1
|
Lei L, Li J, Liu Z, Zhang D, Liu Z, Wang Q, Gao Y, Mo B, Li J. Identification of diagnostic markers pyrodeath-related genes in non-alcoholic fatty liver disease based on machine learning and experiment validation. Sci Rep 2024; 14:25541. [PMID: 39462099 DOI: 10.1038/s41598-024-77409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a global health challenge. While pyroptosis is implicated in various diseases, its specific involvement in NAFLD remains unclear. Thus, our study aims to elucidate the role and mechanisms of pyroptosis in NAFLD. Utilizing data from the Gene Expression Omnibus (GEO) database, we analyzed the expression levels of pyroptosis-related genes (PRGs) in NAFLD and normal tissues using the R data package. We investigated protein interactions, correlations, and functional enrichment of these genes. Key genes were identified employing multiple machine learning techniques. Immunoinfiltration analyses were conducted to discern differences in immune cell populations between NAFLD patients and controls. Key gene expression was validated using a cell model. Analysis of GEO datasets, comprising 206 NAFLD samples and 10 controls, revealed two key PRGs (TIRAP, and GSDMD). Combining these genes yielded an area under the curve (AUC) of 0.996 for diagnosing NAFLD. In an external dataset, the AUC for the two key genes was 0.825. Nomogram, decision curve, and calibration curve analyses further validated their diagnostic efficacy. These genes were implicated in multiple pathways associated with NAFLD progression. Immunoinfiltration analysis showed significantly lower numbers of various immune cell types in NAFLD patient samples compared to controls. Single sample gene set enrichment analysis (ssGSEA) was employed to assess the immune microenvironment. Finally, the expression of the two key genes was validated in cell NAFLD model using qRT-PCR. We developed a prognostic model for NAFLD based on two PRGs, demonstrating robust predictive efficacy. Our findings enhance the understanding of pyroptosis in NAFLD and suggest potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Liping Lei
- Department of Geriatric Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jixue Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zirui Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dongdong Zhang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zihan Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qing Wang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yi Gao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541002, Guangxi, China.
| | - Jiangfa Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
3
|
Ameliorative Potential of Betanin on Cigarette Smoke Extract-induced Respiratory Mucosal Inflammation and Oxidative Stress in the Adult Zebrafish Model. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Betanin, a natural pigment and glycosidic bioactive compound, possesses anti-inflammatory antioxidant activity. Objectives In this study, we evaluated the potential effect of betanin on cigarette smoke extract (CSE)-induced pulmonary inflammation in the zebrafish model. Materials and Methods Zebrafish were randomly divided into five groups with control, CSE-exposed and betanin-treated after CSE exposure for 3 and 6 days. Oxidative stress-related parameters like reactive oxygen species (ROS), nitric oxide (NO) and myeloperoxidase (MPO) were analysed, histopathological studies were carried out and gene expression of proinflammatory tumour necrosis factor-alpha, inducible NO synthase and anti-inflammatory interleukin-10 cytokines was determined. Results Treatment with betanin reduced ROS, MPO and NO with histopathological improvement, alleviating CSE-induced pulmonary inflammation. Further, decreased expression of the proinflammatory gene and increased expression of the anti-inflammatory gene were observed after 6 days of treatment. Conclusion Betanin exhibits a protective effect against CSE exposure by inhibiting oxidative stress and inflammation.
