1
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
3
|
Xie Y, Li Z, Liang Y, Zhou T, Yuan X, Su X, Zhang Z, Zhang J, Wan Y, Su L, Lu T, Zhao X, Fu Y. Revealing the Mechanisms of Qilongtian Capsules in the Treatment of Chronic Obstructive Pulmonary Disease Based on Integrated Network Pharmacology, Molecular Docking, and In Vivo Experiments. ACS OMEGA 2024; 9:32455-32468. [PMID: 39100362 PMCID: PMC11292813 DOI: 10.1021/acsomega.3c10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The Qilongtian capsule (QLT) is a Chinese patent medicine that has been approved for the treatment of chronic obstructive pulmonary disease (COPD). However, the precise pharmacodynamic material basis and molecular mechanism have not been well illustrated. In this study, we identified the effect of QLT on COPD through a cigarette smoke extract (CSE)/lipopolysaccharide (LPS) induced COPD mice model. The absorption of blood components in QLT were identified using ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to predict the potential targets and therapeutic mechanisms of QLT, which were further validated using in vivo experiments and molecular docking. Pharmacodynamic studies revealed that QLT could ameliorate pulmonary function and pulmonary pathology, reduce collagen fiber accumulation, and attenuate inflammatory responses in mice with CSE/LPS induced COPD. A total of 21 components of QLT absorbed in the blood were detected. Network pharmacology analysis indicated that TNF, IL-6, EGFR, and AKT1 may be the core targets, mainly involving the MAPK signaling pathway. Besides, Sachaloside II, Ginsenoside Rh1, Ginsenoside F1, Rosiridin, and Ginsenoside Rf were the key compounds. Molecular docking results showed that the key components could spontaneously bind to EGFR and MAPK to form a relatively stable conformation. In vivo experiments revealed that QLT could suppress the activation of the EGFR/MAPK signaling pathway, thereby improving lung injury in mice with COPD. Overall, these findings provide evidence for the treatment of COPD with QLT.
Collapse
Affiliation(s)
- Ying Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhengyan Li
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| | - Yiyao Liang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tong Zhou
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaolin Yuan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xuerong Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhitong Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Jiuba Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Wan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Lianlin Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tulin Lu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaoli Zhao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Fu
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| |
Collapse
|
4
|
Chung C, Park SY, Huh JY, Kim NH, Shon C, Oh EY, Park YJ, Lee SJ, Kim HC, Lee SW. Fine particulate matter aggravates smoking induced lung injury via NLRP3/caspase-1 pathway in COPD. J Inflamm (Lond) 2024; 21:13. [PMID: 38654364 DOI: 10.1186/s12950-024-00384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Exposure to noxious particles, including cigarette smoke and fine particulate matter (PM2.5), is a risk factor for chronic obstructive pulmonary disease (COPD) and promotes inflammation and cell death in the lungs. We investigated the combined effects of cigarette smoking and PM2.5 exposure in patients with COPD, mice, and human bronchial epithelial cells. METHODS The relationship between PM2.5 exposure and clinical parameters was investigated in patients with COPD based on smoking status. Alveolar destruction, inflammatory cell infiltration, and pro-inflammatory cytokines were monitored in the smoking-exposed emphysema mouse model. To investigate the mechanisms, cell viability and death and pyroptosis-related changes in BEAS-2B cells were assessed following the exposure to cigarette smoke extract (CSE) and PM2.5. RESULTS High levels of ambient PM2.5 were more strongly associated with high Saint George's respiratory questionnaire specific for COPD (SGRQ-C) scores in currently smoking patients with COPD. Combined exposure to cigarette smoke and PM2.5 increased mean linear intercept and TUNEL-positive cells in lung tissue, which was associated with increased inflammatory cell infiltration and inflammatory cytokine release in mice. Exposure to a combination of CSE and PM2.5 reduced cell viability and upregulated NLRP3, caspase-1, IL-1β, and IL-18 transcription in BEAS-2B cells. NLRP3 silencing with siRNA reduced pyroptosis and restored cell viability. CONCLUSIONS PM2.5 aggravates smoking-induced airway inflammation and cell death via pyroptosis. Clinically, PM2.5 deteriorates quality of life and may worsen prognosis in currently smoking patients with COPD.
