1
|
Atnaf A, Akelew Y, Abebaw D, Muche Y, Getachew M, Mengist HM, Tsegaye A. The role of long noncoding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-05987-3. [PMID: 39264436 DOI: 10.1007/s00277-024-05987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia (AML) is the abnormal proliferation of immature myeloid blast cells in the bone marrow. Currently, there are no universally recognized biomarkers for the early diagnosis, prognosis and effective treatment of AML to improve the overall survival of patients. Recent studies, however, have demonstrated that long noncoding RNAs (lncRNAs) are promising targets for the early diagnosis, prognosis and treatment of AML. A critical review of available data would be important to identify study gaps and provide perspectives. In this review, we explored comprehensive information on the potential use of lncRNAs as targets for the diagnosis, prognosis, and treatment of AML. LncRNAs are nonprotein-coding RNAs that are approximately 200 nucleotides long and play important roles in the regulation, metabolism and differentiation of tissues. In addition, they play important roles in the diagnosis, prognosis and treatment of different cancers, including AML. LncRNAs play multifaceted roles as oncogenes or tumor suppressor genes. Recently, deregulated lncRNAs were identified as novel players in the development of AML, making them promising prognostic indicators. Given that lncRNAs could have potential diagnostic marker roles, the lack of sufficient evidence identifying specific lncRNAs expressed in specific cancers hampers the use of lncRNAs as diagnostic markers of AML. The complex roles of lncRNAs in the pathophysiology of AML require further scrutiny to identify specific lncRNAs. This review, despite the lack of sufficient literature, discusses the therapeutic, diagnostic and prognostic roles of lncRNAs in AML and provides future insights that will contribute to studies targeting lncRNAs in the diagnosis, treatment, and management of AML.
Collapse
Affiliation(s)
- Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Sharma P, Kaur P, Bhatia P, Trehan A, Sreedharanunni S, Singh M. Novel lncRNAs LINC01221, RP11-472G21.2 and CRNDE are markers of differential expression in pediatric patients with T cell acute lymphoblastic leukemia. Cancer Cell Int 2024; 24:65. [PMID: 38336706 PMCID: PMC10858595 DOI: 10.1186/s12935-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Pankaj Sharma
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Li X, Lv X, Li H, Zhang G, Long Y, Li K, Fan Y, Jin D, Zhou F, Liu H. Undifferentially Expressed CXXC5 as a Transcriptionally Regulatory Biomarker of Breast Cancer. Adv Biol (Weinh) 2023; 7:e2300189. [PMID: 37423953 DOI: 10.1002/adbi.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Indexed: 07/11/2023]
Abstract
This work hypothesizes that some genes undergo radically changed transcription regulations (TRs) in breast cancer (BC), but don't show differential expressions for unknown reasons. The TR of a gene is quantitatively formulated by a regression model between the expression of this gene and multiple transcription factors (TFs). The difference between the predicted and real expression levels of a gene in a query sample is defined as the mqTrans value of this gene, which quantitatively reflects its regulatory changes. This work systematically screens the undifferentially expressed genes with differentially expressed mqTrans values in 1036 samples across five datasets and three ethnic groups. This study calls the 25 genes satisfying the above hypothesis in at least four datasets as dark biomarkers, and the strong dark biomarker gene CXXC5 (CXXC Finger Protein 5) is even supported by all the five independent BC datasets. Although CXXC5 does not show differential expressions in BC, its transcription regulations show quantitative associations with BCs in diversified cohorts. The overlapping long noncoding RNAs (lncRNAs) may have contributed their transcripts to the expression miscalculations of dark biomarkers. The mqTrans analysis serves as a complementary view of the transcriptome-based detections of biomarkers that are ignored by many existing studies.
