1
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
2
|
Xu J, Gu M, Hooi L, Toh TB, Thng DKH, Lim JJ, Chow EKH. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. NANOSCALE 2021; 13:16131-16145. [PMID: 34542130 DOI: 10.1039/d1nr03502a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small interfering RNA (siRNA) can cause specific gene silencing and is considered promising for treating a variety of cancers, including hepatocellular carcinoma (HCC). However, siRNA has many undesirable physicochemical properties that limit its application. Additionally, conventional methods for delivering siRNA are limited in their ability to penetrate solid tumors. In this study, nanodiamonds (NDs) were evaluated as a nanoparticle drug delivery platform for improved siRNA delivery into tumor cells. Our results demonstrated that ND-siRNA complexes could effectively be formed through electrostatic interactions. The ND-siRNA complexes allowed for efficient cellular uptake and endosomal escape that protects siRNA from degradation. Moreover, ND delivery of siRNA was more effective at penetrating tumor spheroids compared to liposomal formulations. This enhanced penetration capacity makes NDs ideal vehicles to deliver siRNA against solid tumor masses as efficient gene knockdown and decreased tumor cell proliferation were observed in tumor spheroids. Evaluation of ND-siRNA complexes within the context of a 3D cancer disease model demonstrates the potential of NDs as a promising gene delivery platform against solid tumors, such as HCC.
Collapse
Affiliation(s)
- Jingru Xu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Mengjie Gu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lissa Hooi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| | - Dexter Kai Hao Thng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Jhin Jieh Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
- The N.1 Institute for Health, National University of Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| |
Collapse
|
3
|
Gramantieri L, Giovannini C, Piscaglia F, Fornari F. MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:369-385. [PMID: 34012928 PMCID: PMC8126872 DOI: 10.2147/jhc.s268292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers helping patient allocation to the best therapeutic option contribute to poor prognosis in advanced stages. MicroRNAs’ (miRNAs) deregulated expression contributes to tumor development and progression and influences drug resistance in HCC. Accordingly, miRNAs have been extensively investigated as both biomarkers and therapeutic targets. The diagnostic and prognostic roles of circulating miRNAs have been ascertained, though with some inconsistencies across studies. From a therapeutic perspective, miRNA-based approaches demonstrated safety profiles and antitumor efficacy in HCC animal models. Nevertheless, caution should be used when transferring preclinical findings to the clinic, due to possible molecular inconsistency between animal models and the heterogeneous patterns of human diseases. A wealth of information is offered by preclinical studies exploring the mechanisms driving miRNAs’ aberrant expression, the molecular cascades triggered by miRNAs and the corresponding phenotypic changes. Ex-vivo analyses confirmed these results, further shedding light on the intricacy of the human disease often overcoming pre-clinical models. This complexity seems to be ascribed to the intrinsic heterogeneity of HCC, to different risk factors driving its development, as well as to changes across stages and previous treatments. Preliminary findings suggest that miRNAs associated with specific risk factors might be more informative in defined patients’ subgroups. The first issue to be considered when trying to envisage a possible translational perspective is the molecular context that often drives different miRNA functions, as clearly evidenced by “dual” miRNAs. Concerning the possible roles of miRNAs as biomarkers and therapeutic targets, we will focus on miRNAs’ involvement in metabolic pathways and in the modulation of tumor microenvironment, to support their exploitation in defined contexts.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Fornari
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy.,Department for Life Quality Studies (QuVi), University of Bologna, Rimini, Italy
| |
Collapse
|
4
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021; 13:cancers13030514. [PMID: 33572780 PMCID: PMC7866004 DOI: 10.3390/cancers13030514] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the most frequently occurring cancers, and the prognosis for late-stage HCC remains poor. A better understanding of the pathogenesis of HCC is expected to improve outcomes. MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that regulate the expression of various target genes, including those in cancer-associated genomic regions or fragile sites in various human cancers. We summarize the central roles of miRNAs in the pathogenesis of HCC and discuss their potential utility as valuable biomarkers and new therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is the seventh most frequent cancer and the fourth leading cause of cancer mortality worldwide. Despite substantial advances in therapeutic strategies, the prognosis of late-stage HCC remains dismal because of the high recurrence rate. A better understanding of the etiology of HCC is therefore necessary to improve outcomes. MicroRNAs (miRNAs) are small, endogenous, noncoding, single-stranded RNAs that modulate the expression of their target genes at the posttranscriptional and translational levels. Aberrant expression of miRNAs has frequently been detected in cancer-associated genomic regions or fragile sites in various human cancers and has been observed in both HCC cells and tissues. The precise patterns of aberrant miRNA expression differ depending on disease etiology, including various causes of hepatocarcinogenesis, such as viral hepatitis, alcoholic liver disease, or nonalcoholic steatohepatitis. However, little is known about the underlying mechanisms and the association of miRNAs with the pathogenesis of HCC of various etiologies. In the present review, we summarize the key mechanisms of miRNAs in the pathogenesis of HCC and emphasize their potential utility as valuable diagnostic and prognostic biomarkers, as well as innovative therapeutic targets, in HCC diagnosis and treatment.
