1
|
Zhang JZ, Song XZ, Song XN, Shen YL, Tang H, Li H. Prevalence and risk factors of sleep disorders in inflammatory bowel disease: a cross-sectional study. Int J Colorectal Dis 2024; 39:140. [PMID: 39266810 PMCID: PMC11393029 DOI: 10.1007/s00384-024-04712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Sleep disorders are one of the major public health problems, which can potentially induce inflammation and exacerbate disease activity, resulting in compromised sleep quality. This study aimed to investigate the prevalence and risk factors associated with sleep disorders among patients with inflammatory bowel disease (IBD). METHODS Between March 2023 and February 2024, the Pittsburgh Sleep Quality Index was employed to assess sleep quality in both IBD patients and healthy control subjects. Univariate and multivariate analysis were performed to identify the risk factors associated with SD in IBD patients. RESULTS Overall, 208 IBD patients [150 Crohn's disease (CD) and 58 ulcerative colitis (UC)] and 199 healthy individuals were included. Sleep disorders were observed in 59.6% of patients with IBD, with a higher prevalence among females (63.5%) compared to males (56.9%) (P = 0.476). The prevalence of sleep disorders in IBD patients was significantly higher than that found in healthy controls (37.7%) (all P < 0.01). The prevalence of sleep disorders among CD and UC patients was 58% and 63.8%, respectively (P = 0.291). The multivariate analysis revealed that older age (OR, 1.070; 95% CI: 1.035-1.105, P = 0.000), smoking (OR, 2.698; 95% CI: 1.089-6.685, P = 0.032), and depression (OR, 4.779; 95% CI: 1.915-11.928, P = 0.001) were risk factors for sleep disorders in IBD patients. However, higher body mass index (OR, 0.879; 95% CI: 0.790-0.977, P = 0.017) was identified as a protective factor. CONCLUSION Sleep disorders are common among IBD patients regardless of activity levels. Smoking and depression are the major risk factors.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Zhen Song
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Na Song
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Lin Shen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
| | - Hong Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
3
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
4
|
Zahid JA, Madsen MT, Bulut O, Christensen P, Gögenur I. Effect of melatonin in patients with low anterior resection syndrome (MELLARS): a study protocol for a randomised, placebo-controlled, crossover trial. BMJ Open 2023; 13:e067763. [PMID: 37696629 PMCID: PMC10496695 DOI: 10.1136/bmjopen-2022-067763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION After rectal cancer surgery, a majority of patients suffer from sequelae known as low anterior resection syndrome (LARS). It is a collection of symptoms consisting of flatus and/or stool incontinence, evacuation frequency, re-evacuation and urgency. The circadian hormone, melatonin, has shown to possess anti-inflammatory properties, and in high doses, it reduces bowel movements. The aim of the study is to investigate if locally administered melatonin has an alleviating effect on LARS. Secondarily, the effect of melatonin on bowel movements, other patient-reported symptoms, quality of life, depression, anxiety, sleep disturbances, motilin levels and rectal mucosa histology will be examined. METHODS AND ANALYSIS This is a randomised, placebo-controlled, double-blinded, two-period crossover trial. The participants are randomised to 28 days of 25 mg melatonin administered rectally via an enema daily (or placebo) followed by a 28-day washout and then 28 days of placebo (or melatonin). Three participants will be included in an internal feasibility test. They will receive 25 mg of melatonin daily for 28 days. Data from these participants will be used to assess the feasibility of the rectally administered melatonin and to analyse the course of recruitment and outcome measurements. Afterwards, 18 participants will be included in the crossover trial. The severity of the LARS symptoms will be evaluated using the LARS Score on the first and last day of each treatment period. ETHICS AND DISSEMINATION The Regional Ethics Committee, the Danish Medicines Agency and the Data and Development Support in Region Zealand approved this study. The study will be performed according to the Helsinki II declaration. Written informed consent will be obtained from all participants. The results of the study will be submitted to peer-reviewed journals for publication and presented at congresses. TRIAL REGISTRATION NUMBERS EudraCT Registry (2020-004442-11) and ClinicalTrial.gov Registry (NCT05042700).