Collapse
Affiliation(s)
- Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiaoying Lv
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Haijun Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yusi Fan
- College of Software, Jilin University, Changchun, 130012, China
| | - Dawei Jin
- Research Institute of Guizhou Huada Life Big Data, Guiyang, Guizhou, 550025, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Liang X, Li C, Fan M, Zhang W, Liu L, Zhou J, Hu L, Zhai Z. Immune-related lncRNAs pairs prognostic score model for prediction of survival in acute myeloid leukemia patients. Clin Exp Med 2023; 23:4527-4538. [PMID: 37233879 PMCID: PMC10725353 DOI: 10.1007/s10238-023-01085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Acute myeloid leukemia (AML) is one of the most common malignant and aggressive hematologic tumors, and risk stratification is indispensable to ensure proper treatment. But immune-related long noncoding RNAs (ir-lncRNAs) pairs prognostic risk models used to stratify AML have yet to be reported. In this study, we established a prognostic risk model based on eight ir-lncRNAs pairs using LASSO-penalized Cox regression analysis and successfully validated the model in an independent cohort. According to risk scores, patients were divided into a high-risk group and a low-risk group. High-risk patients presented more tumor mutation frequency and higher expression of human leukocyte antigen (HLA)-related genes and immune checkpoint molecules. Gene Set Enrichment Analysis (GSEA) indicated that the transforming growth factors β (TGFβ) pathway was activated in the high-risk group; meanwhile, we found that TGFβ1 mRNA levels were significantly elevated in AML patients and correlated with poor prognosis, which is closely related to drug resistance. Consistently, in vitro studies found that exogenous TGFβ1 can protect AML cells from chemotherapy-induced apoptosis. Collectively, we developed an ir-lncRNA prognostic model that helps predict the prognosis of AML patients and provides valuable information about their response to immune checkpoint inhibitors, and we found that increased TGFβ1 levels resulting in chemoresistance may be one of the leading causes of treatment failure in high-risk AML patients.
Collapse
Affiliation(s)
- Xue Liang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cong Li
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Fan
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wanqiu Zhang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linlin Liu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ji Zhou
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Zhou Q, Xiong J, Gao Y, Yi R, Xu Y, Chen Q, Wang L, Chen Y. Mitochondria-related lncRNAs: predicting prognosis, tumor microenvironment and treatment response in lung adenocarcinoma. Funct Integr Genomics 2023; 23:323. [PMID: 37864709 PMCID: PMC10590301 DOI: 10.1007/s10142-023-01245-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Lung cancer is the most common type of malignant tumor that affects people in China and even across the globe, as it exhibits the highest rates of morbidity and mortality. Lung adenocarcinoma (LUAD) is a type of lung cancer with a very high incidence. The purpose of this study was to identify potential biomarkers that could be used to forecast the prognosis and improve the existing therapy options for treating LUAD. Clinical and RNA sequencing data of LUAD patients were retrieved from the TCGA database, while the mitochondria-associated gene sets were acquired from the MITOMAP database. Thereafter, Pearson correlation analysis was carried out to screen mitochondria-associated lncRNAs. Furthermore, univariate Cox and Lasso regression analyses were used for the initial screening of the target lncRNAs for prognostic lncRNAs before they could be incorporated into a multivariate Cox Hazard ratio model. Then, the clinical data, concordance index, Kaplan-Meier (K-M) curves, and the clinically-relevant subjects that were approved by the Characteristic Curves (ROC) were employed for assessing the model's predictive value. Additionally, the differences in immune-related functions and biological pathway enrichment between high- and low-risk LUAD groups were examined. Nomograms were developed to anticipate the OS rates of the patients within 1-, 3-, and 5 years, and the differences in drug sensitivity and immunological checkpoints were compared. In this study, 2175 mitochondria-associated lncRNAs were screened. Univariate, multivariate, and Lasso Cox regression analyses were carried out to select 13 lncRNAs with an independent prognostic significance, and a prognostic model was developed. The OS analysis of the established prognostic prediction model revealed significant variations between the high- and low-risk patients. The AUC-ROC values after 1, 3, and 5 years were seen to be 0.746, 0.692, and 0.726, respectively. The results suggested that the prognostic model riskscore could be used as an independent prognostic factor that differed from the other clinical characteristics. After analyzing the findings of the study, it was noted that both the risk groups showed significant differences in their immune functioning, immunological checkpoint genes, and drug sensitivity. The prognosis of patients with LUAD could be accurately and independently predicted using a risk prediction model that included 13 mitochondria-associated lncRNAs.