Collapse
|
5
|
Cai R, Lu Q, Wang D. Construction and prognostic analysis of miRNA-mRNA regulatory network in liver metastasis from colorectal cancer. World J Surg Oncol 2021; 19:7. [PMID: 33397428 PMCID: PMC7784011 DOI: 10.1186/s12957-020-02107-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC has not been clearly elucidated. Methods Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed, and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of growth arrest specific 1 (GAS1)-associated immune cells. Results We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions In summary, DEGs, DEMs, and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.
Collapse
Affiliation(s)
- Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
6
|
Sun W, Fu S, Wu S, Tu R. Growing Evidence of Exosomal MicroRNA-Related Metastasis of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4501454. [PMID: 33313314 PMCID: PMC7719499 DOI: 10.1155/2020/4501454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Metastasis is the prominent cause of death in patients with hepatocellular carcinoma (HCC); however, the mechanisms behind HCC metastasis are not well understood. MicroRNAs (miRs) can regulate gene expression and affect HCC metastasis. Exosomes can transport miRs and other cargoes to and from different cells, thus being associated with tumour-distant metastasis. Exosomal miRs involve different processes of HCC metastasis through their functional effects, such as their induction of epithelial-to-mesenchymal transition, angiogenesis, and distant niche. In this review, data from the literature were analysed and summarised, with a focus on the evidence extraction of exosomal miRs in HCC metastasis with the purpose of increasing the understanding of the mechanisms behind HCC metastasis and acquiring implications for application.
Collapse
Affiliation(s)
- Wenbing Sun
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Shuqi Fu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Size Wu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Rong Tu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| |
Collapse
|
7
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
8
|
Cruz W, Huang H, Barber B, Pasini E, Ding L, Zheng G, Chen J, Bhat M. Lipoprotein-Like Nanoparticle Carrying Small Interfering RNA Against Spalt-Like Transcription Factor 4 Effectively Targets Hepatocellular Carcinoma Cells and Decreases Tumor Burden. Hepatol Commun 2020; 4:769-782. [PMID: 32363325 PMCID: PMC7193129 DOI: 10.1002/hep4.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) are often unable to tolerate chemotherapy due to liver dysfunction in the setting of cirrhosis. We investigate high-density lipoprotein (HDL)-mimicking peptide phospholipid scaffold (HPPS), which are nanoparticles that capitalize on normal lipoprotein metabolism and transport, as a solution for directed delivery of small interfering RNA (siRNA) cargo into HCC cells. Spalt-like transcription factor 4 (SALL4), a fetal oncoprotein expressed in aggressive HCCs, is specifically targeted as a case study to evaluate the efficacy of HPPS carrying siRNA cargo. HPPS containing different formulations of siRNA therapy against SALL4 were generated specifically for HCC cells. These were investigated both in vitro and in vivo using fluorescence imaging. HPPS-SALL4 effectively bound to scavenger receptor, class B type 1 (SR-BI) and delivered the siRNA cargo into HCC cells, as seen in vitro. HPPS-SALL4 effectively inhibited HCC tumor growth (P < 0.05) and induced a 3-fold increase in apoptosis of the cancer cells in vivo compared to HPPS-scramble. Additionally, there was no immunogenicity associated with HPPS-SALL4 as measured by cytokine production. Conclusion: We have developed unique HDL-like nanoparticles that directly deliver RNA interference (RNAi) therapy against SALL4 into the cytosol of HCC cells, effectively inhibiting HCC tumor growth without any systemic immunogenicity. This therapeutic modality avoids the need for hepatic metabolism in this cancer, which develops in the setting of cirrhosis and liver dysfunction. These natural lipoprotein-like nanoparticles with RNAi therapy are a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- William Cruz
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Huang Huang
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Brian Barber
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Elisa Pasini
- Multi Organ Transplant Program University Health Network Toronto ON Canada
| | - Lili Ding
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,Department of Medical Biophysics University of Toronto Toronto ON Canada