Collapse
Affiliation(s)
- Jawad Ahmad Zahid
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Michael Tvilling Madsen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
- Department of Surgery, Slagelse Sygehus, Slagelse, Denmark
| | - Orhan Bulut
- Department of Surgery, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Christensen
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Huang W, Aabed N, Shah YM. Reactive Oxygen Species and Ferroptosis at the Nexus of Inflammation and Colon Cancer. Antioxid Redox Signal 2023; 39:551-568. [PMID: 36792928 PMCID: PMC10517337 DOI: 10.1089/ars.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Significance: Reactive oxygen species (ROS) are essential in maintaining normal intestinal physiology. Inflammatory bowel disease (IBD) is a relapsing chronic inflammatory disease of the intestine that is a major risk factor for colorectal cancer (CRC). Excess ROS are widely implicated in intestinal inflammation and cancer. Recent Advances: Clinical data have shown that targeting ROS broadly does not yield improved outcomes in IBD and CRC. However, selectively limiting oxidative damage may improve the efficacy of ROS targeting. An accumulation of lipid ROS induces a novel oxidative cell death pathway known as ferroptosis. A growing body of evidence suggests that ferroptosis is relevant to both IBD and CRC. Critical Issues: We propose that inhibition of ferroptosis will improve disease severity in IBD, whereas activating ferroptosis will limit CRC progression. Data from preclinical models suggest that methods of modulating ferroptosis have been successful in attenuating IBD and CRC. Future Directions: The etiology of IBD and progression of IBD to CRC are still unclear. Further understanding of ferroptosis in intestinal diseases will provide novel therapies. Ferroptosis is highly linked to inflammation, cell metabolism, and is cell-type dependent. Further research in assessing the inflammatory and tumor microenvironment in the intestine may provide novel vulnerabilities that can be targeted. Antioxid. Redox Signal. 39, 551-568.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
- Department of Cellular and Molecular Biology; Ann Arbor, Michigan, USA
- Department of Medical Scientist Training Program; University of Michigan, Ann Arbor, Michigan, USA
| | - Noora Aabed
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology and Ann Arbor, Michigan, USA
- Department of Cellular and Molecular Biology; Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Mehrzadi S, Sheibani M, Koosha F, Alinaghian N, Pourhanifeh MH, Tabaeian SAP, Reiter RJ, Hosseinzadeh A. Protective and therapeutic potential of melatonin against intestinal diseases: updated review of current data based on molecular mechanisms. Expert Rev Gastroenterol Hepatol 2023; 17:1011-1029. [PMID: 37796746 DOI: 10.1080/17474124.2023.2267439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Intestinal diseases, a leading global cause of mortality and morbidity, carry a substantial socioeconomic burden. Small and large intestines play pivotal roles in gastrointestinal physiology and food digestion. Pathological conditions, such as gut dysbiosis, inflammation, cancer, therapy-related complications, ulcers, and ischemia, necessitate the urgent exploration of safe and effective complementary therapeutic strategies for optimal intestinal health. AREAS COVERED This article evaluates the potential therapeutic effects of melatonin, a molecule with a wide range of physiological actions, on intestinal diseases including inflammatory bowel disease, irritable bowel syndrome, colon cancer, gastric/duodenal ulcers and other intestinal disorders. EXPERT OPINION Due to anti-inflammatory and antioxidant properties as well as various biological actions, melatonin could be a therapeutic option for improving digestive disorders. However, more researches are needed to fully understand the potential benefits and risks of using melatonin for digestive disorders.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yu S, Zhang M, Ye Z, Wang Y, Wang X, Chen YG. Development of a 32-gene signature using machine learning for accurate prediction of inflammatory bowel disease. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:8. [PMID: 36600111 PMCID: PMC9813306 DOI: 10.1186/s13619-022-00143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by multiple genetic and environmental factors. Numerous genes are implicated in the etiology of IBD, but the diagnosis of IBD is challenging. Here, XGBoost, a machine learning prediction model, has been used to distinguish IBD from healthy cases following elaborative feature selection. Using combined unsupervised clustering analysis and the XGBoost feature selection method, we successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy. The signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system. The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and health status. Therefore, this study reveals potential IBD-related biomarkers that facilitate an effective personalized diagnosis of IBD.
Collapse
Affiliation(s)
- Shicheng Yu
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Mengxian Zhang
- grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhaofeng Ye
- grid.12527.330000 0001 0662 3178School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Yalong Wang
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, 510700 China
| | - Ye-Guang Chen
- Guangzhou Laboratory, Guangzhou, 510700 China ,grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.260463.50000 0001 2182 8825School of Basic Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
9
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel) 2022; 11:2244. [PMID: 36421432 PMCID: PMC9686962 DOI: 10.3390/antiox11112244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin's most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community-namely, the gut microbiota, in multiple critical functions of the organism- has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.
Collapse
Affiliation(s)
- Mara Ioana Iesanu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Alexandra Dogaru
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Section Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Pavel
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Hu S, Liu X, Wang Y, Zhang R, Wei S. Melatonin protects against body weight gain induced by sleep deprivation in mice. Physiol Behav 2022; 257:113975. [PMID: 36183851 DOI: 10.1016/j.physbeh.2022.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Sleep deprivation is an epidemic phenomenon in modern society. Lack of sleep has been shown to result in metabolic and endocrine disorders that predispose to obesity and other chronic metabolic diseases. Melatonin is a sleep-related neurohormone and affected by the circadian rhythm and light/dark cycles. Melatonin has recently been used to ameliorate diet-induced or night light-induced energy metabolic imbalance. However, the effect of melatonin on sleep deprivation-induced obesity has been poorly characterized. This study focuses on the protective effects of melatonin on lipid metabolism and body weight homeostasis in sleep-deprived mice. Mice subjected to sleep deprivation had significantly decreased plasma melatonin content and increased food intake and body weight gain compared to that of control. Meanwhile, the transcription factor PPARγ protein in liver increased, but there were no significant changes in hepatic circadian proteins BMAL1 and REV-ERBα after 10 consecutive days of sleep deprivation. Moreover, melatonin supplementation increased liver AMPKα/PPARα signaling pathway activity, which leads to lipid catabolism and reduced fat accumulation. These findings suggested that melatonin may be a potential agent for protecting against sleep deprivation-induced obesity.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Zhang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Xia S, Gao W, Li Y, Ma J, Gong S, Gao Z, Tang W, Tian W, Tang S. Effects of melatonin on intestinal function and bacterial compositions in sucking piglets. J Anim Physiol Anim Nutr (Berl) 2022; 106:1139-1148. [PMID: 35023236 DOI: 10.1111/jpn.13675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
Melatonin has been reported to affect intestinal function by targeting microbiome, morphological structure, barrier integrity and nutrient absorptive system. While the effect of melatonin on intestinal development in newborn infants is obscure, thus, this study firstly attempted to investigate the hypothesis that melatonin treatment improves intestinal development in sucking piglets. 14 healthy newborn piglets received 10 ml melatonin solution (1 mg/ml) or drinking water (n = 7) for 21 days. The results showed that oral administration of melatonin increased liver relative weight (p < 0.05) but failed to affect growth performance in sucking piglets (p > 0.05). Immunostaining jejunal samples from melatonin group showed high expressions of nnos and claudin1, indicating that melatonin improved intestinal neural development and barrier integrity. Also, melatonin promoted intestinal absorptive function evidenced by the increased serum proline concentration in melatonin-treated piglets compared with the control (p < 0.05). Gut microbiota compositions were tested by 16S rDNA sequencing and the results showed that melatonin increased the relative abundance of Actinobacteria compared with the control (p < 0.05) at the phylum level. However, Selenomonadales was markedly reduced compared with the control at the order level (p < 0.05). Gut and faecal volatile fatty acids were tested to evaluate the microbiota metabolism, but no difference was noticed in volatile fatty acid concentrations (p > 0.05). Melatonin improved intestinal development by affecting neural development, barrier integrity, nutrient absorption and microbiota in sucking piglets.