Collapse
|
4
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Pandeya PR, Lamichhane R, Lamichhane G, Lee KH, Lee HK, Rhee SJ, Jung HJ. 18KHT01, a Potent Anti-Obesity Polyherbal Formulation. Front Pharmacol 2021; 12:807081. [PMID: 34975503 PMCID: PMC8719591 DOI: 10.3389/fphar.2021.807081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Obesity is a life-threatening metabolic disorder necessitating urgent development of safe and effective therapy. Currently, limited such therapeutic measures are available for obesity. The present study was designed to develop a novel, safe and effective herbal therapy for the management of obesity. A polyherbal formulation (18KHT01) was developed by homogeneously mixing a specific proportion of crude Quercus acutissima (acorn jelly powder), Camellia sinensis (dry leaf buds), and Geranium thunbergii (dry aerial part) along with Citrus limon (fruit juice). Synergistic antioxidant, antiadipogenic, and anti-obesity activities were evaluated by in vitro as well as in vivo studies. In vitro experiments revealed strong synergistic antioxidant and anti-adipogenic activities of 18KHT01. Molecular assessment of 18KHT01 showed significant down-regulation of vital adipogenic factors such as PPARγ, C/EBPα, aP2, SREBP-1c, FAS, and LPL. Based on the results of the preliminary toxicity study, 75 and 150 mg/kg, twice daily doses of 18KHT01 were administered to evaluate anti-obesity activity in diet-induced obese (DIO) C57BL/6J mice model. The major obesity-related parameters such as body weight, weight gain, food efficiency ratio, as well as serum lipid profile were significantly reduced by 18KHT01 with potential synergism. Also, the high-fat diet-induced insulin resistance was suggestively alleviated by the formulation, and thus ameliorated fasting blood glucose. Histological evaluation of liver and white adipose tissue revealed that the significant reduction of fat depositions and thus reduction of these tissue weights. Synergy evaluation experiments exhibited that the 18KHT01 offered strong synergism by improving efficacy and reducing the toxicity of its ingredients. Overall results evidenced the 18KHT01 as a safe and potent anti-obesity herbal therapy.
Collapse
Affiliation(s)
- Prakash Raj Pandeya
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
- Bio-Safety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Ramakanta Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Kyung-Hee Lee
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Hyeong Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Su-jin Rhee
- Department of Pharmacy, Wonkwang University, Iksan, South Korea
| | - Hyun-Ju Jung
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| |
Collapse
|
6
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
7
|
Efficacy of a Novel Herbal Formulation (F2) on the Management of Obesity: In Vitro and In Vivo Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8854915. [PMID: 33628322 PMCID: PMC7884115 DOI: 10.1155/2021/8854915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Background Currently, obesity and its comorbidities have become a serious threat to human health necessitating urgent development of safe and effective therapy for their management. Materials and Methods In this research, a novel polyherbal formulation (F2) was prepared by mixing specific proportions of royal jelly and lemon juice with ethanol extracts of Orostachys japonicus, Rhus verniciflua, and Geranium thunbergii. The antioxidant activity was assessed using DPPH and ABTS assay methods. The antiobesity potential of the F2 was assessed in vitro using 3T3-L1 fibroblast and in vivo using a high-fat diet (HFD) fed C57BL/6J mice model. F2 was administered in mice at the dose of 23 mg/kg and 46 mg/kg, twice daily by oral gavage. A well-accepted antiobesity agent, Garcinia cambogia (GC), at 200 mg/kg was used as a positive control. Results F2 was observed to exhibit synergistic antiadipogenic activity in 3T3-L1 cells. This inhibition was reinforced by the downregulation of specific adipogenic transcription factors. Furthermore, F2 was also found to reduce mice body weight gain, food efficiency ratio, fasting blood glucose level, fat deposition into the liver, and mass of white adipose tissue. F2 also played a role in the excretion of fat consumed by the mice. For most of the assays performed, the F2 (46 mg/kg) was comparable to the positive control GC (200 mg/kg). In addition, potential and synergistic antioxidant activity was observed on F2. Conclusion The results revealed that the formulation F2 exhibited potential antiobesity activity through the inhibition of adipocyte differentiation, dietary fat absorption, and reduction of free fatty acids deposition in tissues.