| | - Juan Chen
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program University Health Network Toronto ON Canada.,Division of Gastroenterology Department of Medicine University Health Network and University of Toronto Toronto ON Canada
| |
Collapse
|
9
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
10
|
Xu G, Wei X, Tu Q, Zhou C. Up-regulated microRNA-33b inhibits epithelial-mesenchymal transition in gallbladder cancer through down-regulating CROCC. Biosci Rep 2020; 40:BSR20190108. [PMID: 31799620 PMCID: PMC6954365 DOI: 10.1042/bsr20190108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is a relatively rare but fatal gastrointestinal tumor. The microRNA-33b (miR-33b), a member of miR-33 family, is reported to function as a tumor suppressor in various cancers. Notably, miR-33 was predicted to target CROCC based on microarray-based analysis. Hereby, we aimed to characterize the effect of miR-33b on epithelial-mesenchymal transition (EMT) in GBC and the potential mechanism involved with the regulation of CROCC. In GBC cell lines, miR-33b expressed at low levels, and CROCC expressed at high levels, with enhanced EMT process. To further examine the specific mechanism of miR-33b and CROCC in GBC, the GBC cells were treated with the miR-33b mimic/inhibitor or siRNA-CROCC to assess the expression alteration of EMT-related genes and cell proliferation, migration, and invasion. MiR-33b was verified to target and down-regulate the expression of CROCC. The miR-33b up-regulation or CROCC silencing was observed to increase the level of E-cadherin but decrease the levels of N-cadherin and Vimentin, corresponding to impeded cell proliferation, migration, invasion, EMT, and tumor growth. The findings suggest that miR-33b up-regulation hinders GBC development through down-regulating CROCC, which was achieved by inhibition of EMT. The present study may provide an insight on a novel target for GBC treatment.
Collapse
Affiliation(s)
- Guohui Xu
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Xiaoyong Wei
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Qiang Tu
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Cuncai Zhou
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| |
Collapse
|
11
|
Ai H, Zhou W, Wang Z, Qiong G, Chen Z, Deng S. microRNAs-107 inhibited autophagy, proliferation, and migration of breast cancer cells by targeting HMGB1. J Cell Biochem 2019; 120:8696-8705. [PMID: 30506984 DOI: 10.1002/jcb.28157] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE To investigate the effects of microRNAs-107 (miR-107) on autophagy, proliferation, and migration of breast cancer cells and its mechanism by targeting high mobility group protein B1 (HMGB1). METHODS Real-time polymerase chain reaction assay was used to detect the expression of miR-107 in breast cancer and its cell lines. In MDA-MB-231 and MDA-MB-453 breast cancer cells, the expression of p62, Beclin1 protein, and the changes of cell proliferation and migration after overexpression of m miR-107 were detected by Western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and transwell assays. Target Scan online prediction, dual luciferase reporter gene, and Western blot were used to verify the targeting relationship between miR-107 and HMGB1. The effects of silencing HMGB1 expression on p62, Beclin1 protein expression, cell proliferation, and migration ability were detected. The transfected MDA-MB-453 cells were inoculated into the right axilla of the nude mice, the tumor volume and weight were weighed, and the expression of miR-107, HMGB1, p62, and Beclin1 in the tumor were detected. RESULTS The expression of miR-107 was downregulated in breast cancer tissues and cell lines (P < 0.01). The expression of p62 protein was upregulated (P < 0.01), while Beclin1 protein was downregulated (P < 0.01) and cell proliferation and migration ability were decreased (P < 0.01) after overexpressing miR-107 in MDA-MB-231 and MDA-MB-453 cells. The results of TargetScan online prediction, dual luciferase reporter gene, and Western blot showed that miR-107 could regulate HMGB1 expression. The expression of p62 protein was upregulated (P < 0.01), while Beclin1 protein was downregulated (P < 0.01) and cell proliferation and migration ability were decreased (P < 0.01) after silencing HMGB1 in MDA-MB-231 and MDA-MB-453 cells. The results of xenograft experiments showed that miR-107 could delay tumor growth and inhibit autophagy. CONCLUSION miR-107 could inhibit cell autophagy, proliferation, and migration of breast cancer cells by targeting HMGB1.