Collapse
Affiliation(s)
- Chiwook Chung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Suk Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - Jin-Young Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung- Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - ChangHo Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Efficacy Evaluation Center, WOOJUNGBIO Inc, Hwaseong, Republic of Korea
| | - Eun Yi Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Jun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Das DN, Puthusseri B, Gopu V, Krishnan V, Bhagavath AK, Bolla S, Saini Y, Criner GJ, Marchetti N, Tang H, Konduru NV, Fan L, Shetty S. Caveolin-1-derived peptide attenuates cigarette smoke-induced airway and alveolar epithelial injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L689-L708. [PMID: 37642665 PMCID: PMC11178264 DOI: 10.1152/ajplung.00178.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease with no effective treatment that can reduce mortality or slow the disease progression. COPD is the third leading cause of global death and is characterized by airflow limitations due to chronic bronchitis and alveolar damage/emphysema. Chronic cigarette smoke (CS) exposure damages airway and alveolar epithelium and remains a major risk factor for the pathogenesis of COPD. We found that the expression of caveolin-1, a tumor suppressor protein; p53; and plasminogen activator inhibitor-1 (PAI-1), one of the downstream targets of p53, was markedly increased in airway epithelial cells (AECs) as well as in type II alveolar epithelial (AT2) cells from the lungs of patients with COPD or wild-type mice with CS-induced lung injury (CS-LI). Moreover, p53- and PAI-1-deficient mice resisted CS-LI. Furthermore, treatment of AECs, AT2 cells, or lung tissue slices from patients with COPD or mice with CS-LI with a seven amino acid caveolin-1 scaffolding domain peptide (CSP7) reduced mucus hypersecretion in AECs and improved AT2 cell viability. Notably, induction of PAI-1 expression via increased caveolin-1 and p53 contributed to mucous cell metaplasia and mucus hypersecretion in AECs, and reduced AT2 viability, due to increased senescence and apoptosis, which was abrogated by CSP7. In addition, treatment of wild-type mice having CS-LI with CSP7 by intraperitoneal injection or nebulization via airways attenuated mucus hypersecretion, alveolar injury, and significantly improved lung function. This study validates the potential therapeutic role of CSP7 for treating CS-LI and COPD. NEW & NOTEWORTHY Chronic cigarette smoke (CS) exposure remains a major risk factor for the pathogenesis of COPD, a debilitating disease with no effective treatment. Increased caveolin-1 mediated induction of p53 and downstream plasminogen activator inhibitor-1 (PAI-1) expression contributes to CS-induced airway mucus hypersecretion and alveolar wall damage. This is reversed by caveolin-1 scaffolding domain peptide (CSP7) in preclinical models, suggesting the therapeutic potential of CSP7 for treating CS-induced lung injury (CS-LI) and COPD.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Bijesh Puthusseri
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Venkadesaperumal Gopu
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Venugopal Krishnan
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Ashoka Kumar Bhagavath
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Sudhir Bolla
- Temple University Hospital, Philadelphia, Pennsylvania, United States
| | - Yogesh Saini
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Gerald J Criner
- Temple University Hospital, Philadelphia, Pennsylvania, United States
| | | | - Hua Tang
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Nagarjun V Konduru
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Liang Fan
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Sreerama Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| |
Collapse
|
6
|
Tulen CBM, Duistermaat E, Cremers JWJM, Klerx WNM, Fokkens PHB, Weibolt N, Kloosterboer N, Dentener MA, Gremmer ER, Jessen PJJ, Koene EJC, Maas L, Opperhuizen A, van Schooten FJ, Staal YCM, Remels AHV. Smoking-Associated Exposure of Human Primary Bronchial Epithelial Cells to Aldehydes: Impact on Molecular Mechanisms Controlling Mitochondrial Content and Function. Cells 2022; 11:3481. [PMID: 36359877 PMCID: PMC9655975 DOI: 10.3390/cells11213481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/21/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood. To investigate this, we used a physiologically relevant in vitro exposure model of differentiated human primary bronchial epithelial cells (PBEC) exposed to CS (one cigarette) or a mixture of acetaldehyde, acrolein, and formaldehyde (at relevant concentrations of one cigarette) or air, in a continuous flow system using a puff-like exposure protocol. Exposure of PBEC to CS resulted in elevated IL-8 cytokine and mRNA levels, increased abundance of constituents associated with autophagy, decreased protein levels of molecules associated with the mitophagy machinery, and alterations in the abundance of regulators of mitochondrial biogenesis. Furthermore, decreased transcript levels of basal epithelial cell marker KRT5 were reported after CS exposure. Only parts of these changes were replicated in PBEC upon exposure to a combination of acetaldehyde, acrolein, and formaldehyde. More specifically, aldehydes decreased MAP1LC3A mRNA (autophagy) and BNIP3 protein (mitophagy) and increased ESRRA protein (mitochondrial biogenesis). These data suggest that other compounds in addition to aldehydes in CS contribute to CS-induced dysregulation of constituents controlling mitochondrial content and function in airway epithelial cells.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Evert Duistermaat