Collapse
|
8
|
Kim JH, Kim YS, Choi JG, Li W, Lee EJ, Park JW, Song J, Chung HS. Kaempferol and Its Glycoside, Kaempferol 7-O-Rhamnoside, Inhibit PD-1/PD-L1 Interaction In Vitro. Int J Mol Sci 2020; 21:ijms21093239. [PMID: 32375257 PMCID: PMC7247329 DOI: 10.3390/ijms21093239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Kaempferol (KO) and kaempferol 7-O-rhamnoside (KR) are natural products from various oriental herbs such as Geranii Herba. Previous studies have reported some biological activities of KO and KR; however, their effects on PD-1/PD-L1 interaction have not been reported yet. To elucidate their inhibitory activities on PD-1/PD-L1 protein–protein interaction (PPI), biochemical assays including competitive ELISA and biolayer interferometry (BLI) systems were performed. Cellular PD-1/PD-L1 blocking activity was measured in a co-culture system with PD-1 Jurkat and PD-L1/aAPC CHO-K1 cells by T-cell receptor (TCR) activation-induced nuclear factor of activated T cells (NFAT)-luciferase reporter assay. The detailed binding mode of action was simulated by an in silico docking study and pharmacophore analysis. Competitive ELISA revealed that KO and its glycoside KR significantly inhibited PD-1/PD-L1 interaction. Cellular PD-1/PD-L1 blocking activity was monitored by KO and KR at non-cytotoxic concentration. Surface plasmon resonance (SPR) and biolayer interferometry (BLI) analysis suggested the binding affinity and direct inhibition of KR against PD-1/PD-L1. An in silico docking simulation determined the detailed mode of binding of KR to PD-1/PD-L1. Collectively, these results suggest that KR could be developed as a potent small molecule inhibitor for PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Ji Hye Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
| | - Young Soo Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
| | - Eun Jin Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
| | - Jin-Wan Park
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Dong-gu, Daegu 41061, Korea; (J.-W.P.); (J.S.)
| | - Jaeyoung Song
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Dong-gu, Daegu 41061, Korea; (J.-W.P.); (J.S.)
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (J.-G.C.); (W.L.); (E.J.L.)
- Correspondence: ; Tel.: +82-53-940-3875
| |
Collapse
|
9
|
Graça VC, Ferreira ICFR, Santos PF. Bioactivity of the Geranium Genus: A Comprehensive Review. Curr Pharm Des 2020; 26:1838-1865. [PMID: 31942856 DOI: 10.2174/1381612826666200114110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plants from the Geranium genus, which comprises about 400 species, have been used since ancient times in the practice of traditional medicines throughout the world. Therefore, herbal preparations based on Geranium species have found wide usage for the treatment of a variety of ailments. The aim of this work is to present a review, as comprehensive as possible, of the studies concerning different biological activities of Geranium species. METHODS Relevant data were obtained through systematic computer searches from major reputed scientific databases, particularly Web of Science and Scopus. Occasionally, information issued in primary sources not covered by these databases was also included provided published as peer-reviewed literature. This review covers the literature disclosed till the end of 2018. RESULTS Accompanying the increasing interest in herbal medicines in general, the evaluation of the biological properties of medicinal plants from the Geranium genus has been addressed thoroughly, mostly over the last two decades. Geranium species are endowed with a number of different biological activities. Herein, we present a survey of the results of the studies concerning these different biological activities. CONCLUSION Most studies found in the literature effectively contribute to scientifically validate the beneficial properties of Geranium plants claimed by traditional medicines and medical herbalism and demonstrate that many of them possess evident therapeutic properties.
Collapse
Affiliation(s)
- Vânia C Graça
- Centro de Quimica-Vila Real (CQ-VR), Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.,Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB) - Vila Real, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Paulo F Santos
- Centro de Quimica-Vila Real (CQ-VR), Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
10
|
Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, Mirzaei HR, Mirzaei H. Medicinal Plants As Natural Polarizers of Macrophages: Phytochemicals and Pharmacological Effects. Curr Pharm Des 2019; 25:3225-3238. [DOI: 10.2174/1381612825666190829154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Macrophages are one of the crucial mediators of the immune response in different physiological and
pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in
the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been
shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the
basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory
cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory
cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via
producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage
subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of
macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic
approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders,
it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization
and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of
natural compounds on macrophage polarization.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad K. Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R. Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Choi JG, Kim YS, Kim JH, Chung HS. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition. Sci Rep 2019; 9:12132. [PMID: 31431635 PMCID: PMC6702199 DOI: 10.1038/s41598-019-48430-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
Influenza viruses are a serious threat to human health, causing numerous deaths and pandemics worldwide. To date, neuraminidase (NA) inhibitors have primarily been used to treat influenza. However, there is a growing need for novel NA inhibitors owing to the emergence of resistant viruses. Geranii Herba (Geranium thunbergii Siebold et Zuccarini), which is edible, has long been used in a variety of disease treatments in Asia. Although recent studies have reported its various pharmacological activities, the effect of Geranii Herba and its components on influenza viruses has not yet been reported. In this study, Geranii Herba ethanol extract (GHE) and its component geraniin showed high antiviral activity against influenza A strain as well as influenza B strain, against which oseltamivir has less efficacy than influenza A strain, by inhibiting NA activity following viral infection in Madin–Darby canine kidney cells. Thus, GHE and its components may be useful for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Young Soo Kim
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Ji Hye Kim
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea.
