1
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
2
|
Zhou Y, Yang X, Zhu L. A novel Nlrp3 knock-in mouse model with hyperactive inflammasome in development of lethal inflammation. Clin Exp Immunol 2024; 215:202-214. [PMID: 37594231 PMCID: PMC10847811 DOI: 10.1093/cei/uxad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a central protein contributing to human inflammatory disorders, including cryopyrin-associated periodic syndrome and sepsis. However, the molecular mechanisms and functions of NLRP3 activation in various diseases remain unknown. Here, we generated gain-of-function knock-in mice associated with Muckle-Wells syndromes using the Cre-LoxP system allowing for the constitutive T346M mutation of NLRP3 to be globally expressed in all cells under the control of tamoxifen. The mice were treated with tamoxifen for 4 days before determining their genotype by PCR and sequence analysis. In vitro, we found that bone marrow-derived macrophage from homozygous T346M mutation mice displayed a robust ability to produce IL-1β in response to lipopolysaccharide exposure. Moreover, ASC specks and oligomerization were observed in the homozygous mutant bone marrow-derived macrophages in the presence of lipopolysaccharides alone. Mechanistically, K+ and Ca2+ depletion and mitochondrial depolarization contribute to the hyperactivation of mutant NLRP3. In vivo, homozygous mice carrying the T346M mutation exhibit weight loss and mild inflammation in the resting state. In the lipopolysaccharide-mediated sepsis model, homozygous mutant mice exhibited higher mortality and increased serum circulating cytokine levels, accompanied by serious liver injury. Furthermore, an increase in myeloid cells in the spleen has been suggested to be a risk factor for inducing sepsis sensitivity. Altogether, we describe a cryopyrin-associated syndrome animal model with the T346M mutation of NLRP3 and suggest that the hyperactivated inflammasome aggregated by the mutant NLRP3 lowers the inflammatory response threshold both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xiyue Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
3
|
Sun J, Tang B, Ho CT, Lu M. Piperine Attenuates Bmal1-Mediated Glucose Metabolism Disorder in a Trpv1-Dependent Manner in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19581-19591. [PMID: 38038344 DOI: 10.1021/acs.jafc.3c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Piperine (PIP), a pungent alkaloid found in black pepper, has various pharmacological effects by activating the transient receptor potential vanilloid 1 (TRPV1) receptor. In this study, the regulating effect of PIP on glucose metabolism and the underlying mechanism were examined using an insulin-resistant cell model. Results showed that PIP alleviated glucosamine (GlcN)-induced glucose metabolism disorder (from 59.19 ± 1.90 to 88.36 ± 6.57%), restored cellular redox balance (from 148.43 ± 3.52 to 110.47 ± 3.52%), improved mitochondrial function (from 63.76 ± 4.87 to 85.98 ± 5.12%), and mitigated circadian disruption in HepG2 cells via the mediation of circadian clock gene Bmal1. After the knockdown of the Trpv1 gene, the modulating effect of PIP on Bmal1-mediated glucose metabolism was weakened, indicating that PIP alleviated Bmal1-involved insulin resistance and circadian misalignment in a Trpv1-dependent manner in HepG2 cells.
Collapse
Affiliation(s)
- Jiayi Sun
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Biqi Tang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Ordulu Z, Weiss-Sadan T, Possemato AP, Harry S, Takahashi M, Yang TY, Richter M, Patel H, Smith AE, Carlin AD, Hubertus de Groot AF, Wolf K, Shi L, Wei TY, Dürr BR, Chen NJ, Vornbäumen T, Wichmann NO, Mahamdeh MS, Pooladanda V, Matoba Y, Kumar S, Kim E, Bouberhan S, Oliva E, Rueda BR, Soberman RJ, Bardeesy N, Liau BB, Lawrence M, Stokes MP, Beausoleil SA, Bar-Peled L. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell 2023; 186:2361-2379.e25. [PMID: 37192619 PMCID: PMC10225361 DOI: 10.1016/j.cell.2023.04.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.