Collapse
Affiliation(s)
- Hongyan Ai
- Department of Breast surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| | - Wei Zhou
- Department of Breast surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| | - Zeqiang Wang
- Department of Breast surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| | - Guo Qiong
- Department of Breast surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| | - Zhouxi Chen
- Department of Breast surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| | - Shungang Deng
- Department of General surgery, Zhuzhou City Central Hospital, Xiangya Medical College, Certral South University, Zhuzhou, China
| |
Collapse
|
12
|
Wang J, Huang J, Ma Q, Liu G. Association between quantitative parameters of CEUS and Sall4/Wnt/β-catenin signaling in patients with hepatocellular carcinoma. Cancer Manag Res 2019; 11:3339-3347. [PMID: 31114369 PMCID: PMC6489647 DOI: 10.2147/cmar.s199968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives: In this study, we aim to investigate the correlations of quantitative parameters of contrast-enhanced ultrasonography (CEUS) and Spalt-Like Transcription Factor 4 (Sall4)/Wnt/β-catenin signaling pathway with clinicopathological features and prognosis of patients with hepatocellular carcinoma (HCC). Methods: The CEUS was performed to detect the liver function and the prognosis of patients. The expression of Sall4, WNT3a and β-catenin was evaluated using immunohistochemical staining. Sall4, WNT3a and β-catenin mRNA expression was measured by SYBR green qPCR assay. Results: We found that the mRNA and protein expression of Sall4, WNT3a and β-catenin in the HCC tissues were significantly upregulated compared with the adjacent normal tissues. Upregulation of these proteins was associated with tumor differentiation, TNM stage, tumor size, vascular invasion and liver cirrhosis of HCC patients. In addition, we found that decreased time to peak and washout time and increased peak intensity and area under the curve of CEUS in the HCC were also correlated with TNM stage, tumor size and vascular invasion. Moreover, Sall4, WNT3a and β-catenin protein were significantly associated with the TTP, PI, AUC, and WOT. Conclusion: This study suggests that quantitative parameters of CEUS and Sall4/Wnt/β-catenin signaling may be helpful for early diagnosis and prognosis prediction of HCC patients.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Ultrasonography, General Hospital of Ningxia Medical University, Ningxia, People's Republic of China
| | | | - Qianfeng Ma
- Department of Ultrasonography, General Hospital of Ningxia Medical University, Ningxia, People's Republic of China
| | - Guanghui Liu
- Human Anatomy and Histoembryology, School of Physical Education, Wuhan Business University, Wuhan, People's Republic of China
| |
Collapse
|
13
|
A Simple Competing Endogenous RNA Network Identifies Novel mRNA, miRNA, and lncRNA Markers in Human Cholangiocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3526407. [PMID: 31019967 PMCID: PMC6451803 DOI: 10.1155/2019/3526407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
Background Cholangiocarcinoma (CCA) is the second most common malignant primary liver tumor and has shown an alarming increase in incidence over the last two decades. However, the mechanisms behind tumorigenesis and progression remain insufficient. The present study aimed to uncover the underlying regulatory mechanism on CCA and find novel biomarkers for the disease prognosis. Method The RNA-sequencing (RNA-seq) datasets of lncRNAs, miRNAs, and mRNAs in CCA as well as relevant clinical information were obtained from the Cancer Genome Atlas (TCGA) database. After pretreatment, differentially expressed RNAs (DERNAs) were identified and further interrogated for their correlations with clinical information. Prognostic