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Walther N. M. Klerx
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Paul H. B. Fokkens
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Naömi Weibolt
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Nico Kloosterboer
- Department of Pediatrics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Primary Lung Culture (PLUC) Facility, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Mieke A. Dentener
- Primary Lung Culture (PLUC) Facility, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Respiratory Medicine, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Eric R. Gremmer
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Phyllis J. J. Jessen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Evi J. C. Koene
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Lou Maas
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3511 GG Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Yvonne C. M. Staal
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Alexander H. V. Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Zhou P, Yu W, Zhang C, Chen K, Tang W, Li X, Liu Z, Xia Q. Tiao-bu-fei-shen formula promotes downregulation of the caveolin 1-p38 mapk signaling pathway in COPD - Associated tracheobronchomalacia cell model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115256. [PMID: 35367574 DOI: 10.1016/j.jep.2022.115256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tiao-bu-fei-shen (TBFS) formula, extensively used in Traditional Chinese Medicine (TCM), can enhance therapeutic efficacy and reduce the frequency of acute exacerbations of lung-kidney Qi deficiency in patients with chronic obstructive pulmonary disease (COPD). According to both TCM theory and long-term observation of practice, TBFS has become an effective treatment for COPD-associated tracheobronchomalacia (TBM). AIM OF THE STUDY To investigate the mechanism of the TBFS formula in treating COPD-associated TBM based on caveolin 1-p38 MAPK signaling and apoptosis. MATERIALS AND METHODS A rat COPD model was prepared by exposure to smoking combined with tracheal lipopolysaccharide injection. The trachea or bronchus chondrocytes from COPD rats were isolated, cultured, and treated with 10 ng/mL IL-1β for 24 h to develop a model of COPD-associated TBM. Normal rats were administered TBFS to prepare drug-containing serum, and CCK8 assays were used to screen the optimal drug-containing serum concentration and SB203580 dose. TBFS drug-containing serum and SB203580 were processed separately for the control, model, drug-containing serum, blocker, and drug-containing serum combined with blocker groups. Flow cytometry and CCK8 assays were used to detect apoptosis and proliferative activity. Toluidine blue staining and immunohistochemistry were used to analyze the chondrocyte proteoglycan and type II collagen content. Western blotting was used to detect the expression of caveolin 1, p-p38 MAPK, TNF-α, IL-1β, MMP-13, Bax, and Bcl-2 proteins. Quantitative PCR was used to detect the expression of caveolin 1, p38 MAPK, IL-1β, MMP-13, Bax, Bcl-2, and miR-140-5p. RESULTS The isolation and identification of bronchial chondrocytes from COPD rats revealed that 10 ng/mL IL-1β can produce a stable COPD-associated TBM model. Screened via the CCK8 method, fourth-generation bronchial chondrocytes were determined as the optimal cells, and 5 μM SB203580 and 5% low-dose drug-containing serum were the optimal intervention doses. The experimental chondrocytes of each group were treated separately for 48 h. Toluidine blue staining and immunohistochemical analysis revealed that TBFS drug-containing serum, SB203580, and TBFS drug-containing serum combined with SB203580 can effectively increase the proteoglycan and type II collagen content after chondrocyte degradation. Flow cytometry of cells treated with SB203580 and TBFS drug-containing serum combined with SB203580 revealed significantly reduced cell apoptosis and enhanced cell proliferation activity. Western blot and qPCR analyses revealed that the TBFS drug-containing serum, SB203580, and TBFS drug-containing serum combined with SB203580 effectively inhibit the expression of caveolin 1, p-p38 MAPK, MMP-13, IL-1β, TNF-α, and Bax proteins while promoting Bcl -2 protein expression. Treatment with TBFS drug-containing serum and SB203580 effectively inhibited the expression of MMP-13, p38 MAPK, caveolin 1, and Bax genes, and promoted the expression of Bcl-2 and miR-140-5p genes. CONCLUSIONS A concentration of 10 ng/mL of IL-1β can generate a stable COPD-associated TBM cell model. TBFS can improve the proteoglycan and type II collagen content, increase cell activity, and reduce the amount of chondrocyte apoptosis. The role of TBFS may be related to mechanisms of inhibiting the expression of the key signaling molecules caveolin 1 and p-p38 MAPK in the caveolin 1-p38 MAPK signaling pathway, thereby reducing the expression of the downstream effector products MMP-13, IL-1β, and TNF-α, while inhibiting the expression of the apoptotic gene Bax and improving the expression of Bcl-2 and miR-140-5p genes.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Wei Yu
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Xuelian Li
- Department of Emergency, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Zijun Liu
- Department of Intensive Care Unit, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| | - Qianming Xia
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province, PR China.