Collapse
Affiliation(s)
- Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Jacqueline Berner
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Harrison B Chong
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jiafeng Fang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Zehra Ordulu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Tommy Weiss-Sadan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Stefan Harry
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mariko Takahashi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Tzu-Yi Yang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Marianne Richter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Himani Patel
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Abby E Smith
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander D Carlin
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Konstantin Wolf
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Ting-Yu Wei
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt R Dürr
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas J Chen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Tristan Vornbäumen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nina O Wichmann
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mohammed S Mahamdeh
- Division of Cardiology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Venkatesh Pooladanda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Yusuke Matoba
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shaan Kumar
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Sara Bouberhan
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Roy J Soberman
- Division of Nephrology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Michael Lawrence
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Androgen receptor signaling-mitochondrial DNA-oxidative phosphorylation: A critical triangle in early prostate cancer. Curr Urol 2022; 16:207-212. [PMID: 36714229 PMCID: PMC9875216 DOI: 10.1097/cu9.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are more than just the cellular powerhouse. They also play key roles in vital functions such as apoptosis, metabolism regulation, and other intracellular interactions. The mitochondrial DNA (mtDNA) encodes for 12 subunits of the oxidative phosphorylation (OXPHOS) system. Depletion of mtDNA in androgen-dependent prostate cancer (PCa) cell lines renders them androgen-independent and more aggressive. Paradoxically, pharmaceutical inhibition of OXPHOS is lethal for subsets of PCa cells, whereas others become dependent on androgen receptor (AR) signaling for survival. Given that the AR-mitochondria interaction is critical for early PCa, it is crucial to understand the details of this interaction. Technical hurdles have made mitochondria traditionally difficult to study, with many techniques used for isolation masking the properties of given individual mitochondria. Although the isolation of mitochondria enables us to study OXPHOS, we miss the context in which mitochondria interact with the rest of the cell. Both AR signaling and mtDNA affect apoptosis, metabolism regulation, cellular calcium storage and homeostasis, intracellular calcium signaling, and redox homeostasis. In this review, we will attempt to understand how the crosstalk between AR-mtDNA-OXPHOS is responsible for "life or death" decisions inside the cells. Our aim is to point toward potential vulnerabilities that can lead to the discovery of novel therapeutic targets.
Collapse
|
6
|
Kubo Y, Tanaka K, Masuike Y, Takahashi T, Yamashita K, Makino T, Saito T, Yamamoto K, Tsujimoto T, Harino T, Kurokawa Y, Yamasaki M, Nakajima K, Eguchi H, Doki Y. Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med 2022; 20:383. [PMID: 36038893 PMCID: PMC9422107 DOI: 10.1186/s12967-022-03594-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most severe cancers and is characterized by chemotherapy resistance and poor prognosis associated with epithelial-mesenchymal transition (EMT). In a previous study, a low mitochondrial DNA (mtDNA) copy number was associated with poorer prognosis and induced EMT in ESCC. However, the detailed mechanism related to mtDNA copy number and EMT is unclear. The aim of this study was to clarify the mechanism by which a change in mtDNA copy number contributes to EMT and to examine treatment of chemotherapy resistance in ESCC. METHODS The association between low mtDNA copy number and chemotherapy resistance was investigated using specimens from 88 patients who underwent surgery after neoadjuvant chemotherapy. Then, the mtDNA content of human ESCC cell lines, TE8 and TE11, was depleted by knockdown of mitochondrial transcription factor A expression. The present study focused on modulation of mitochondrial membrane potential (MMP) and DNA methylation as the mechanisms by which mtDNA copy number affects EMT. mRNA and protein expression, chemotherapy sensitivity, proliferation, MMP and DNA methylation were evaluated, and in vitro and in vivo assays were conducted to clarify these mechanisms. RESULTS ESCC patients with decreased mtDNA copy number who underwent R0 resection after neoadjuvant chemotherapy had significantly worse pathological response and recurrence-free survival. Additionally, low mtDNA copy number was associated with resistance to chemotherapy in vitro and in vivo. mtDNA controlled MMP, and MMP depolarization induced EMT. Depletion of mtDNA and low MMP induced DNA methylation via a DNA methylation transcription factor (DNMT), and a DNMT inhibitor suppressed EMT and improved chemotherapy sensitivity in mtDNA-depleted ESCC cells, as shown by in vitro and in vivo assays. CONCLUSION This study showed that decreased mtDNA copy number induced EMT via modulation of MMP and DNA methylation in ESCC. Therapeutic strategies increasing mtDNA copy number and DNMT inhibitors may be effective in preventing EMT and chemosensitivity resistance.