RNAs were selected using univariate Cox regression. Then, a ceRNA network was constructed based on these RNAs. Results We identified a total of five prognostic DEmiRNAs, 63 DElncRNAs, and 90 DEmRNAs between CCA and matched normal tissues. Integrating the relationship between the different types of RNAs, an lncRNA-miRNA-mRNA network was established and included 28 molecules and 47 interactions. Screened prognostic RNAs involved in the ceRNA network included 3 miRNAs (hsa-mir-1295b, hsa-mir-33b, and hsa-mir-6715a), 7 lncRNAs (ENSG00000271133, ENSG00000233834, ENSG00000276791, ENSG00000241155, COL18A1-AS1, ENSG00000274737, and ENSG00000235052), and 18 mRNAs (ANO9, FUT4, MLLT3, ABCA3, FSCN2, GRID2IP, NCK2, MACC1, SLC35E4, ST14, SH2D3A, MOB3B, ACTL10, RAB36, ATP1B3, MST1R, SEMA6A, and SEL1L3). Conclusions Our study identified novel prognostic makers and predicted a previously unknown ceRNA regulatory network in CCA and may provide novel insight into a further understanding of lncRNA-mediated ceRNA regulatory mechanisms in CCA.
Collapse
|
14
|
miR-103/miR-195/miR-15b Regulate SALL4 and Inhibit Proliferation and Migration in Glioma. Molecules 2018; 23:molecules23112938. [PMID: 30423818 PMCID: PMC6278493 DOI: 10.3390/molecules23112938] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
Glioma is the common highly malignant primary brain tumor. However, the molecular pathways that result in the pathogenesis of glioma remain elusive. In this study, we found that microRNA-103 (miR-103), microRNA-195 (miR-195), or microRNA-15b (miR-15b), which all have the same 5' "seed" miRNA portion and share common binding sites in the SALL4 3'-untranslated region (UTR), were downregulated in glioma tissues and cell lines. These miRNAs suppressed glioma cell proliferation, migration, and invasion, induced cell apoptosis, and decreased the level of the SALL4 protein, but not that of SALL4 mRNA, which was identified as a direct target of all three miRNAs. The caspase-3/7 activity expression in U251 cells overexpressing these miRNAs was rescued during SALL4 upregulation. An obvious inverse correlation was observed between SALL4 and miR-103 or miR-195 expression levels in clinical glioma samples. Moreover, enforced expression of SALL4 stimulated cell proliferation, migration, and invasion. In conclusion, these data suggest that miR-103, miR-195, and miR-15b post-transcriptionally downregulated the expression of SALL4 and suppressed glioma cell growth, migration, and invasion, and increased cell apoptosis. These results provide a potential therapeutic target that may downregulate SALL4 in glioma.
Collapse
|
15
|
Li C, Wang Z, Chen S, Zhang J, Qu K, Liu C. MicroRNA-552 promotes hepatocellular carcinoma progression by downregulating WIF1. Int J Mol Med 2018; 42:3309-3317. [PMID: 30221686 PMCID: PMC6202085 DOI: 10.3892/ijmm.2018.3882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are involved in the metastasis of hepatocellular carcinoma (HCC). In the present study, it was demonstrated that miR-552 was upregulated in HCC tissues. High miR-552 expression was associated with malignant clinicopathological features and decreased survival rates. The in vitro results indicated that miR-552 overexpression promoted migration, invasion and epithelial-mesenchymal transition in Hep3B cells. However, the knockdown of miR-552 inhibited its oncogenic roles in Huh-7 cells. Additionally, Wnt inhibitory factor 1 (WIF1) was demonstrated to be a direct target of miR-552 in Hep3B and Huh-7 cells. Additional experiments identified that miR-552 promotes β-catenin expression by increasing the phosphorylation of GSK3β at Ser9. In conclusion, the results suggested that miR-552 may promote HCC progression by blocking WIF1-mediated GSK3β dephosphorylation. miR-552 may be a biomarker for predicting the outcomes of patients with HCC.