Collapse
Affiliation(s)
- Siting Xia
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Wei Gao
- Animal Husbandry and Aquatic Affairs Center of Shimen County, Changde, China
| | - Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Wenjie Tang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Sciences, Chengdu, China
| | - Wen Tian
- Hunan Jiuding Technology (Group) Co., Ltd, Yangzhou, China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
13
|
Sardoiwala MN, Mohanbhai SJ, Kushwaha AC, Dev A, Biswal L, Sharma SS, Choudhury SR, Karmakar S. Melatonin mediated inhibition of EZH2-NOS2 crosstalk attenuates inflammatory bowel disease in preclinical in vitro and in vivo models. Life Sci 2022; 302:120655. [PMID: 35598656 DOI: 10.1016/j.lfs.2022.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
AIMS Inflammatory Bowel Disease is characterised by abdominal pain, diarrhoea, rectal bleeding and weight loss. Sometimes it may leads to severe health complications resulting in death of an individual. Current research efforts to highlight the role of melatonin in regulating EZH2, a master epigenetic regulator and its beneficiary effect in case of IBD management. MATERIAL METHODS Murine macrophages (RAW 264.7) were treated with lipopolysaccharides (LPS) to activate them for generating inflammatory response to investigate efficacy of melatonin in-vitro models. Similarly, for developing in vivo models, Dextran sodium sulphate (36-50 kDa) was used. Evaluations of anti-inflammatory activities were carried out by nitrite assay, western blotting, q-PCR, immunofluorescence, and histological studies. KEY FINDINGS Reduction of epigenetic target, EZH2 by melatonin significantly improves the clinical symptoms of dextran sodium sulphate induced colitis and may be implicated as a potential therapeutic target in IBD management. The present study evaluates the efficacy of melatonin by epigenetic regulation in IBD models. Down regulation of EZH2 by melatonin reduced the chemical induced inflammatory insults in in vitro and in vivo models. Exploration of molecular pathways has revealed interlink of EZH2 and NOS2, a hallmark of inflammation. Molecular mechanistic action of melatonin is attributed to inhibition of the expression and physical interaction of EZH2 and NOS2. SIGNIFICANCE Our study highlights melatonin therapeutic effect via attenuating interaction between EZH2 and NOS2 which is beneficial in managing IBD treatment.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Soni Jignesh Mohanbhai
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Avinash Chandra Kushwaha
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Atul Dev
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Liku Biswal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS, Nagar, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
14
|
Liu GH, Zhuo XC, Huang YH, Liu HM, Wu RC, Kuo CJ, Chen NH, Chuang LP, Lin SW, Chen YL, Yang HY, Lee TY. Alterations in Gut Microbiota and Upregulations of VPAC2 and Intestinal Tight Junctions Correlate with Anti-Inflammatory Effects of Electroacupuncture in Colitis Mice with Sleep Fragmentation. BIOLOGY 2022; 11:biology11070962. [PMID: 36101343 PMCID: PMC9311573 DOI: 10.3390/biology11070962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Along with the modernization of society and people getting older, sleep disturbances and gut health have been identified as two key factors influencing aging, with dramatic effects on immunity and metabolism. Sleep is closely related to the gut, reflects the degree of chronic inflammation, and is associated with many degenerative diseases, hence the term “inflammaging”. This article addresses how sleep fragmentation affects the inflammatory state of the gut and elucidates the effects of restorative sleep and acupuncture on inflammatory gut remodeling and gut microbial recovery. In summary, fragmented sleep disrupted intestinal repair in mice with colitis, while electroacupuncture demonstrated likely results in alleviating colon inflammation, including maintaining colon length and daily body weight changes. In addition, the structure of the microbiota changed with decreasing gut inflammatory status. The intestinal tight junction proteins may be the key mechanism of electroacupuncture in treating sleep-fragmented ulcerative colitis mice. Electroacupuncture affects VIP through VPAC2 and further regulates intestinal mucosal immunity. This experiment demonstrates how physical stimulation stabilizes the intestinal epithelium and exerts an important anti-inflammatory effect. Abstract The relationship between inflammatory bowel disease and sleep disturbances is complicated and of increasing interest. We investigated the inflammatory and immunological consequences of EA in sleep-deprived colitis and found that dextran sulfate sodium (DSS)-induced colitis in sleep-fragmented (SF) mice was more severe than that in mice with normal sleep. This increase in the severity of colitis was accompanied by reduced body weight, shortened colon length, and deteriorated disease activity index. DSS with SF mice presented obvious diminished intestinal tight junction proteins (claudin-1 and occludin), elevated proinflammatory cytokines (CRP, IFN-γ, IL-6), lowered melatonin and adiponectin levels, downregulated vasoactive intestinal peptide (VIP) type 1 and 2 receptor (VPAC1, VPAC2) expression, and decreased diversity of gut bacteria. EA ameliorated colitis severity and preserved the performance of the epithelial tight junction proteins and VIP receptors, especially VPAC2. Meanwhile, the innate lymphoid cells-derived cytokines in both group 2 (IL-4, IL5, IL-9, IL-13) and group 3 (IL-22, GM-CSF) were elevated in mice colon tissue. Furthermore, dysbiosis was confirmed in the DSS group with and without SF, and EA could maintain the species diversity. Firmicutes could be restored, such as Lachnospiraceae, and Proteobacteria become rebalanced, mainly Enterobacteriaceae, after EA intervention. On the other hand, SF plays different roles in physiological and pathological conditions. In normal mice, interrupted sleep did not affect the expression of claudin-1 and occludin. But VPAC1, VPAC2, and gut microbiota diversity, including Burkholderiaceae and Rhodococcus, were opposite to mice in an inflamed state.