Collapse
Affiliation(s)
- Yuto Kubo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasunori Masuike
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Tsujimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Harino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Prestes ADS, Dos Santos MM, Kamdem JP, Mancini G, Schüler da Silva LC, de Bem AF, Barbosa NV. Methylglyoxal disrupts the functionality of rat liver mitochondria. Chem Biol Interact 2022; 351:109677. [PMID: 34634269 DOI: 10.1016/j.cbi.2021.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022]
Abstract
Methylglyoxal (MG) is a reactive metabolite derived from different physiological pathways. Its production can be harmful to cells via glycation reactions of lipids, DNA, and proteins. But, the effects of MG on mitochondrial functioning and bioenergetic responses are still elusive. Then, the effects of MG on key parameters of mitochondrial functionality were examined here. Isolated rat liver mitochondria were exposed to 0.1-10 mM of MG to determine its toxicity in the mitochondrial viability, membrane potential (Δψm), swelling and the superoxide (O2•-) production. Besides, mitochondrial oxidative phosphorylation parameters were analyzed by high-resolution respiratory (HRR) assay. In this set of experiments, routine state, PM state (pyruvate/malate), oxidative phosphorylation (OXPHOS), LEAK respiration, electron transport system (ETS) and oxygen residual (ROX) states were evaluated. HRR showed that PM state, OXPHOS CI-Linked, LEAK respiration, ETS CI/CII-Linked and ETS CII-Linked/ROX were significantly inhibited by MG exposure. MG also inhibited the complex II activity, and decreased Δψm and the viability of mitochondria. Taken together, our data indicates that MG is an inductor of mitochondrial dysfunctions and impairs important steps of respiratory chain, effects that can alter bioenergetics responses.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Pimenta, Crato, CE, Brazil
| | - Gianni Mancini
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Andreza Fabro de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
8
|
Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment. Future Med Chem 2021; 13:2047-2067. [PMID: 34672778 DOI: 10.4155/fmc-2021-0162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The high incidence and prevalence of fungal infections call for new antifungal drugs. This work was to develop naphthalimide thiazoles as potential antifungal agents. Results & methodology: These compounds showed significant antifungal potency toward some tested fungi. Especially, naphthalimide thiazole 4h with excellent anti-Candida tropicalis efficacy possessed good hemolysis level, low toxicity and no obvious resistance. Deciphering the mechanism showed that 4h interacted with DNA and disrupted the antioxidant defense system of C. tropicalis. Compound 4h also triggered membrane depolarization, leakage of cytoplasmic contents and LDH inhibition. Simultaneously, 4h rendered metabolic inactivation and eradicated the formed biofilms of C. tropicalis. Conclusion: The multifaceted synergistic effect initiated by naphthalimide thiazoles is a reasonable treatment window for prospective development.
Collapse
|
9
|
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2021; 17:948-960. [PMID: 32186434 PMCID: PMC8078708 DOI: 10.1080/15548627.2020.1739447] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer tends to be highly resistant to current therapy and remains one of the great challenges in biomedicine with very low 5-year survival rates. Here, we report that zalcitabine, an antiviral drug for human immunodeficiency virus infection, can suppress the growth of primary and immortalized human pancreatic cancer cells through the induction of ferroptosis, an iron-dependent form of regulated cell death. Mechanically, this effect relies on zalcitabine-induced mitochondrial DNA stress, which activates the STING1/TMEM173-mediated DNA sensing pathway, leading to macroautophagy/autophagy-dependent ferroptotic cell death via lipid peroxidation, but not a type I interferon response. Consequently, the genetic and pharmacological inactivation of the autophagy-dependent ferroptosis pathway diminishes the anticancer effects of zalcitabine in cell culture and animal models. Together, these findings not only provide a new approach for pancreatic cancer therapy but also increase our understanding of the interplay between autophagy and DNA damage response in shaping cell death.Abbreviations: ALOX: arachidonate lipoxygenase; ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATM: ATM serine/threonine kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; ER: endoplasmic reticulum; FANCD2: FA complementation group D2; GPX4: glutathione peroxidase 4; IFNA1/IFNα: interferon alpha 1; IFNB1/IFNβ: interferon beta 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MDA: malondialdehyde; mtDNA: mitochondrial DNA; NCOA4: nuclear receptor coactivator 4; PDAC: pancreatic ductal adenocarcinoma; POLG: DNA polymerase gamma, catalytic subunit; qRT-PCR: quantitative polymerase chain reaction; RCD: regulated cell death; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; TFAM: transcription factor A, mitochondrial.