)‑induced obese C57BL/6J mice. Mice were fed a HFD with or without ESEE (2, 10, or 50 mg/kg) or with Garcinia cambogia (positive control) for 6 weeks. ESEE supplementation significantly reduced body, epididymal white adipose tissue (eWAT), and organ weights (P<0.05). ESEE also reduced hepatic steatosis and improved serum lipid profiles. In addition, ESEE significantly reduced serum leptin levels and increased adiponectin levels, and significantly downregulated the mRNA and protein levels of proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer‑binding protein alpha (C/EPBα) in eWAT and liver tissues (all P<0.05). These results suggested that ESEE supplementation protects against HFD‑induced obesity by downregulating PPARγ and C/EPBα, and that ESEE may be beneficial for the prevention and treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Do-Kuk Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Bo-Ram Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Min Park
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
37
|
Nepali S, Cha JY, Ki HH, Lee HY, Kim YH, Kim DK, Song BJ, Lee YM. Chrysanthemum indicum Inhibits Adipogenesis and Activates the AMPK Pathway in High-Fat-Diet-Induced Obese Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:119-136. [DOI: 10.1142/s0192415x18500076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chrysanthemum indicum (CI) is widely distributed in China and many parts of the tropical world, and has been reported to have antibacterial, antiviral, anti-oxidant and immunomodulatory effects, but no information is available on its effects on high fat diet (HFD)-induced obesity. This was undertaken to investigate the mechanism responsible for the effect of ethyl acetate fraction of CI (CIEA) on adipogenesis, in vitro and in vivo models of obesity. In the in vitro study, differentiating 3T3-L1 cells were treated with media to initiate differentiation (MDI) in the presence or absence of CIEA with different concentrations, and in the in vivo study, C57BL/6 mice were fed with HFD and administered CIEA daily for six weeks. Garcinia cambogia (GC) was used as the positive control, and was administered in the same manner as CIEA. Results showed CIEA reduced HFD-induced body weight gain, epididymal white adipose tissue (eWAT), and liver weight. In addition, CIEA significantly decreased serum lipid profiles, including total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDLc) and increased high density lipoprotein cholesterol (HDLc) levels. Furthermore, CIEA also reduced leptin levels and increased adiponectin levels in serum, and significantly decreased peroxisome proliferator-activated receptor [Formula: see text] (PPAR[Formula: see text]) and CCAAT/enhancer-binding protein (C/EPBs) levels, but increased PPAR[Formula: see text] level and the phosphorylation of AMP-activated protein kinase (AMPK) in eWATs and in the liver tissues of HFD fed obese mice. Taken together, these results indicate CIEA might be beneficial for preventing obesity.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
| | - Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
| | - Bong-Joon Song
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| |
Collapse
|
38
|
Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction. Toxicol Appl Pharmacol 2017; 337:45-66. [DOI: 10.1016/j.taap.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
|
39
|
Ki HH, Poudel B, Lee JH, Lee YM, Kim DK. In vitro and in vivo anti-cancer activity of dichloromethane fraction of Triticum aestivum sprouts. Biomed Pharmacother 2017; 96:120-128. [PMID: 28972884 DOI: 10.1016/j.biopha.2017.09.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
Triticum aestivum sprouts (TA) contain significant amounts of chlorophyll, minerals, enzymes, and other functional entities. Furthermore, TA extracts have been shown to possess anti-obesity, anti-diabetic and hepatoprotective effects and are believed to help blood flow, digestion, and general detoxification of the body. In this study, the mechanism underlying the anti-cancer effects of a dichloromethane fraction of TA (TDF) was investigated in vitro and in vivo. In vitro study was done by examining cancer cells growth, morphological changes, cell cycles, expressions of death receptors and apoptosis-linked proteins in wide range of human cancer cell lines. To investigate the effect of TDF in vivo, C57BL/6 mice were injected with B16 melanoma cells and orally administered TDF. TDF markedly inhibited cancer cell growth and induced cellular morphological alterations, cell cycle arrest and apoptosis, and enhanced the expressions of death receptors (DR)-4, 5, and 6 in cell lines. In addition, TDF regulated the expressions mitochondrial apoptosis-linked proteins and induced caspase-dependent cell death. It also significantly enhanced phosphorylation of ERK1/2 and JNK, but not p38, whereas inhibited the activation of NF-κB in cancer cells. In our mouse model, TDF significantly suppressed B16 melanoma growth, to an extent similar to cisplatin (reference control) and augmented immunomodulatory cytokines. In brief, this study presents the mechanism responsible for the anti-cancer effects of TDF in vitro and in vivo.