Collapse
Affiliation(s)
- Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
| | - Xin-Cheng Zhuo
- Department of General Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
| | - Yueh-Hsiang Huang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105406, Taiwan;
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Ren-Chin Wu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Ning-Hung Chen
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Li-Pang Chuang
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Shih-Wei Lin
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Yen-Lung Chen
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
| | - Huang-Yu Yang
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence: (H.-Y.Y.); (T.-Y.L.); Tel.: +886-03-328-1200 (ext. 8181) (H.-Y.Y.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204201, Taiwan
- Correspondence: (H.-Y.Y.); (T.-Y.L.); Tel.: +886-03-328-1200 (ext. 8181) (H.-Y.Y.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| |
Collapse
|
15
|
Mohanbhai SJ, Sardoiwala MN, Gupta S, Shrimali N, Choudhury SR, Sharma SS, Guchhait P, Karmakar S. Colon targeted chitosan-melatonin nanotherapy for preclinical Inflammatory Bowel Disease. BIOMATERIALS ADVANCES 2022; 136:212796. [PMID: 35929295 DOI: 10.1016/j.bioadv.2022.212796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory Bowel (IBD) is an umbrella term which includes Crohn's Disease (CD) and Ulcerative Colitis (UC). At present, therapies available for management of the UC includes, corticosteroid, immuno-suppressants and antibiotics are used for mild to moderate UC conditions which can cause nephrotoxicity, hepatotoxicity and cardiotoxicity. Hence, a novel therapeutic candidate having potent anti-inflammatory effect is urgently warranted for the management of UC. Melatonin has emerged as a potent anti-inflammatory agent. However, poor solubility limits its therapeutic potential. Therefore, colon targeted Eudragit-S-100 coated chitosan nanoparticles have been demonstrated to improve melatonin therapeutic efficacy. It was found that melatonin loaded chitosan and colon targeted chitosan nanoparticles had promising anti-inflammatory efficacy in terms of NO scavenging activity in an in-vitro LPS challenged macrophages. Also, colon targeted oral chitosan nano-formulation exhibited remarkable protection in an in vivo UC mice model by improving gross pathological parameters, histo-architectural protection, goblet cell depletion, and immune cells infiltration which can be extrapolated to clinical studies.
Collapse
Affiliation(s)
- Soni Jignesh Mohanbhai
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shiwangi Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Nishith Shrimali
- Disease Biology Laboratory, Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
16
|
Ditmer M, Gabryelska A, Turkiewicz S, Białasiewicz P, Małecka-Wojciesko E, Sochal M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J Clin Med 2021; 11:67. [PMID: 35011807 PMCID: PMC8745687 DOI: 10.3390/jcm11010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have shown that individuals with sleep problems are at a greater risk of developing immune and chronic inflammatory diseases. As sleep disorders and low sleep quality in the general population are frequent ailments, it seems important to recognize them as serious public health problems. The exact relation between immunity and sleep remains elusive; however, it might be suspected that it is shaped by others stress and alterations of the circadian rhythm (commonly caused by for example shift work). As studies show, drugs used in the therapy of chronic inflammatory diseases, such as steroids or monoclonal antibodies, also influence sleep in more complex ways than those resulting from attenuation of the disease symptoms. Interestingly, the relation between sleep and immunity appears to be bidirectional; that is, sleep may influence the course of immune diseases, such as inflammatory bowel disease. Thus, proper diagnosis and treatment of sleep disorders are vital to the patient's immune status and, in effect, health. This review examines the epidemiology of sleep disorders and immune diseases, the associations between them, and their current treatment and novel perspectives in therapy.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| |
Collapse
|
17
|
Yuan XQ, Zhang XM. Melatonin reduces inflammation in intestinal cells, organoids and intestinal explants. Inflammopharmacology 2021; 29:1555-1564. [PMID: 34431007 DOI: 10.1007/s10787-021-00869-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/14/2021] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic and recurrent diseases that often occur in young people and place a heavy burden on public health in both developed and developing countries. Melatonin has been confirmed to be useful in various diseases, including Alzheimer's disease, liver injuries and diseases, and cancers, while its role in IBDs remains unclear. To uncover the function of melatonin in IBDs, three intestinal models, including Caco-2 cells, 3D intestinal organoids and intestinal explants, were used. It was found that different concentrations of melatonin could significantly inhibit the expression levels of NFκB and its downstream cytokines, including IL6 and IL8 in Caco-2 cells (*P < 0.05, **P < 0.01), 3D intestinal organoids (*P < 0.05, **P < 0.01) and intestinal explants (*P < 0.05, **P < 0.01). Melatonin abolished the activation of LPS on the expression levels of NFκB, IL6, and IL8 in three intestinal models (*P < 0.05, **P < 0.01, ***P < 0.001). Importantly, the roles of melatonin in the regulation of inflammation was dependent on its receptor (i.e., MTNR1), since it was found that silencing of the melatonin receptor (MTNR1A) abolished the reduction in inflammation induced by melatonin in Caco-2 cells (***P < 0.001) and 3D intestinal organoids (***P < 0.01, ****P < 0.0001). Herein, the findings in this study might provide useful information for understanding the pathogenesis of IBDs and developing novel drugs to treat the diseases.