| |
Collapse
|
12
|
Kim K, Shin KM, Hunt CL, Wang Z, Bauer BA, Kwon O, Lee JH, Seo BN, Jung SY, Youn Y, Lee SH, Choi JC, Jung JE, Kim J, Qu W, Kim TH, Eldrige JS. Nonsurgical integrative inpatient treatments for symptomatic lumbar spinal stenosis: a multi-arm randomized controlled pilot trial. J Pain Res 2019; 12:1103-1113. [PMID: 30992679 PMCID: PMC6445233 DOI: 10.2147/jpr.s173178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Lumbar spinal stenosis (LSS) is a chronic condition that causes low back pain and neurogenic claudication, often resulting in significant limitation of daily activities. In this open-label randomized controlled pilot study, we assessed the safety and feasibility of 4-week novel integrative inpatient treatments for LSS. Methods Thirty-six symptomatic LSS patients were randomly and equally allocated to one of the three groups: Mokhuri Chuna treatment 1 (MT1) group, Mokhuri Chuna treatment 2 (MT2) group, or conventional management treatment (CMT) group. MT1 patients were treated with herbal medication, Mokhuri Chuna, and acupuncture, and received daily physician consultation; MT2 patients were treated with Mokhuri Chuna and acupuncture without any herbal medication, and received daily physician consultation; and CMT patients received conventional pain management therapy that included epidural steroid injection, oral NSAID, and muscle relaxant medication, along with daily physiotherapy. The primary outcome of this pilot study was safety as measured by the type and incidence of adverse events (AEs). The secondary outcome measures included VAS score for low back pain and leg pain, Oswestry Disability Index, Oxford Claudication Score (OCS), walking capacity on a 50 m flat track and treadmill, and EuroQol-5D score. Magnetic resonance imaging was also performed up to 6 months after treatment cessation. Results Thirty-four treated patients were included in the analysis, based on the modified intention-to-treat principle. No serious AEs were observed or reported. Compared to the CMT group, the MT1 and MT2 groups did show significant improvement at 3 and 6 months in various domains, including pain (VAS score for leg and back pain) and function (OCS and treadmill walking). Conclusion These novel multimodal integrative treatments for LSS are both clinically safe and logistically feasible. Larger, adequately powered randomized controlled trials will be necessary to assess comparative efficacy and thoroughly analyze the cost-effectiveness of each treatment approach. Clinical trial registration number (CRIS) KCT0001218.