Collapse
Affiliation(s)
- Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Jiali Xiong
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Yan Gao
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Rong Yi
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Yuzhu Xu
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Quefei Chen
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Lin Wang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China
| | - Ying Chen
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
7
|
Xu D, Wang Y, Chen Y, Zheng J. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 2023; 72:647-664. [PMID: 36036290 DOI: 10.1007/s00262-022-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
8
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
9
|
Sun X, Huang X, Sun X, Chen S, Zhang Z, Yu Y, Zhang P. Oxidative Stress-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Responses in Patients With LUAD. Front Genet 2022; 13:909797. [PMID: 35754800 PMCID: PMC9214656 DOI: 10.3389/fgene.2022.909797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma is increasingly harmful to society and individuals as cancer with an inferior prognosis and insensitive to chemotherapy. Previous studies have demonstrated that oxidative stress and lncRNAs play a vital role in many biological processes. Therefore, we explored the role of lncRNAs associated with oxidative stress in the prognosis and survival of LUAD patients. We examined the expression profiles of lncRNAs and oxidative stress genes in this study. A prognosis prediction model and a nomogram were built based on oxidative stress-related lncRNAs. Functional and drug sensitivity analyses were also performed depending on oxidative stress-related lncRNA signature. Moreover, we investigated the relationship between immune response and immunotherapy. The results showed that a risk scoring model based on 16 critical oxidative stress lncRNAs was able to distinguish the clinical status of LUAD and better predict the prognosis and survival. Additionally, the model demonstrated a close correlation with the tumor immune system, and these key lncRNAs also revealed the relationship between LUAD and chemotherapeutic drug sensitivity. Our work aims to provide new perspectives and new ideas for the treatment and management of LUAD.
Collapse
Affiliation(s)
- Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xingqi Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojuan Sun
- Department of Oncology, Qingdao University Affiliated Hospital, Qingdao, China
| | - Si Chen
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zeyang Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Yu
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Zhang Q, Meng XH, Qiu C, Shen H, Zhao Q, Zhao LJ, Tian Q, Sun CQ, Deng HW. Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans. Hum Genomics 2022; 16:15. [PMID: 35568907 PMCID: PMC9107154 DOI: 10.1186/s40246-022-00388-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a complex, multifactorial condition in which genetic play an important role. Most of the systematic studies currently focuses on individual omics aspect and provide insightful yet limited knowledge about the comprehensive and complex crosstalk between various omics levels. SUBJECTS AND METHODS Therefore, we performed a most comprehensive trans-omics study with various omics data from 104 subjects, to identify interactions/networks and particularly causal regulatory relationships within and especially those between omic molecules with the purpose to discover molecular genetic mechanisms underlying obesity etiology in vivo in humans. RESULTS By applying differentially analysis, we identified 8 differentially expressed hub genes (DEHGs), 14 differentially methylated regions (DMRs) and 12 differentially accumulated metabolites (DAMs) for obesity individually. By integrating those multi-omics biomarkers using Mendelian Randomization (MR) and network MR analyses, we identified 18 causal pathways with mediation effect. For the 20 biomarkers involved in those 18 pairs, 17 biomarkers were implicated in the pathophysiology of obesity or related diseases. CONCLUSIONS The integration of trans-omics and MR analyses may provide us a holistic understanding of the underlying functional mechanisms, molecular regulatory information flow and the interactive molecular systems among different omic molecules for obesity risk and other complex diseases/traits.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xiang-He Meng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chang-Qing Sun