Collapse
Affiliation(s)
- Xiao-Qiang Yuan
- Department of Trauma, Tangshan Gongren Hospital, No. 27, Wenhua Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Xu-Ming Zhang
- Anorectal Surgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
18
|
Dziąbowska-Grabias K, Sztanke M, Zając P, Celejewski M, Kurek K, Szkutnicki S, Korga P, Bulikowski W, Sztanke K. Antioxidant Therapy in Inflammatory Bowel Diseases. Antioxidants (Basel) 2021; 10:antiox10030412. [PMID: 33803138 PMCID: PMC8000291 DOI: 10.3390/antiox10030412] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic, incurable diseases of the digestive tract, the etiology of which remains unclear to this day. IBD result in significant repercussions on the quality of patients’ life. There is a continuous increase in the incidence and prevalence of IBD worldwide, and it is becoming a significant public health burden. Pharmaceuticals commonly used in IBD management, for example, mesalamine, sulfasalazine, corticosteroids, and others, expose patients to diverse, potentially detrimental side effects and frequently do not provide sufficient disease control. The chronic inflammation underlies the etiology of IBD and closely associates with oxidative/nitrosative stress and a vast generation of reactive oxygen/nitrogen species. Relative to this, several substances with antioxidant and anti-inflammatory properties are now intensively researched as possible adjunctive or independent treatment options in IBD. Representatives of several different groups, including natural and chemical compounds will be characterized in this dissertation.
Collapse
Affiliation(s)
- Katarzyna Dziąbowska-Grabias
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-486-195
| | - Przemysław Zając
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Michał Celejewski
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Katarzyna Kurek
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (K.K.); (S.S.)
| | - Stanisław Szkutnicki
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (K.K.); (S.S.)
| | - Patryk Korga
- Department of Gastroenterology, 10ft Military Research Hospital, and Polyclinic of Bydgoszcz, 85-681 Bydgoszcz, Poland;
| | | | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
19
|
Liu L, Zhang L, Li L, Chen M, Wang Z, Shen Y, Huang J, Tang L. Sleep deprivation aggravated lipopolysaccharide/D-galactosamine-induced acute liver injury by suppressing melatonin production. Inflamm Res 2020; 69:1133-1142. [PMID: 32809047 DOI: 10.1007/s00011-020-01393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Sleep loss is common in patients with liver injury, but the effects of sleep deprivation (SD) on liver injury remain unclear. In the present study, the potential effects of SD on acute liver injury and the underlying mechanisms have been investigated. METHODS The sleep of male BALB/c mice has been deprived by using a modified multiple platform water bath for 3 days and acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). The degree of liver injury was detected by aminotransferase determination, histopathology and survival rate analysis. Inflammatory response and melatonin (MT) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, hepatocyte apoptosis was determined by caspase activity measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS We observed that SD increased plasma aminotransferases, TUNEL-positive hepatocytes, histological abnormalities and mortality rates in mice with LPS/D-Gal treatment. SD also promoted LPS/D-Gal-induced production of TNF-α and upregulated hepatic caspase-8, caspase-9, and caspase-3 activities in LPS/D-Gal-exposed mice. In addition, SD significantly decreased MT contents in plasma of mice with acute liver injury, but supplementation with MT reversed these SD-promoted changes. CONCLUSION Our data suggested that SD exacerbated LPS/D-Gal-induced liver injury via decreasing melatonin production.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rehabilitation Medicine and Physical Therapy, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mengting Chen
- Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Zhe Wang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
20
|
Park YS, Kim SH, Park JW, Kho Y, Seok PR, Shin JH, Choi YJ, Jun JH, Jung HC, Kim EK. Melatonin in the colon modulates intestinal microbiota in response to stress and sleep deprivation. Intest Res 2020; 18:325-336. [PMID: 32564539 PMCID: PMC7385569 DOI: 10.5217/ir.2019.00093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Stress is closely related to the deterioration of digestive disease. Melatonin has potent anti-inflammatory properties. The objective of this study was to determine the effect of water stress (WS) and sleep deprivation (SD) on intestinal microbiota and roles of melatonin in stressful condition. METHODS We used C57BL/6 mice and specially designed water bath for stress and SD for 10 days. We measured melatonin concentrations in serum, feces, and colon tissues by high-performance liquid chromatography. Genomic DNA was extracted from feces and amplified using primers targeting V3 to V4 regions of bacterial 16S ribosomal RNA genes. RESULTS Compared to the control, melatonin concentration was lower in the WS and SD. Fecal concentration was 0.132 pg/mL in control, 0.062 pg/mL in WS, and 0.068 pg/mL in SD. In colon tissue, it was 0.45 pg/mL in control, 0.007 pg/mL in WS, and 0.03 pg/mL in SD. After melatonin treatment, melatonin concentrations in feces and colon tissue were recovered to the level of control. Metagenomic analysis of microbiota showed abundance in colitogenic microbiota in WS and SD. Melatonin injection attenuated this harmful effect. WS and SD showed decreased Lactobacillales and increased Erysipelotrichales and Enterobacteriales. Melatonin treatment increased Akkermansia muciniphila and Lactobacillus and decreased Bacteroides massiliensis and Erysipelotrichaceae. CONCLUSIONS This study showed that stress and SD could affect intestinal dysbiosis and increase colitogenic microbiota, which could contribute to the aggravating digestive disease. Melatonin concentrations in feces and colon tissue decreased under WS and SD. Melatonin treatment brought recovery of melatonin concentration in colon tissue and modulating dysbiosis of intestinal microbiota.