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Chao T, Shih HT, Hsu SC, Chen PJ, Fan YS, Jeng YM, Shen ZQ, Tsai TF, Chang ZF. Autophagy restricts mitochondrial DNA damage-induced release of ENDOG (endonuclease G) to regulate genome stability. Autophagy 2021; 17:3444-3460. [PMID: 33465003 DOI: 10.1080/15548627.2021.1874209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genotoxic insult causes nuclear and mitochondrial DNA damages with macroautophagy/autophagy induction. The role of mitochondrial DNA (mtDNA) damage in the requirement of autophagy for nuclear DNA (nDNA) stability is unclear. Using site-specific DNA damage approaches, we show that specific nDNA damage alone does not require autophagy for repair unless in the presence of mtDNA damage. We provide evidence that after IR exposure-induced mtDNA and nDNA damages, autophagy suppression causes non-apoptotic mitochondrial permeability, by which mitochondrial ENDOG (endonuclease G) is released and translocated to nuclei to sustain nDNA damage in a TET (tet methylcytosine dioxygenase)-dependent manner. Furthermore, blocking lysosome function is sufficient to increase the amount of mtDNA leakage to the cytosol, accompanied by ENDOG-free mitochondrial puncta formation with concurrent ENDOG nuclear accumulation. We proposed that autophagy eliminates the mitochondria specified by mtDNA damage-driven mitochondrial permeability to prevent ENDOG-mediated genome instability. Finally, we showed that HBx, a hepatitis B viral protein capable of suppressing autophagy, also causes mitochondrial permeability-dependent ENDOG mis-localization in nuclei and is linked to hepatitis B virus (HBV)-mediated hepatocellular carcinoma development.Abbreviations: 3-MA: 3-methyladenine; 5-hmC: 5-hydroxymethylcytosine; ACTB: actin beta; ATG5: autophagy related 5; ATM: ATM serine/threonine kinase; DFFB/CAD: DNA fragmentation factor subunit beta; cmtDNA: cytosolic mitochondrial DNA; ConA: concanamycin A; CQ: chloroquine; CsA: cyclosporin A; Dox: doxycycline; DSB: double-strand break; ENDOG: endonuclease G; GFP: green fluorescent protein; Gy: gray; H2AX: H2A.X variant histone; HBV: hepatitis B virus; HBx: hepatitis B virus X protein; HCC: hepatocellular carcinoma; I-PpoI: intron-encoded endonuclease; IR: ionizing radiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOMP: mitochondrial outer membrane permeability; mPTP: mitochondrial permeability transition pore; mtDNA: mitochondrial DNA; nDNA: nuclear DNA; 4-OHT: 4-hydroxytamoxifen; rDNA: ribosomal DNA; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TET: tet methylcytosine dioxygenase; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.
Collapse
Affiliation(s)
- Tung Chao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chin Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Shan Fan
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University, Hospital, Taipei, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
van Gisbergen MW, Offermans K, Voets AM, Lieuwes NG, Biemans R, Hoffmann RF, Dubois LJ, Lambin P. Mitochondrial Dysfunction Inhibits Hypoxia-Induced HIF-1α Stabilization and Expression of Its Downstream Targets. Front Oncol 2020; 10:770. [PMID: 32509579 PMCID: PMC7248342 DOI: 10.3389/fonc.2020.00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
mtDNA variations often result in bioenergetic dysfunction inducing a metabolic switch toward glycolysis resulting in an unbalanced pH homeostasis. In hypoxic cells, expression of the tumor-associated carbonic anhydrase IX (CAIX) is enhanced to maintain cellular pH homeostasis. We hypothesized that cells with a dysfunctional oxidative phosphorylation machinery display elevated CAIX expression levels. Increased glycolysis was observed for cytoplasmic 143B mutant hybrid (m.3243A>G, >94.5%) cells (p < 0.05) and 143B mitochondrial DNA (mtDNA) depleted cells (p < 0.05). Upon hypoxia (0.2%, 16 h), genetic or pharmacological oxidative phosphorylation (OXPHOS) inhibition resulted in decreased CAIX (p < 0.05), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) expression levels. Reactive oxygen species (ROS) and prolyl-hydroxylase 2 (PHD2) levels could not explain these observations. In vivo, tumor take (>500 mm3) took longer for mutant hybrid xenografts, but growth rates were comparable with control tumors upon establishment. Previously, it has been shown that HIF-1α is responsible for tumor establishment. In agreement, we found that HIF-1α expression levels and the pimonidazole-positive hypoxic fraction were reduced for the mutant hybrid xenografts. Our results demonstrate that OXPHOS dysfunction leads to a decreased HIF-1α stabilization and subsequently to a reduced expression of its downstream targets and hypoxic fraction in vivo. In contrast, hypoxia-inducible factor 2-alpha (HIF-2α) expression levels in these xenografts were enhanced. Inhibition of mitochondrial function is therefore an interesting approach to increase therapeutic efficacy in hypoxic tumors.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Kelly Offermans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - An M Voets