Collapse
Affiliation(s)
- Kiok Kim
- Department of Spine Center, Mokhuri Neck & Back Hospital, Seoul, South Korea
| | - Kyung-Min Shin
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Christy L Hunt
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ojin Kwon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jun-Hwan Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Korean Medicine Life Science, Campus of Korea Institute of Oriental Medicine, University of Science & Technology (UST), Daejeon, South Korea
| | - Bok-Nam Seo
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - So-Young Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yousuk Youn
- Department of Spine Center, Mokhuri Neck & Back Hospital, Seoul, South Korea
| | - Sang Ho Lee
- Department of Spine Center, Mokhuri Neck & Back Hospital, Seoul, South Korea
| | - Jung Chul Choi
- Department of Spine Center, Mokhuri Neck & Back Hospital, Seoul, South Korea
| | - Jae Eun Jung
- Hongik Neurosurgery Hospital, Seongnam, South Korea
| | - Jaehong Kim
- Department of Spine Center, Mokhuri Neck & Back Hospital, Seoul, South Korea
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA,
| | - Tae-Hun Kim
- Korean Medicine Clinical Trial Center, Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Jason S Eldrige
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
13
|
Nam HH, Nan L, Choo BK. Dichloromethane Extracts of Geranium Koreanum Kom. Alleviates Esophagus Damage in Acute Reflux Esophagitis-Induced Rats by Anti-Inflammatory Activities. Int J Mol Sci 2018; 19:ijms19113622. [PMID: 30453554 PMCID: PMC6274961 DOI: 10.3390/ijms19113622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Reflux esophagitis (RE) is a gastrointestinal disease caused by the reflux of gastric acid and stomach contents, and it leads to esophageal damage. Therefore, it is necessary to study the improvement of esophageal damage on a RE-induced model. The present study was accomplished to demonstrate the protective effects of a dichloromethane fraction of Geranium koreanum (DGK) plant on esophageal damage in an acute RE rat model. First, we examined the potential of anti-inflammatory effects of various fractions measured by cell cytotoxicity, morphological changes and nitric oxide (NO) production on lipopolysaccharide (LPS)-induced Raw 264.7 macrophage cells. Then, to evaluate the protective effects on RE, rats were partitioned into the following groups: normal control, RE-induced control and RE rats pre-treated with DGK 100 and 200 mg/kg body weight. The esophageal mucosal ulcer ratio was measured by the Image J program and histological changes were examined using a hematoxylin and eosin staining of the esophageal mucosa. The expression of pro-inflammatory proteins, cytokines and tight junction proteins involved in the esophageal mucosal damage were investigated using Western blotting and an enzyme-linked immunosorbent assay (ELISA) kit with esophagus tissue. DGK chemical profile and phenolic contents were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that DGK exhibited anti-inflammatory effects against LPS-stimulated cells by significantly inhibiting NO production. Additionally, the results in vivo showed that improvement effects of DGK on esophageal mucosal damage. The expression of inflammatory proteins involved in nuclear factor κB (NF-κB) signaling pathways and tight junction protein (claudin-4 and -5) were significantly decreased in esophageal mucosa. We found the potential of DGK as source of replacement therapy products for inflammatory and RE disease.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Department of Crop Science & Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Li Nan
- Department of Crop Science & Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Byung Kil Choo
- Department of Crop Science & Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
14
|
Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9:17937-17950. [PMID: 29707159 PMCID: PMC5915167 DOI: 10.18632/oncotarget.24788] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are critical mediators of the innate immune response against foreign pathogens, including bacteria, physical stress, and injury. Therefore, these cells play a key role in the "inflammatory pathway" which in turn can lead to an array of diseases and disorders such as autoimmune neuropathies and myocarditis, inflammatory bowel disease, atherosclerosis, sepsis, arthritis, diabetes, and angiogenesis. Recently, more studies have focused on the macrophages inflammatory diseases since the discovery of the two subtypes of macrophages, which are differentiated on the basis of their phenotype and distinct gene expression pattern. Of these, M1 macrophages are pro-inflammatory and responsible for inflammatory signaling, while M2 are anti-inflammatory macrophages that participate in the resolution of the inflammatory process, M2 macrophages produce anti-inflammatory cytokines, thereby contributing to tissue healing. Many studies have shown the role of these two subtypes in the inflammatory pathway, and their emergence appears to decide the fate of inflammatory signaling and disease progression. As a next step in directing the pro-inflammatory response toward the anti-inflammatory type after an insult by a foreign pathogen (e. g., bacterial lipopolysaccharide), investigators have identified many natural compounds that have the potential to modulate M1 to M2 macrophages. In this review, we provide a focused discussion of advances in the identification of natural therapeutic molecules with anti-inflammatory properties that modulate the phenotype of macrophages from M1 to M2.