Collapse
Affiliation(s)
- Young Sook Park
- Division of Gastroenterology, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Soo Hyung Kim
- Division of Gastroenterology, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Jong Won Park
- Division of Gastroenterology, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | - Pu Rum Seok
- Departemnt of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Yoon Ji Choi
- Departemnt of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | - Jin-Hyun Jun
- Departemnt of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | - Hee Chan Jung
- Division of Gastroenterology, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Kim SW, Kim S, Son M, Cheon JH, Park YS. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep 2020; 10:2232. [PMID: 32042047 PMCID: PMC7010660 DOI: 10.1038/s41598-020-59314-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Microbial dysbiosis has long been postulated to be associated with the pathogenesis of inflammatory bowel disease (IBD). Although evidence supporting the anti-colitic effects of melatonin have been accumulating, it is not clear how melatonin affects the microbiota. Herein, we investigated the effects of melatonin on the microbiome in colitis and identified involvement of Toll-like receptor (TLR) 4 signalling in the effects. Melatonin improved dextran sulfate sodium (DSS)-induced colitis and reverted microbial dysbiosis in wild-type (WT) mice but not in TLR4 knockout (KO) mice. Induction of goblet cells was observed with melatonin administration, which was accompanied by suppression of Il1b and Il17a and induction of melatonin receptor and Reg3β, an antimicrobial peptide (AMP) against Gram-negative bacteria. In vitro, melatonin treatment of HT-29 intestinal epithelial cells promotes mucin and wound healing and inhibits growth of Escherichia coli. Herein, we showed that melatonin significantly increases goblet cells, Reg3β, and the ratio of Firmicutes to Bacteriodetes by suppressing Gram-negative bacteria through TLR4 signalling. Our study suggests that sensing of bacteria through TLR4 and regulation of bacteria through altered goblet cells and AMPs is involved in the anti-colitic effects of melatonin. Melatonin may have use in therapeutics for IBD.
Collapse
Affiliation(s)
- Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soochan Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sook Park
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Nocerino A, Nguyen A, Agrawal M, Mone A, Lakhani K, Swaminath A. Fatigue in Inflammatory Bowel Diseases: Etiologies and Management. Adv Ther 2020; 37:97-112. [PMID: 31760611 PMCID: PMC6979464 DOI: 10.1007/s12325-019-01151-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/11/2022]
Abstract
Fatigue is a burdensome, multidimensional, and multifactorial symptom that is associated with a wide array of chronic illnesses, specifically occurring in nearly 50% of patients with inflammatory bowel disease (IBD). Although common, given its subjective nature, physicians often under-recognize and undertreat this debilitating symptom. There are multiple etiologies that can contribute to fatigue in patients with IBD, including disease activity, anemia, medications, psychosomatic symptoms, and alterations to the gut–brain axis. The management of fatigue in IBD can be challenging, as it is often times multifaceted. In this review, we summarize the available tools for the diagnosis and measurement of fatigue, discuss etiologies, and make recommendations for their management. We identify knowledge gaps for the workup and treatment of fatigue and propose an algorithm to aid physicians in the evaluation and management of fatigue in this unique population. However, future research is needed to address several areas of knowledge deficits and improve the management of fatigue in IBD.
Collapse
Affiliation(s)
| | - Andrew Nguyen
- Lenox Hill Hospital, Northwell Health System, New York, NY, USA
| | - Manasi Agrawal
- Department of Gastroenterology, Mount Sinai Hospital, New York, NY, USA
| | - Anjali Mone
- Lenox Hill Hospital, Northwell Health System, New York, NY, USA
| | - Komal Lakhani
- Lenox Hill Hospital, Northwell Health System, New York, NY, USA
| | - Arun Swaminath
- Lenox Hill Hospital, Northwell Health System, New York, NY, USA.