Collapse
Affiliation(s)
- Hyeon-Hui Ki
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea; Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Barun Poudel
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea.
| |
Collapse
|
40
|
Nepali S, Ki HH, Lee JH, Cha JY, Lee YM, Kim DK. Triticum aestivum sprout-derived polysaccharide exerts hepatoprotective effects against ethanol-induced liver damage by enhancing the antioxidant system in mice. Int J Mol Med 2017; 40:1243-1252. [PMID: 28849040 DOI: 10.3892/ijmm.2017.3095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
Triticum aestivum sprout-derived polysaccharide (TASP) has anti-diabetic properties, but no information is available in regards to its protective effect against ethanol-induced hepatic injury. This study aimed to investigate the mechanism behind the protective role of TASP against ethanol-induced liver injury in vivo. Male C57BL/6 mice were administered ethanol with or without TASP for 10 consecutive days by oral gavage. Silymarin was administered in the same manner as a positive control. TASP reduced ethanol-induced hepatic lipid accumulation and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. TASP also prevented glutathione (GSH) depletion and increased the superoxide dismutase (SOD) in liver tissue. In addition, TASP significantly inhibited ethanol-induced cytochrome P450 2E1 (CYP2E1) activation, and upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1), and downregulated NADPH oxidase genes in ethanol fed mice. Furthermore, the upregulation of Nrf2 was found to be regulated by a phosphatidylinositol 3-kinase (PI3K)/Akt pathway. TASP also attenuated hepatic injury by modulation of caspase-3 and apoptosis-associated mitochondrial proteins including B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax) in liver tissues of mice. The study demonstrated that TASP treatment protects against ethanol-induced hepatic injury via multiple pathways by inhibiting steatosis and improving antioxidant marker levels during hepatic injury. Such properties provide a basis for therapeutic agents against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
41
|
Nepali S, Ki HH, Lee JH, Lee HY, Kim DK, Lee YM. Wheatgrass-Derived Polysaccharide Has Antiinflammatory, Anti-Oxidative and Anti-Apoptotic Effects on LPS-Induced Hepatic Injury in Mice. Phytother Res 2017; 31:1107-1116. [DOI: 10.1002/ptr.5835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute; Wonkwang University; Iksan Jeonbuk 54538 Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute; Wonkwang University; Iksan Jeonbuk 54538 Korea
| |
Collapse
|
42
|
Wang P, He LY, Shen GD, Li RL, Yang JL. Inhibitory effects of Dioscin on atherosclerosis and foam cell formation in hyperlipidemia rats. Inflammopharmacology 2017; 25:633-642. [DOI: 10.1007/s10787-017-0341-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
|
43
|
Liu C, Liao JZ, Li PY. Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23:1964-1973. [PMID: 28373762 PMCID: PMC5360637 DOI: 10.3748/wjg.v23.i11.1964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases around the world due to the modern sedentary and food-abundant lifestyle, which is characterized by excessive fat accumulation in the liver related with causes other than alcohol abuse. It is widely acknowledged that insulin resistance, dysfunctional lipid metabolism, endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis/necrosis may all contribute to NAFLD. Autophagy is a protective self-digestion of intracellular organelles, including lipid droplets (lipophagy), in response to stress to maintain homeostasis. Lipophagy is another pathway for lipid degradation besides lipolysis. It is reported that impaired autophagy also contributes to NAFLD. Some studies have suggested that the histological characteristics of NAFLD (steatosis, lobular inflammation, and peri-sinusoid fibrosis) might be improved by treatment with traditional Chinese herbal extracts, while autophagy may be induced. This review will provide insights into the characteristics of autophagy in NAFLD and the related role/mechanisms of autophagy induced by traditional Chinese herbal extracts such as resveratrol, Lycium barbarum polysaccharides, dioscin, bergamot polyphenol fraction, capsaicin, and garlic-derived S-allylmercaptocysteine, which may inhibit the progression of NAFLD. Regulation of autophagy/lipophagy with traditional Chinese herbal extracts may be a novel approach for treating NAFLD, and the molecular mechanisms should be elucidated further in the near future.