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, MP, India
| | - Sutripta Sarkar
- PostGraduate Department of Food & Nutrition, BRSN College (affiliated to WBSU), Kolkata, WB, India
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Joong-gu Daegu, South Korea
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, UP, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen 35392, Germany.,Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the DZL, Bad Nauheim, Germany
| |
Collapse
|
15
|
Chung TW, Choi HJ, Park MJ, Choi HJ, Lee SO, Kim KJ, Kim CH, Hong C, Kim KH, Joo M, Ha KT. The function of cancer-shed gangliosides in macrophage phenotype: involvement with angiogenesis. Oncotarget 2018; 8:4436-4448. [PMID: 28032600 PMCID: PMC5354844 DOI: 10.18632/oncotarget.13878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor-derived gangliosides in the tumor microenvironment are involved in the malignant progression of cancer. However, the molecular mechanisms underlying the effects of gangliosides shed from tumors on macrophage phenotype remain unknown. Here, we showed that ganglioside GM1 highly induced the activity and expression of arginase-1 (Arg-1), a major M2 macrophage marker, compared to various gangliosides in bone marrow-derived macrophages (BMDM), peritoneal macrophages and Raw264.7 macrophage cells. We found that GM1 bound to macrophage mannose receptor (MMR/CD206) and common gamma chain (γc). In addition, GM1 increased Arg-1 expression through CD206 and γc-mediated activation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription- 6 (STAT-6). Interestingly, GM1-stimulated macrophages secreted monocyte chemoattractant protein-1 (MCP-1/CCL2) through a CD206/γc/STAT6-mediated signaling pathway and induced angiogenesis. Moreover, the angiogenic effect of GM1-treated macrophages was diminished by RS102895, an MCP-1 receptor (CCR2) antagonist. From these results we suggest that tumor-shed ganglioside is a secretory factor regulating the phenotype of macrophages and consequently enhancing angiogenesis.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Ju Park
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jin Choi
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Kyun-Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Myungsoo Joo
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
16
|
Catarino MD, Silva AMS, Cruz MT, Cardoso SM. Antioxidant and anti-inflammatory activities of Geranium robertianum L. decoctions. Food Funct 2018; 8:3355-3365. [PMID: 28858365 DOI: 10.1039/c7fo00881c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Geranium robertianum L., commonly known as Herb Robert, is an herbaceous plant popularly known for its functional properties including antioxidant and anti-inflammatory activities. In this study, the phenolic profile of leaf and stem decoctions of Geranium robertianum L. was elucidated by UHPLC-DAD-ESI-MSn analysis, and their antioxidant and anti-inflammatory potentials were assessed in vitro. Importantly, and envisaging the use of these extracts in human diets, the potential toxicity of bioactive concentrations was also addressed in macrophages and hepatocytes. Both extracts revealed high amounts of ellagitannins, although a slight prevalence of these compounds was observed in that originating from leaves. High radical scavenging activities against DPPH˙, ABTS˙+ and OH˙ were observed either for the leaf or the stem extract, as well as good activities towards ferric reducing antioxidant power, lipid peroxidation and oxygen radical absorbance capacity. In addition, both extracts were very effective at scavenging NO˙, as measured in a chemical model, while only the stem extract was able to decrease the production of this radical by stimulated macrophages. On the other hand, none of the extracts was able to modulate the activity of lipoxygenase or the expression of the inducible nitric oxide synthase. Overall, these data allowed us to conclude that G. robertianum L. stem and leaf decoctions are particularly rich in tannins. The strong scavenging effects displayed by the stem extract suggest that its anti-inflammatory activity may partially result from its anti-radical capacities towards NO˙.