Collapse
Affiliation(s)
- Chao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuangjiang Chen
- Department of General Surgery, Ankang People's Hospital, Ankang, Shaanxi 725000, P.R. China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 2018; 9:3557-3569. [PMID: 30310513 PMCID: PMC6171016 DOI: 10.7150/jca.26350] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, leading to the second cancer-related death in the global. Although the treatment of HCC has greatly improved over the past few decades, the survival rate of patients is still quite low. Thus, it is urgent to explore new therapies, especially seek for more accurate biomarkers for early diagnosis, treatment and prognosis in HCC. MicroRNAs (miRNAs), small noncoding RNAs, are pivotal participants and regulators in the development and progression of HCC. Great progress has been made in the studies of miRNAs in HCC. The key regulatory mechanisms of miRNAs include proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in HCC. And exosomal miRNAs also play important roles in proliferation, invasion, metastasis, and drug resistance in HCC by regulating gene expression in the target cells. In addition, some miRNAs, including exosomal miRNAs, can be as potential diagnostic and prediction markers in HCC. This review summarizes the latest researches development of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| |
Collapse
|
17
|
Wang Y, Zheng C, Li T, Zhang R, Wang Y, Zhang J, He Q, Sun Z, Wang X. Long noncoding RNA Z38 promotes cell proliferation and metastasis and inhibits cell apoptosis in human gastric cancer. Oncol Lett 2018; 16:6051-6058. [PMID: 30333877 PMCID: PMC6176416 DOI: 10.3892/ol.2018.9343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-associated mortality and has a high tendency to metastasize, making it a priority to develop novel diagnostic and treatment methods at the early stages. The present study investigated the role of a newly-discovered long non-coding RNA, Z38, in gastric cancer cell proliferation, metastasis and apoptosis. It was observed that Z38 was upregulated in tissues from patients with gastric cancer as well as in cultured gastric cancer cells. Knockdown of Z38 decreased the cell proliferative rate, as evidenced by colony formation assays and cell proliferation assays. In addition, Transwell assays and wound-healing assays demonstrated that depletion of Z38 significantly inhibited cell migration and invasion in AGS and MKN74 cells. Furthermore, a cell apoptosis assay and measurement of relative activities of related caspases revealed that depletion of Z38 increased cell apoptosis by promoting the activities of caspase-3 and caspase-9, but not that of caspase-8. Finally, western blot analysis further demonstrated the role of Z38 in the apoptosis of AGS and MKN74 cells. These results suggested that Z38 promotes cell proliferation and metastasis, and inhibits cell apoptosis in gastric cancer. Z38 may represent a novel therapeutic target for the treatment of gastric cancer in clinic.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China.,Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunhui Zheng
- Department of Oncology Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Teng Li
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Rui Zhang
- Department of Gynecology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yang Wang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiaxin Zhang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingsi He
- Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Zuocheng Sun
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xinsheng Wang
- Department of General Surgery, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| |
Collapse
|
18
|
Jiang X, Wang Z. miR-16 targets SALL4 to repress the proliferation and migration of gastric cancer. Oncol Lett 2018; 16:3005-3012. [PMID: 30127890 PMCID: PMC6096186 DOI: 10.3892/ol.2018.8997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that microRNAs (miRNAs) play important roles in tumor progression and development by targeting different genes, including gastric cancer (GC). However, the role of miR-16 in GC is so far unclear. Herein, we examined the function and potential mechanism of miR-16 in GC. Reverse transcription-quantitative PCR found that miR-16 expression was prominently lower in GC tissues while SALL4 expression was frequently higher than normal tissues. Re-expression of miR-16 could suppress GC cell proliferation and migration by MTT and Transwell assay. We confirmed that miR-16 directly targeted SALL4 in regulating GC by luciferase assay. Knockdown of SALL4 inhibited cell proliferation and migration. Furthermore, SALL4 could counteract the inhibition-effect of miR-16 in GC. In conclusion, for the the first time we demonstrated that miR-16 played inhibitory effect through targeting SALL4 in GC cell proliferation and migration. Our study revealed that miR-16/SALL4 axis was critical in regulating the GC development, indicating a new prospect to regulate GC cell progression and development.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zhe Wang