| |
Collapse
|
8
|
Du X, Yang Y, Yang M, Yuan L, Wang L, Wu M, Zhou K, Li W, Xiang Y, Qu X, Liu H, Qin X, Liu C. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells. Int J Biol Sci 2022; 18:349-359. [PMID: 34975337 PMCID: PMC8692133 DOI: 10.7150/ijbs.66215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI), which is closely associated with the occurrence and development of asthma in later life. Integrin β4 (ITGB4) is down-regulated in the airway epithelial cells (AECs) of asthma patients which plays a critical role in the pathogenesis of asthma. However, whether ITGB4 is involved in the pathological processes of RSV infection remains unclear. In this study, we found that decreased expression of ITGB4 was negatively correlated with the level of MUC5AC in childhood AECs following RSV infection. Moreover, ITGB4 deficiency led to mucus hypersecretion and MUC5AC overexpression in the small airway of RSV-infected mice. MUC5AC expression was upregulated by ITGB4 in HBE cells through EGFR, ERK and c-Jun pathways. EGFR inhibitors treatment inhibited mucus hypersecretion and MUC5AC overexpression in ITGB4-deficient mice after RSV infection. Together, these results demonstrated that epithelial ITGB4 deficiency induces mucus hypersecretion by upregulating the expression of MUC5AC through EGFR/ERK/c-Jun pathway, which further associated with RSV-related LRTI.
Collapse
Affiliation(s)
- Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Wenkai Li
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Moradi S, Jarrahi E, Ahmadi A, Salimian J, Karimi M, Zarei A, Azimzadeh Jamalkandi S, Ghanei M. PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy. J Pathol 2021; 254:505-518. [PMID: 33959951 DOI: 10.1002/path.5696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterised by airway inflammation and progressive obstruction of the lung airflow. Current pharmacological treatments include bronchodilators, alone or in combination with steroids, or other anti-inflammatory agents, which have only partially contributed to the inhibition of disease progression and mortality. Therefore, further research unravelling the underlying mechanisms is necessary to develop new anti-COPD drugs with both lower toxicity and higher efficacy. Extrinsic signalling pathways play crucial roles in COPD development and exacerbations. In particular, phosphoinositide 3-kinase (PI3K) signalling has recently been shown to be a major driver of the COPD phenotype. Therefore, several small-molecule inhibitors have been identified to block the hyperactivation of this signalling pathway in COPD patients, many of them showing promising outcomes in both preclinical animal models of COPD and human clinical trials. In this review, we discuss the critically important roles played by hyperactivated PI3K signalling in the pathogenesis of COPD. We also critically review current therapeutics based on PI3K inhibition, and provide suggestions focusing on PI3K signalling for the further improvement of the COPD phenotype. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sharif Moradi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Zarei
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wei Y, Han B, Dai W, Guo S, Zhang C, Zhao L, Gao Y, Jiang Y, Kong X. Exposure to ozone impacted Th1/Th2 imbalance of CD 4+ T cells and apoptosis of ASMCs underlying asthmatic progression by activating lncRNA PVT1-miR-15a-5p/miR-29c-3p signaling. Aging (Albany NY) 2020; 12:25229-25255. [PMID: 33223504 PMCID: PMC7803560 DOI: 10.18632/aging.104124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This investigation attempted to elucidate whether lncRNA PVT1-led miRNA axes participated in aggravating ozone-triggered asthma progression. One hundred and sixty-eight BALB/c mice were evenly divided into saline+air group, ovalbumin+air group, saline+ozone group and ovalbumin+ozone group. Correlations were evaluated between PVT1 expression and airway smooth muscle function/inflammatory cytokine release among the mice models. Furthermore, pcDNA3.1-PVT1 and si-PVT1 