Collapse
|
44
|
Go G, Sung JS, Jee SC, Kim M, Jang WH, Kang KY, Kim DY, Lee S, Shin HS. In vitro anti-obesity effects of sesamol mediated by adenosine monophosphate-activated protein kinase and mitogen-activated protein kinase signaling in 3T3-L1 cells. Food Sci Biotechnol 2017; 26:195-200. [PMID: 30263528 DOI: 10.1007/s10068-017-0026-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 09/25/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Sesamol is a phenol derivative of sesame oil and a potent anti-oxidant, anti-inflammatory, anti-hepatotoxic, and anti-aging compound. We investigated the effects of sesamol on the molecular mechanisms of adipogenesis in 3T3-L1 preadipocytes. The intracellular lipid accumulation accompanied by increased extracellular release of free glycerol was decreased during differentiation on treating 3T3-L1 with sesamol. Sesamol treatment on 3T3-L1 inhibited adipogenic differentiation by down-regulating adipogenesis-related factors (C/EBPα, PPARγ, and SREBP-1). Lipid accumulation was repressed by decreasing fatty acid synthase and by up-regulating lipolysis-response genes (HSL and LPL). The molecular mechanisms of sesamol-induced inhibition in adipogenesis were mediated by increased levels of phosphorylated adenosine monophosphate-activated protein kinase and its substrate acetyl-CoA carboxylase. Sesamol treatment, in turn, modulated the different members of the mitogenactivated protein kinase family by suppressing phosphorylation of ERK 1/2 and JNK and by increasing the phosphorylation of p38. In summary, sesamol inhibits adipogenic differentiation by reducing phosphorylation levels of ERK 1/2 and JNK while inducing lipolysis by activating p38 and AMPK. Our results demonstrate that the molecular mechanisms of in vitro anti-obesity effects of sesamol are due to the combined effects of preventing both lipid accumulation and adipogenesis.
Collapse
Affiliation(s)
- Geon Go
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Seung-Cheol Jee
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Won-Hee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Kyu-Young Kang
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Sihyoung Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, Gyeonggi, 10326 Korea
| |
Collapse
|
45
|
Seo M, Goo TW, Chung MY, Baek M, Hwang JS, Kim MA, Yun EY. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2017; 18:ijms18030518. [PMID: 28264489 PMCID: PMC5372534 DOI: 10.3390/ijms18030518] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor, the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Tae-Won Goo
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Korea.
| | - Mi Yeon Chung
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Korea.
| | - Eun-Young Yun
- Graduate School of Integrated Bioindustry, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
46
|
Marrelli M, Conforti F, Araniti F, Statti GA. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016; 21:molecules21101404. [PMID: 27775618 PMCID: PMC6273086 DOI: 10.3390/molecules21101404] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Obesity is one of the greatest public health problems. This complex condition has reached epidemic proportions in many parts of the world, and it constitutes a risk factor for several chronic disorders, such as hypertension, cardiovascular diseases and type 2 diabetes. In the last few decades, several studies dealt with the potential effects of natural products as new safe and effective tools for body weight control. Saponins are naturally-occurring surface-active glycosides, mainly produced by plants, whose structure consists of a sugar moiety linked to a hydrophobic aglycone (a steroid or a triterpene). Many pharmacological properties have been reported for these compounds, such as anti-inflammatory, immunostimulant, hypocholesterolemic, hypoglycemic, antifungal and cytotoxic activities. The aim of this review is to provide an overview of recent studies about the anti-obesity therapeutic potential of saponins isolated from medicinal plants. Results on the in vitro and in vivo activity of this class of phytochemicals are here presented and discussed. The most interesting findings about their possible mechanism of action and their potential health benefits in the treatment of obesity are reported, as well.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Fabrizio Araniti
- Department of AGRARIA, University "Mediterranea" of Reggio Calabria, Reggio Calabria (RC) I-89124, Italy.