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
19
|
Li T, Gao X, Han L, Yu J, Li H. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis. World J Surg Oncol 2018; 16:114. [PMID: 29921304 PMCID: PMC6009060 DOI: 10.1186/s12957-018-1409-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is a prevalent malignant cancer of digestive system. To identify key genes in GC, mRNA microarray GSE27342, GSE29272, and GSE33335 were downloaded from GEO database. Methods Differentially expressed genes (DEGs) were obtained using GEO2R. DAVID database was used to analyze function and pathways enrichment of DEGs. Protein-protein interaction (PPI) network was established by STRING and visualized by Cytoscape software. Then, the influence of hub genes on overall survival (OS) was performed by the Kaplan-Meier plotter online tool. Module analysis of the PPI network was performed using MCODE. Additionally, potential stem loop miRNAs of hub genes were predicted by miRecords and screened by TCGA dataset. Transcription factors (TFs) of hub genes were detected by NetworkAnalyst. Results In total, 67 DEGs were identified; upregulated DEGs were mainly enriched in biological process (BP) related to angiogenesis and extracellular matrix organization and the downregulated DEGs were mainly enriched in BP related to ion transport and response to bacterium. KEGG pathways analysis showed that the upregulated DEGs were enriched in ECM-receptor interaction and the downregulated DEGs were enriched in gastric acid secretion. A PPI network of DEGs was constructed, consisting of 43 nodes and 87 edges. Twelve genes were considered as hub genes owing to high degrees in the network. Hsa-miR-29c, hsa-miR-30c, hsa-miR-335, hsa-miR-33b, and hsa-miR-101 might play a crucial role in hub genes regulation. In addition, the transcription factors-hub genes pairs were displayed with 182 edges and 102 nodes. The high expression of 7 out of 12 hub genes was associated with worse OS, including COL4A1, VCAN, THBS2, TIMP1, COL1A2, SERPINH1, and COL6A3. Conclusions The miRNA and TFs regulation network of hub genes in GC may promote understanding of the molecular mechanisms underlying the development of gastric cancer and provide potential targets for GC diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12957-018-1409-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Xujie Gao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China. .,National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
20
|
Zhang L, He X, Jin T, Gang L, Jin Z. Long non-coding RNA DLX6-AS1 aggravates hepatocellular carcinoma carcinogenesis by modulating miR-203a/MMP-2 pathway. Biomed Pharmacother 2017; 96:884-891. [PMID: 29145165 DOI: 10.1016/j.biopha.2017.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been wildly verified to modulate multiple tumorigenesis, especially hepatocellular carcinoma (HCC). In present study, our team aims to investigate the role of lncRNA DLX6-AS1 in the HCC carcinogenesis. Results of early-stage experiments found that DLX6-AS1 expression level was up-regulated in 60 cases of HCC tissue samples compared with adjacent normal tissue. Moreover, the aberrant overexpression of DLX6-AS1 indicated the poor prognosis of HCC patients. Loss-of-function experiments revealed that DLX6-AS1 knockdown inhibited the proliferation, migration and invasion of HCC cells in vitro, and decreased the tumor growth in vivo. Bioinformatics analysis predicted that miR-203a potentially targeted DLX6-AS1 3'-UTR, suggesting the interaction between miR-203a and DLX6-AS1. Furthermore, miR-203a also targeted MMP-2 mRNA 3'-UTR, which was validated by luciferase reporter assay. Taken together, our study discovered the oncogenic role of DLX6-AS1 in clinical specimens and cellular experiments, showing the potential DLX6-AS1/miR-203a/MMP-2 pathway. This results and findings provide a novel insight for HCC tumorigenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Xiaowei He
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Ting Jin
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Li Gang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China.
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China.
| |
Collapse
|