- Department of Clinical Genomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Roland F Hoffmann
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Lo Dico A, Salvatore D, Martelli C, Ronchi D, Diceglie C, Lucignani G, Ottobrini L. Intracellular Redox-Balance Involvement in Temozolomide Resistance-Related Molecular Mechanisms in Glioblastoma. Cells 2019; 8:cells8111315. [PMID: 31653091 PMCID: PMC6912456 DOI: 10.3390/cells8111315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most common astrocytic-derived brain tumor in adults, characterized by a poor prognosis mainly due to the resistance to the available therapy. The study of mitochondria-derived oxidative stress, and of the biological events that orbit around it, might help in the comprehension of the molecular mechanisms at the base of GBM responsiveness to Temozolomide (TMZ). Sensitive and resistant GBM cells were used to test the role of mitochondrial ROS release in TMZ-resistance. Chaperone-Mediated Autophagy (CMA) activation in relation to reactive oxygen species (ROS) release has been measured by monitoring the expression of specific genes. Treatments with H2O2 were used to test their potential in reverting resistance. Fluctuations of cytoplasmic ROS levels were accountable for CMA induction and cytotoxic effects observed in TMZ sensitive cells after treatment. On the other hand, in resistant cells, TMZ failed in producing an increase in cytoplasmic ROS levels and CMA activation, preventing GBM cell toxicity. By increasing oxidative stress, CMA activation was recovered, as also cell cytotoxicity, especially in combination with TMZ treatment. Herein, for the first time, it is shown the relation between mitochondrial ROS release, CMA activation and TMZ-responsiveness in GBM.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, 20090 Segrate (MI), Italy.
| | - Daniela Salvatore
- Department of Pathophysiology and Transplantation, University of Milan, 20090 Segrate (MI), Italy.
- Doctorate School of Molecular and Translational Medicine, University of Milan, 20122 Milan, Italy.
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, 20090 Segrate (MI), Italy.
| | - Dario Ronchi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy.
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, 20090 Segrate (MI), Italy.
| | | | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, 20090 Segrate (MI), Italy.
- Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate (MI), Italy.
| |
Collapse
|
13
|
Sun X, St John JC. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenetics Chromatin 2018; 11:53. [PMID: 30208958 PMCID: PMC6136172 DOI: 10.1186/s13072-018-0223-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Background There are multiple copies of mitochondrial DNA (mtDNA) present in each cell type, and they are strictly regulated in a cell-specific manner by a group of nuclear-encoded mtDNA-specific replication factors. This strict regulation of mtDNA copy number is mediated by cell-specific DNA methylation of these replication factors. Glioblastoma multiforme, HSR-GBM1, cells are hyper-methylated and maintain low mtDNA copy number to support their tumorigenic status. We have previously shown that when HSR-GBM1 cells with 50% of their original mtDNA content were inoculated into mice, tumours grew more aggressively than non-depleted cells. However, when the cells possessed only 3% and 0.2% of their original mtDNA content, tumour formation was less frequent and the initiation of tumorigenesis was significantly delayed. Importantly, the process of tumorigenesis was dependent on mtDNA copy number being restored to pre-depletion levels. Results By performing whole genome MeDIP-Seq and RNA-Seq on tumours generated from cells possessing 100%, 50%, 0.3% and 0.2% of their original mtDNA content, we determined that restoration of mtDNA copy number caused significant changes to both the nuclear methylome and its transcriptome for each tumour type. The affected genes were specifically associated with gene networks and pathways involving behaviour, nervous system development, cell differentiation and regulation of transcription and cellular processes. The mtDNA-specific replication factors were also modulated. Conclusions Our results highlight the bidirectional control of the nuclear and mitochondrial genomes through modulation of DNA methylation to control mtDNA copy number, which, in turn, modulates nuclear gene expression during tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13072-018-0223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Sun