were, respectively, transfected into CD4+T cells and airway smooth muscle cells (ASMCs), and activities of the cells were observed. Ultimately, a cohort of asthma patients was recruited to estimate the diagnostic performance of PVT1. It was demonstrated that mice of ovalbumin+ozone group were associated with higher PVT1 expression, thicker trachea/airway smooth muscle and smaller ratio of Th1/Th2-like cytokines than mice of ovalbumin+air group and saline+ozone group (P<0.05). Moreover, pcDNA3.1-PVT1 significantly brought down Th1/Th2 ratio in CD4+ T cells by depressing miR-15a-5p expression and activating PI3K-Akt-mTOR signaling (P<0.05). The PVT1 also facilitated ASMC proliferation by sponging miR-29c-3p and motivating PI3K-Akt-mTOR signaling (P<0.05). Additionally, PVT1 seemed promising in diagnosis of asthma, with favorable sensitivity (i.e. 0.844) and specificity (i.e. 0.978). Conclusively, lncRNA PVT1-miR-15a-5p/miR-29c-3p-PI3K-Akt-mTOR axis was implicated in ozone-induced asthma development by promoting ASMC proliferation and Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofen Han
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Caiping Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lixuan Zhao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Gao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
12
|
Intermittent exposure to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-liquid interface culture. Sci Rep 2020; 10:6257. [PMID: 32277131 PMCID: PMC7148343 DOI: 10.1038/s41598-020-63345-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) is the leading risk factor to develop COPD. Therefore, the pathologic effects of whole CS on the differentiation of primary small airway epithelial cells (SAEC) were investigated, using cells from three healthy donors and three COPD patients, cultured under ALI (air-liquid interface) conditions. The analysis of the epithelial physiology demonstrated that CS impaired barrier formation and reduced cilia beat activity. Although, COPD-derived ALI cultures preserved some features known from COPD patients, CS-induced effects were similarly pronounced in ALI cultures from patients compared to healthy controls. RNA sequencing analyses revealed the deregulation of marker genes for basal and secretory cells upon CS exposure. The comparison between gene signatures obtained from the in vitro model (CS vs. air) with a published data set from human epithelial brushes (smoker vs. non-smoker) revealed a high degree of similarity between deregulated genes and pathways induced by CS. Taken together, whole cigarette smoke alters the differentiation of small airway basal cells in vitro. The established model showed a good translatability to the situation in vivo. Thus, the model can help to identify and test novel therapeutic approaches to restore the impaired epithelial repair mechanisms in COPD, which is still a high medical need.
Collapse
|
13
|
Abstract
INTRODUCTION Flask-shaped plasma membrane (PM) invaginations called caveolae and their constitutive caveolin and cavin proteins regulate cellular function via plasma membrane and intracellular signal transduction pathways. Caveolae are present in a variety of cells in the lung including airway smooth muscle (ASM) where they interact with other proteins, receptors, and ion channels and thereby have the potential to affect both normal and disease processes such as inflammation, contractility, and fibrosis. Given their involvement in cell signaling, caveolae may play important roles in mediating and modulating aging processes, and contribute to lung diseases of aging. Areas covered: This review provides a broad overview of the current state of knowledge regarding caveolae and their constituent proteins in lung diseases in the elderly and identifies potential mechanisms that can be targeted for future therapies. Expert Commentary: Caveolin-1 may play a protective role in lung disease. What is less clear is whether altered caveolin-1 with aging is a natural process, or a biomarker of disease progression in the elderly.