| |
Collapse
|
23
|
Liu XW, Wang CD. Melatonin alleviates circadian rhythm disruption exacerbating DSS-induced colitis by inhibiting the distribution of HMGB1 in intestinal tissues. Int Immunopharmacol 2019; 73:108-117. [DOI: 10.1016/j.intimp.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
|
24
|
Jing Y, Yang D, Bai F, Zhang C, Qin C, Li D, Wang L, Yang M, Chen Z, Li J. Melatonin Treatment Alleviates Spinal Cord Injury-Induced Gut Dysbiosis in Mice. J Neurotrauma 2019; 36:2646-2664. [PMID: 30693824 DOI: 10.1089/neu.2018.6012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) disturbs the autonomic nervous system and induces dysfunction in multiple organs/tissues, such as the gastrointestinal (GI) system. The neuroprotective effects of melatonin in SCI models have been reported; however, it is unclear whether the beneficial effects of melatonin are associated with alleviation of gut dysbiosis. In this study, we showed that daily intraperitoneal injection with melatonin following spinal cord contusion at thoracic level 10 in mice improved intestinal barrier integrity and GI motility, reduced expression levels of certain proinflammatory cytokines, improved animal weight gain and metabolic profiling, and promoted locomotor recovery. Analysis of gut microbiome revealed that melatonin treatment decreased the Shannon index and reshaped the composition of intestinal microbiota. Melatonin-treated SCI animals showed decreased relative abundance of Clostridiales and increased relative abundance of Lactobacillales and Lactobacillus, which correlated with alteration of cytokine (monocyte chemotactic protein 1) expression and GI barrier permeability, as well as with locomotor recovery. Experimental induction of gut dysbiosis in mice before SCI (i.e., by oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment after SCI, and melatonin treatment improves locomotor performance and intestinal integrity in antibiotic-treated SCI mice. The results suggest that melatonin treatment restores SCI-induced alteration in gut microbiota composition, which may underlie the ameliorated GI function and behavioral manifestations.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Beijing, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Degang Yang
- China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Zhang
- China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Chuan Qin
- China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Di Li
- China Rehabilitation Science Institute, Beijing, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Limiao Wang
- China Rehabilitation Science Institute, Beijing, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Mingliang Yang
- China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Jianjun Li
- China Rehabilitation Science Institute, Beijing, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Thomas S, Hoxha K, Alexander W, Gilligan J, Dilbarova R, Whittaker K, Kossenkov A, Prendergast GC, Mullin JM. Intestinal barrier tightening by a cell-penetrating antibody to Bin1, a candidate target for immunotherapy of ulcerative colitis. J Cell Biochem 2018; 120:4225-4237. [PMID: 30269357 DOI: 10.1002/jcb.27716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Patients afflicted with ulcerative colitis (UC) are at increased risk of colorectal cancer. While its causes are not fully understood, UC is associated with defects in colonic epithelial barriers that sustain inflammation of the colon mucosa caused by recruitment of lymphocytes and neutrophils into the lamina propria. Based on genetic evidence that attenuation of the bridging integrator 1 (Bin1) gene can limit UC pathogenicity in animals, we have explored Bin1 targeting as a therapeutic option. Early feasibility studies in the dextran sodium sulfate mouse model of experimental colitis showed that administration of a cell-penetrating Bin1 monoclonal antibody (Bin1 mAb 99D) could prevent lesion formation in the colon mucosa in part by preventing rupture of lymphoid follicles. In vivo administration of Bin1 mAb altered tight junction protein expression and cecal barrier function. Strikingly, electrophysiology studies in organ cultures showed that Bin1 mAb could elevate resistance and lower 14 C-mannitol leakage across the cecal mucosa, consistent with a direct strengthening of colonic barrier function. Transcriptomic analyses of colitis tissues highlighted altered expression of genes involved in circadian rhythm, lipid metabolism, and inflammation, with a correction of the alterations by Bin1 mAb treatment to patterns characteristic of normal tissues. Overall, our results suggest that Bin1 mAb protects against UC by directly improving colonic epithelial barrier function to limit gene expression and cytokine programs associated with colonic inflammation.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Kevther Hoxha
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - John Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, Pennsylvania.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Division of Gastroenterology, Lankenau Medical Center, Wynnewood, Pennsylvania
| |
Collapse
|
26
|
Gagnon K, Godbout R. Melatonin and Comorbidities in Children with Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018; 5:197-206. [PMID: 30148039 PMCID: PMC6096870 DOI: 10.1007/s40474-018-0147-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Melatonin is used to treat sleep difficulties associated with autism spectrum disorder (ASD). There are growing evidence that melatonin could have an effect on other symptoms than sleep, such as anxiety, depression, pain, and gastrointestinal dysfunctions. Interestingly, these symptoms frequently are found as comorbid conditions in individuals with ASD. We aimed to highlight the potential effect of melatonin on these symptoms. RECENT FINDINGS Animal and human studies show that melatonin reduces anxiety. Regarding the effect of melatonin on pain, animal studies are promising, but results remain heterogeneous in humans. Both animal and human studies have found that melatonin can have a positive effect on gastrointestinal dysfunction. SUMMARY Melatonin has the potential to act on a wide variety of symptoms associated with ASD. However, other than sleep difficulties, no studies exist on melatonin as a treatment for ASD comorbid conditions. Such investigations should be on the research agenda because melatonin could improve a multitude of ASD comorbidities and, consequently, improve well-being.