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
| |
Collapse
|
14
|
Blaškovičová J, Sochr J, Koutsogiannis A, Diamantidou D, Kopel P, Adam V, Labuda J. Detection of ROS Generated by UV-C Irradiation of CdS Quantum Dots and their Effect on Damage to Chromosomal and Plasmid DNA. ELECTROANAL 2017. [DOI: 10.1002/elan.201700648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jana Blaškovičová
- Institute of Analytical Chemistry; Slovak University of Technology in Bratislava; Bratislava Slovakia
| | - Jozef Sochr
- Institute of Analytical Chemistry; Slovak University of Technology in Bratislava; Bratislava Slovakia
| | - Anastasios Koutsogiannis
- Department of Physics and School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Dimitra Diamantidou
- Department of Physics and School of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Pavel Kopel
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czechia
- Central European Institute of Technology; Brno University of Technology; Brno Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czechia
- Central European Institute of Technology; Brno University of Technology; Brno Czechia
| | - Ján Labuda
- Institute of Analytical Chemistry; Slovak University of Technology in Bratislava; Bratislava Slovakia
| |
Collapse
|
15
|
Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget 2017; 8:75727-75741. [PMID: 29088905 PMCID: PMC5650460 DOI: 10.18632/oncotarget.20155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein (YAP) is a downstream effector molecule of a newly emerging tumour suppressor pathway called the Hippo pathway. YAP is a transcriptional co-activator and mis-expressed in various cancers, including colorectal cancer (CRC). Accumulating studies show that the high expression of nuclear YAP is linked with tumour progression and decreased survival. Nuclear YAP can interact with other transcription factors to promote cancer cell proliferation, apoptosis, metastasis and maintenance of stemness. Therefore, YAP has the potential to be a tumour biomarker or therapeutic target for CRC. However, recently, a number of studies have supported a contradictory role for YAP as a tumour suppressor, demonstrating inhibition of the tumorigenesis of CRC, involvement in promoting cell apoptosis, and inhibiting the maintenance of intestinal stem cells and inflammatory activity. In these studies, high expression of YAP was highly correlated with worse survival in CRC. In this review, we will comprehensively summarize and analyse these paradoxical reports, and discuss both the oncogenic and tumour suppressor functions of YAP in the differential status of CRC progression. Further investigation into the mechanisms responsible for the dual function of YAP will be of great value in the prevention, early diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenqiang Sun
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Gastrointestinal Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Shen Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
16
|
Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28538-28553. [PMID: 27715004 DOI: 10.1021/acsami.6b11391] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are a double-edged sword that possesses both beneficial and harmful effects. Although basic research on skin cancer prevention has undergone a huge transformation, cases of recurrence with higher rates of drug resistance are some of its drawbacks. Therefore, targeting mitochondria by ROS overproduction provides an alternate approach for anticancer therapy. In the present study, green-synthesized silver nanoparticles (AgNPs) were explored for triggering the ROS production in A431 skin carcinoma cells. The synthesized AgNPs were characterized for size, charge, morphology, and phase through high-throughput DLS, Fe-SEM, XRD, and ATR-FTIR techniques. Their physiochemical properties with hemoglobin and blood plasma were screened through hemolysis, hemagglutination assay, and circular dichroism spectroscopy confirmed their nontoxic nature. The AgNPs also exhibited additional efficacy in inhibiting biofilm produced by V. cholerae and B. subtilis, thereby facilitating better applicability in wound-healing biomaterials. The depolarization of mitochondrial membrane potential ΔΨm through excess ROS production was deduced to be the triggering force behind the apoptotic cell death mechanism of the skin carcinoma. Subsequent experimentation through DNA fragmentation, comet tail formation, cell membrane blebbing, and reduced invasiveness potentials through scratch assay confirmed the physiological hallmarks of apoptosis. Thus, depolarizing mitochondrial membrane potential through green-synthesized AgNPs provides an economic, nontoxic, specific approach for targeting skin carcinoma with additional benefits of antibacterial activities.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sripathi Rajachandar
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| |
Collapse
|