Collapse
Affiliation(s)
- Sarah A Wicher
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA
| | - Y S Prakash
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| | - Christina M Pabelick
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
14
|
Yu Q, Yang D, Chen X, Chen Q. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med 2019; 19:29. [PMID: 30727993 PMCID: PMC6364420 DOI: 10.1186/s12890-019-0791-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD147 is expressed in many tissues and is involved in many inflammatory diseases. Emerging evidence suggests that the overproduction of mucus is a malignant factor in chronic obstructive pulmonary disease (COPD), which results in severe airway obstruction and repeated airway infections. However, it is still unclear whether CD147 is involved in mucus production in COPD. METHODS We determined the expression levels of CD147 and MUC5AC by immunohistochemistry in 42 human lung specimens from three groups (non-smokers without COPD, smokers without COPD and smokers with COPD). For the in vitro experiment, human bronchial epithelial (HBE) cells were treated with cigarette smoke (CS) extract to establish a mucus secretion model; then, CD147 and MUC5AC production were detected by RT-PCR, Western blotting and ELISA. To determine how CD147 is involved in MUC5AC secretion, HBE cells were transfected with small interfering RNA to silence CD147 and pretreated with inhibitors of MMP9 and p38 MAPK, which are common signaling molecules involved in MUC5AC secretion; then, MUC5AC expression was evaluated. RESULTS Compared with the expression levels in the non-smokers and smokers without COPD, CD147 and MUC5AC expression levels were higher in the smokers with COPD. In the in vitro experiment, CD147 and MUC5AC expression levels were significantly increased after CS extract incubation compared with those after no treatment. Silencing CD147 by siRNA decreased the CS extract-induced MUC5AC secretion and MMP9 and phosphorylated p38 MAPK production. In addition, inhibiting MMP9 or p38 MAPK decreased the CS extract-induced MUC5AC secretion. CONCLUSIONS In lung specimens, CD147 and MUC5AC expression levels were increased in COPD patients. Increased CD147 levels induced by CS extract could stimulate MUC5AC secretion through the MMP9 and p38 MAPK signaling pathway in HBE cells. Therefore, the regulation of CD147 could be a promising target for mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya of Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Tang L, Chen Q, Sun L, Zhu L, Liu J, Meng Z, Ni Z, Wang X. Curcumin suppresses MUC5AC production via interfering with the EGFR signaling pathway. Int J Mol Med 2018; 42:497-504. [PMID: 29620257 DOI: 10.3892/ijmm.2018.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Excessive mucin production in the airway may contribute to airway inflammatory diseases. Curcumin has been reported to prevent mucin 5AC (MUC5AC) production in human airway epithelial cells; however, the molecular targets of curcumin involved in regulating MUC5AC expression have remained elusive. The present study aimed to elucidate the molecular mechanisms by which curcumin regulates MUC5AC production, utilizing the NCI‑H292 human airway epithelial cell line featuring MUC5AC hypersecretion. Curcumin was able to counteract the endothelial growth factor (EGF)‑stimulated mRNA and protein expression of MUC5AC. In addition, curcumin treatment prevented EGF‑induced phosphorylation of EGF receptor (EGFR) as well as the downstream AKT and signal transducer and activator of transcription 3 (STAT3), while inhibition of PI3K and STAT3 signaling significantly attenuated the expression of MUC5AC that was induced by EGF. Furthermore, EGF‑induced increases in the levels of phosphorylated STAT3 in the nuclear fraction were inhibited by curcumin and PI3K inhibitors. In addition, treatment with curcumin significantly decreased MUC5AC and EGFR expression in a time‑dependent manner under basal conditions. These results demonstrated that curcumin inhibited MUC5AC protein expression in NCI‑H292 cells under basal conditions as well under EGF stimulation. This inhibition was accompanied by decreased activation of the EGFR/AKT/STAT3 pathway and reduced EGFR expression, which indicated that curcumin may have a dual role in interfering with the EGFR signaling pathway and inhibiting mucin expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Lingling Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Li Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ziyu Meng
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
16
|
Lee JW, Park JW, Kwon OK, Lee HJ, Jeong HG, Kim JH, Oh SR, Ahn KS. NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells. Inflammation 2017; 40:184-194. [PMID: 27866297 DOI: 10.1007/s10753-016-0468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon, 200-701, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Kim
- Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| | - Kyoung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
17
|
Caveolin-1 Promotes the Imbalance of Th17/Treg in Patients with Chronic Obstructive Pulmonary Disease. Inflammation 2017; 39:2008-2015. [PMID: 27613621 DOI: 10.1007/s10753-016-0436-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The imbalance of Th17/Treg cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Caveolin-1 (Cav-1) has been regarded as a potential critical regulatory protein in pathological mechanisms of chronic inflammatory respiratory diseases. Therefore, we investigated whether the loss of Cav-1 is involved in the homeostasis of Th17/Treg cells in COPD. We examined the expressions of plasma Cav-1 and circulating Th17, Treg cells, and the related cytokines in patients with COPD. Enzyme-linked immunosorbent assay (ELISA) analyses showed a significant reduction of plasma Cav-1 levels in patients with stable COPD (SCOPD) and acutely exacerbated COPD (AECOPD) compared to smokers without COPD. This loss was associated with an increase in frequency of Treg and decreased in frequency of Th17 cells. To further identify the role of Cav-1, we studied the effects of Cav-1 overexpression or downregulation on frequencies of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects. Interestingly, small interfering RNA (siRNA) downregulation of Cav-1 was accompanied by an augmentation of Treg and reduction of Th17 expression. Together, our study demonstrated that the loss of Cav-1 contributed to the imbalance of Th17/Treg cells in patients with COPD.