| | - Giancarlo A Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| |
Collapse
|
47
|
Pieralisi A, Martini C, Soto D, Vila MC, Calvo JC, Guerra LN. N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biol 2016; 9:39-44. [PMID: 27281491 PMCID: PMC4906124 DOI: 10.1016/j.redox.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress plays critical roles in the pathogenesis of diabetes, hypertension, and atherosclerosis; some authors reported that fat accumulation correlates to systemic oxidative stress in human and mice, but cellular redox environment effect on lipid accumulation is still unclear. In our laboratory we used mouse embryonic fibroblasts (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC) and accumulate lipids, as obesity model. Here we analyzed the role of the well-known antioxidant and glutathione precursor N-acetylcysteine (NAC) in cellular MAPK modulation and lipid accumulation. We evaluated the effect of NAC on the adipogenic differentiation pathway using different doses: 0.01, 0.1, 1 and 5 mM; no toxic doses in these cells. A dose of 5 mM NAC [DCN-5] provoked a significant decrease in triglyceride accumulation (72±10 [DCN-5] vs 169±15 [DC], p<0.01), as well in Oil Red O stained neutral lipid content (120±2 [DCN-5] vs 139±12 [DC], p<0.01). Molecular mechanisms responsible for adipogenic differentiation involve increase of the expression of phosphoERK½ and phosphoJNK, 5 mM NAC treatment inhibited both pERK½ and pJNK protein levels. We also evaluated the mitotic clonal expansion (MCE) which takes place during adipogenesis and observed an increase in DC at a rate of 1.5 cells number compared to CC at day 2, whereas the highest doses of NAC significantly inhibited MCE. Our results suggest that NAC inhibits lipid accumulation and the MAPK phosphorylation in mouse embryonic fibroblasts during adipogenic differentiation and further contribute to probe the importance of cellular redox environment in adipogenesis. NAC, up to 5 mM, is not toxic in adipocytes obtained from mouse embryonic fibroblasts. NAC inhibited phosphorylation of ERK½ and JNK in adipogenic differentiation. NAC inhibited mitotic clonal expansion in adipogenic differentiation. NAC inhibited triglyceride and lipid accumulation in mouse embryonic adipocytes.
Collapse
Affiliation(s)
- A Pieralisi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - C Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - D Soto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - M C Vila
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - J C Calvo
- IBYME, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - L N Guerra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina.
| |
Collapse
|
48
|
Guo C, Ding G, Huang W, Wang Z, Meng Z, Xiao W. Total saponin of Dioscoreae hypoglaucae rhizoma ameliorates streptozotocin-induced diabetic nephropathy. Drug Des Devel Ther 2016; 10:799-810. [PMID: 26966352 PMCID: PMC4771403 DOI: 10.2147/dddt.s99670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Diabetic nephropathy has become the most common cause of morbidity and mortality in diabetic patients. Therefore, there is an urgent need for more effective and safer drugs for use in this condition. PURPOSE The aims of this study were to investigate the ameliorative effects of total saponin of Dioscoreae hypoglaucae rhizoma (TSD) on diabetic nephropathy and to explore the potential underlying mechanism(s). METHODS Rats with streptozotocin-induced diabetes were orally treated with TSD at 40, 80, and 160 mg/kg/d for 12 weeks. At the end of the treatment, blood, urine, and kidneys were collected for biochemical and histological examination. RESULTS The results demonstrated that TSD significantly decreased the fasting blood glucose, glycosylated hemoglobin, urinary protein, serum creatinine, and blood urea nitrogen levels in diabetic rats. The results of histological examinations showed that TSD ameliorated glomerular and tubular pathological changes in diabetic rats. Furthermore, TSD significantly prevented oxidative stress and reduced the renal levels of advanced glycation end products, transforming growth factor-β1, connective tissue growth factor, and tumor necrosis factor-α. CONCLUSION This study demonstrated the renoprotective effects of TSD in experimental diabetic nephropathy via a number of different mechanisms.
Collapse
Affiliation(s)
- Changrun Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Gang Ding
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China
| | - Wenzhe Huang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China
| | - Zhaoqing Meng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang City, People’s Republic of China
| |
Collapse
|
49
|
Nepali S, Son JS, Poudel B, Lee JH, Lee YM, Kim DK. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway. Pharmacogn Mag 2015; 11:627-35. [PMID: 26246742 PMCID: PMC4522853 DOI: 10.4103/0973-1296.160470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/27/2014] [Accepted: 07/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Ji-Seon Son
- Department of Anesthesiology and Pain Medicine, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 570-749, Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| |
Collapse
|
50
|
POUDEL BARUN, NEPALI SARMILA, XIN MINGJIE, KI HYEONHUI, KIM YOUNGHO, KIM DAEKI, LEE YOUNGMI. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway. Mol Med Rep 2015; 12:3139-45. [DOI: 10.3892/mmr.2015.3700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
|