Collapse
Affiliation(s)
- Katia Gagnon
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
27
|
Ren W, Wang P, Yan J, Liu G, Zeng B, Hussain T, Peng C, Yin J, Li T, Wei H, Zhu G, Reiter RJ, Tan B, Yin Y. Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota. J Pineal Res 2018; 64. [PMID: 28875556 DOI: 10.1111/jpi.12448] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Melatonin influences intestinal microbiota and the pathogenesis of various diseases. This study was conducted to explore whether melatonin alleviates weanling stress through intestinal microbiota in a weanling mouse model. Melatonin supplementation in weanling mice (provided in the drinking water at a dosage of 0.2 mg/mL for 2 weeks) significantly improved body weight gain (1.4 ± 0.03 g/day in melatonin group vs 1.2 ± 0.06 g/day in control group) and intestinal morphology (ie, villus length, crypt depth, and villus to crypt ratio), but had little effect on the proliferation or apoptosis of intestinal cells, the numbers of Paneth cells and goblet cells, as well as the expression of makers related to enterocytes (sucrase) and endocrine cells (chromogranin A and peptide YY) in the ileum. Melatonin supplementation had little effect on serum levels of amino acids or stress-related parameters (eg, SOD, TNF-α, and angiotensin I). 16S rRNA sequencing suggested that melatonin supplementation increased the richness indices of intestinal microbiota (observed species, Chao 1, and ACE) and shaped the composition of intestinal microbiota (eg, increase in the abundance of Lactobacillus [19 ± 3% in melatonin group vs 6 ± 2% in control group]), which was demonstrated using an ex vivo proliferation assay and colonic loop proliferation assay. Melatonin supplementation also significantly influenced the metabolism of intestinal microbiota, such as amino acid metabolism and drug metabolism. More importantly, in antibiotic-treated weanling mice and germ-free weanling mice, melatonin failed to affect body weight gain or intestinal morphology. Melatonin significantly reduced (by about 60%) the bacterial load in enterotoxigenic Escherichia coli (ETEC)-infected weanling mice, but had little effect on ETEC load in antibiotic-pretreated animals. In conclusion, melatonin affects body weight gain, intestinal morphology, and intestinal ETEC infection through intestinal microbiota in weanling mice. The findings highlight the importance of intestinal microbiota in mediating the various physiological functions of melatonin in the host.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiameng Yan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing, China
| | - Tarique Hussain
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Can Peng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
28
|
Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Med Hypotheses 2017; 104:40-44. [DOI: 10.1016/j.mehy.2017.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
|
29
|
Luengtrakoon K, Wannakasemsuk W, Vichitrananda V, Klanrit P, Hormdee D, Noisombut R, Chaiyarit P. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation. Arch Oral Biol 2017; 78:13-19. [PMID: 28189880 DOI: 10.1016/j.archoralbio.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The existence of extra-pineal melatonin has been observed in various tissues. No prior studies of melatonin in human oral mucosal tissue under the condition of chronic inflammation have been reported. The aim of this study was to investigate the presence of melatonin in oral mucosal tissue of patients with oral lichen planus (OLP) which was considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. MATERIALS AND METHODS Sections from formalin-fixed and paraffin-embedded oral mucosal tissue of OLP patients (n=30), and control subjects (n=30) were used in this study. Immunohistochemical staining was performed and the semiquantitative scoring system was used to assess the levels of arylalkylamine-N-acetyltransferase (AANAT: a rate-limiting enzyme in the biosynthesis pathway of melatonin), melatonin, and melatonin receptor 1 (MT1) in oral mucosa of OLP patients and normal oral mucosa of control subjects. RESULTS AANAT, melatonin, and MT1were detected in oral mucosal tissue of OLP patients and control subjects. Immunostaining scores of AANAT, melatonin, and MT1 in oral mucosal tissue of OLP patients were significantly higher than those in control subjects (p=0.002, p<0.001, and p=0.031, respectively). CONCLUSIONS Increased levels of AANAT, melatonin, and MT1 in the inflamed oral mucosal tissue of OLP patients imply that chronic inflammation may induce the local biosynthesis of melatonin via AANAT, and may enhance the action of melatonin via MT1.
Collapse
Affiliation(s)
- Kirawut Luengtrakoon
- Dental Hospital, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Poramaporn Klanrit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Doosadee Hormdee
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Rajda Noisombut
- Department of Community Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, Thailand; Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
30
|
Inflammatory Bowel Diseases. GASTROINTESTINAL TISSUE 2017. [DOI: 10.1016/b978-0-12-805377-5.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
32
|
Zhu MX, Huang Q, Wang F, Xie J, Xiang Q, Zhang L. Changes in serum melatonin and estrogen levels in women with functional dyspepsia. Shijie Huaren Xiaohua Zazhi 2015; 23:3038-3044. [DOI: 10.11569/wcjd.v23.i19.3038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the levels of serum melatonin and estrogen in women with functional dyspepsia (FD), and to evaluate the possible mechanism of FD.
METHODS: Sixty women diagnosed with FD according to Roman Ⅲ criteria were included into an experimental group, which was further divided into two subgroups: patients with epigastric pain syndrome (EPS) (n = 35) and those with postprandial distress syndrome (PDS) (n = 25). Thirty healthy person were chose as normal controls. Serum melatonin and estrogen levels were measured and analyzed in these subjects.
RESULTS: In the FD group and PDS subgroup, the levels of serum melatonin were significantly higher than that in normal controls (P < 0.05). In the PDS subgroup, the concentration of serum melatonin was significantly higher than that in the EPS subgroup (P < 0.05). There was no significant difference in the concentration of serum melatonin between the EPS subgroup and the normal control group (P > 0.05). PDS patients with severe symptoms displayed a higher melatonin concentration as compared with patients with moderate symptoms (P < 0.05). EPS patients with severe symptoms displayed a lower melatonin concentration as compared with patients with moderate symptoms (P < 0.05). In the FD subgroup (menopausal transition), the concentration of serum estrogen was significantly lower than that in normal controls (P < 0.05). FD patients (menopausal transition) with severe symptoms displayed a lower estrogen concentration as compared with patients with moderate symptoms (P < 0.05). In FD patients (menopausal transition), there was no significant correlation between the levels of serum melatonin and estrogen (r = -0.03, P > 0.05).
CONCLUSION: The alteration of serum melatonin may play a role in the pathogenesis of FD, especially PDS, but has no obvious relation with EPS. Serum melatonin level maybe have certain significance for the diagnosis of various clinical forms of FD. The alteration of serum estrogen may play a role in the development of FD. Supplementing exogenous estrogen may improve symptoms of FD patients with perimenopausal symptoms.
Collapse
|