Collapse
|
18
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|
19
|
Xiong Y, Wang XM, Zhong M, Li ZQ, Wang Z, Tian ZF, Zheng K, Tan XX. Alterations of caveolin-1 expression in a mouse model of delayed cerebral vasospasm following subarachnoid hemorrhage. Exp Ther Med 2016; 12:1993-2002. [PMID: 27703494 PMCID: PMC5038886 DOI: 10.3892/etm.2016.3568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to evaluate the expression levels of caveolin-1 in the basilar artery following delayed cerebral vasospasm (DCVS) in a rat model of subarachnoid hemorrhage (SAH), in order to investigate the association between caveolin-1 and DCVS, and its potential as a treatment for DCVS of SAH. A total of 150 Sprague Dawley rats were randomly allocated into blank, saline and SAH groups. The SAH and saline groups were subdivided into days 3, 5, 7 and 14 following the establishment of the model. The murine model of SAH was established by double injection of autologous arterial blood into the cisterna magana and DCVS was detected using Bederson neurological severity scores. Hematoxylin and eosin (HE) staining was used to observe the inner perimeter of the basilar artery pipe and variations in the thickness of the basilar artery wall. Alterations in the levels of caveolin-1 protein in the basilar artery were measured using immunofluorescence and western blot analysis; whereas alterations in the mRNA expression levels of caveolin-1 were detected by reverse transcription-quantitative polymerase chain reaction. In the present study, 15 mice succumbed to SAH-induced DCVS in the day 3 (n=3), 5 (n=5) and 7 (n=2) groups. No mortality was observed in the blank control and saline groups during the process of observation in the SAH group, All mice in the SAH groups exhibited Bederson neurological severity scores ≥1; whereas no neurological impairment was detected in the blank and normal saline groups, demonstrating the success of the model. HE staining was used to assess vasospasm and the results demonstrated that the inner perimeter of the basal artery pipe decreased at day 3 in the SAH group; whereas values peaked in the day 7 group. The thickness of the basal artery wall significantly increased (P<0.05), as compared with the blank and saline groups, in which no significant alterations in the wall thickness and the inner perimeter of the basal artery pipe were detected. As detected by immunofluorescence and western blot analysis, the expression levels of caveolin-1 protein significantly decreased in the day 7 of SAH group, as compared with the blank and saline groups (P<0.01), in which no significant alterations were detected. Caveolin-1 mRNA expression levels significantly increased at the day 7 in the SAH group, as compared with the blank and the saline groups (P<0.01), as detected by RT-qPCR. Furthermore, significant differences were detected at day 14 in the SAH group, as compared with the blank and the saline groups (P>0.05), in which no significant alterations were detected. Therefore, the results of the present study demonstrated that caveolin-1 protein was downregulated in the basilar artery of a rat modeling SAH, which may be associated with DCVS. This suggested that caveolin-1 may be a potential target for the treatment of DCVS.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Xue-Min Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Zhong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Ze-Qun Li
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Zuo-Fu Tian
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Kuang Zheng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Xian-Xi Tan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|