Collapse
|
17
|
Giongo JL, de Almeida Vaucher R, Sagrillo MR, Vianna Santos RC, Duarte MM, Rech VC, Soares Lopes LQ, Beatriz da Cruz I, Tatsch E, Moresco RN, Gomes P, Luchese C, Steppe M. Anti-inflammatory effect of geranium nanoemulsion macrophages induced with soluble protein of Candida albicans. Microb Pathog 2017; 110:694-702. [DOI: 10.1016/j.micpath.2017.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 11/24/2022]
|
18
|
Park JY, Moon JY, Park SD, Park WH, Kim H, Kim JE. Fruits extracts of Hovenia dulcis Thunb. suppresses lipopolysaccharide-stimulated inflammatory responses through nuclear factor-kappaB pathway in Raw 264.7 cells. ASIAN PAC J TROP MED 2016; 9:357-365. [DOI: 10.1016/j.apjtm.2016.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 11/25/2022] Open
|
19
|
Jeong HS, Kim S, Hong SJ, Choi SC, Choi JH, Kim JH, Park CY, Cho JY, Lee TB, Kwon JW, Joo HJ, Park JH, Yu CW, Lim DS. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J Med Food 2016; 19:346-52. [PMID: 26891216 DOI: 10.1089/jmf.2015.3563] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P < .05). CD34/CD133(+) cells at 12-week follow-up were significantly higher in the black raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P < .05). Decreases from the baseline in interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were significantly greater in the black raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P < .05 and -5.4 ± 4.5 pg/mL vs. -0.8 ± 4.0 pg/mL, P < .05, respectively). Increases from the baseline in adiponectin levels (2.9 ± 2.1 μg/mL vs. -0.2 ± 2.5 μg/mL, P < .05) were significant in the black raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up.
Collapse
Affiliation(s)
- Han Saem Jeong
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Sohyeon Kim
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Soon Jun Hong
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Seung Cheol Choi
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Ji-Hyun Choi
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Jong-Ho Kim
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Chi-Yeon Park
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Jae Young Cho
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Tae-Bum Lee
- 2 Gochang Black Raspberry Research Institute , Gochang, Korea
| | - Ji-Wung Kwon
- 2 Gochang Black Raspberry Research Institute , Gochang, Korea
| | - Hyung Joon Joo
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Jae Hyoung Park
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Cheol Woong Yu
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| | - Do-Sun Lim
- 1 Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital , Seoul, Korea
| |
Collapse
|
20
|
Shang B, Shi H, Wang X, Guo X, Wang N, Wang Y, Dong L. Protective effect of melatonin on myenteric neuron damage in experimental colitis in rats. Fundam Clin Pharmacol 2016; 30:117-27. [PMID: 26787455 DOI: 10.1111/fcp.12181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Boxin Shang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Haitao Shi
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Xiaoyan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Xiaoyan Guo
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Nan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Yan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Lei Dong
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| |
Collapse
|
21
|
Zhao F, Shi D, Li T, Li L, Zhao M. Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro. Clin Exp Pharmacol Physiol 2015; 42:988-998. [PMID: 26173462 DOI: 10.1111/1440-1681.12448] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/11/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
The present study aims to investigate the impacts and mechanisms of silymarin on paraquat (PQ)-induced lung injury in vivo and in vitro. In in vivo experiments, a total of 32 male Sprague-Dawley (SD) rats were randomly divided into four groups. The rats were killed on day 3. Histopathological changes in lung tissue were examined using HE and Masson's trichrome staining. Biomarkers of neutrophil activation, pulmonary oedema, pulmonary fibrosis, lung permeability and oxidative stress were detected. Several proinflammatory mediators and antioxidant related proteins were measured. In in vitro experiments, A549 cells were transfected with Nrf2 special siRNA to investigate the roles of Nrf2. The results show that silymarin administration abated PQ-induced lung histopathologic changes, decreased inflammatory cell infiltration and lung wet weight/dry weight (W/D) ratio, suppressed myeloperoxidase (MPO) activity and nitric oxide (NO)/inducible nitric oxide synthases (iNOS) expression, downregulated hydroxyproline (HYP) levels, reduced total protein concentration and proinflammatory mediator release, and improved oxidative stress (malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH-Px) in lung tissue and serum. Meanwhile, treatment with silymarin upregulated the levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1(NQO1). However, the addition of Nrf2 siRNA reduced the expression of Nrf2-mediated antioxidant protein HO-1 and thus reversed the protective effects of silymarin against oxidative stress and inflammatory response. These results suggest that silymarin may exert protective effects against PQ-induced lung injury. Its mechanisms were associated with the Nrf2-mediated pathway. Therefore, silymarin may be a potential therapeutic drug for lung injury.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danyang Shi
- Blood Purification Centre, Shenyang Fourth People's Hospital, Shenyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lizhuo Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|