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
12
|
LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci 2021. [DOI: 10.1007/s12038-020-00127-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Wang N, Feng Y, Xie J, Han H, Dong Q, Wang W. Long Non-Coding RNA ZNF667-AS1 Knockdown Curbs Liver Metastasis in Acute Myeloid Leukemia by Regulating the microRNA-206/AKAP13 Axis. Cancer Manag Res 2020; 12:13285-13300. [PMID: 33380835 PMCID: PMC7767707 DOI: 10.2147/cmar.s269258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Zinc finger protein 667-antisense RNA 1 (ZNF667-AS1), a long non-coding RNA (lncRNA), plays important parts in tumorigenesis and development of esophageal squamous cell carcinoma, but its function in acute myeloid leukemia (AML) is unknown. Our goal here was to probe the functional mechanism of ZNF667-AS1 in AML by mediating microRNA-206 (miR-206)/A-kinase anchoring protein 13 (AKAP13) axis. MATERIALS AND METHODS The bone marrow samples from AML patients and controls were selected for microarray analysis to select significantly upregulated lncRNAs. Next, effects of ZNF667-AS1 on cell aggressiveness of AML were assessed after delivery of cells with siRNA against ZNF667-AS1. Subcellular fractionation location assay and FISH experiments were used to determine ZNF667-AS1 localization in cells. Dual-luciferase experiments detect the targeting relationships among ZNF667-AS1, miR-206 and AKAP13. Finally, tumor growth and metastasis were evaluated in vivo to determine the relevance of ZNF667-AS1/miR-206/AKAP13 axis. RESULTS The expression of ZNF667-AS1 was upregulated in AML patients, which predicted poor prognosis. Downregulation of ZNF667-AS1 reduced cell proliferation, invasion, tumorigenesis and metastasis. miR-206 inhibitor reversed the repressive role of ZNF667-AS1 knockdown in cell proliferation, invasion and tumorigenesis, while AKAP13 silencing flattened the stimulative role of miR-206 inhibitor in AML malignant aggressiveness. Mechanistically, we demonstrated that ZNF667-AS1 functioned as a molecular sponge for miR-206. In addition, we observed that Wnt/β-catenin pathway was suppressed by ZNF667-AS1 knockdown. CONCLUSION ZNF667-AS1 potentiated AML progression by targeting the miR-206/AKAP13 axis. This indicates ZNF667-AS 1 inhibition may act as a prospective therapeutic option for the treatment of AML.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Yanping Feng
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Jinye Xie
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Hui Han
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Qian Dong
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| | - Weijia Wang
- Laboratory Diagnosis Center, Zhongshan People’s Hospital, Zhongshan, 528403Guangdong, People’s Republic of China
| |
Collapse
|
14
|
Qian C, Xia M, Yang X, Chen P, Ye Q. Long Noncoding RNAs in the Progression of Atherosclerosis: An Integrated Analysis Based on Competing Endogenous RNA Theory. DNA Cell Biol 2020; 40:283-292. [PMID: 33332208 DOI: 10.1089/dna.2020.6106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been increasingly accepted to function importantly in human diseases by serving as competing endogenous RNAs (ceRNAs). To date, the ceRNA mechanisms of lncRNAs in the progression of atherosclerosis (AS) remain largely unclear. On the basis of ceRNA theory, we implemented a multistep computational analysis to construct an lncRNA-mRNA network for AS progression (ASpLMN). The probe reannotation method and microRNA-target interactions from databases were systematically integrated. Three lncRNAs (GS1-358P8.4, OIP5-AS1, and TUG1) with central topological features in the ASpLMN were firstly identified. By using subnetwork analysis, we then obtained two highly clustered modules and one dysregulated module from the ASpLMN network. These modules, sharing three lncRNAs (GS1-358P8.4, OIP5-AS1, and RP11-690D19.3), were significantly enriched in biological pathways such as regulation of actin cytoskeleton, tryptophan metabolism, lysosome, and arginine and proline metabolism. In addition, random walking in the ASpLMN network indicated that lncRNA RP1-39G22.7 and MBNL1-AS1 may also play an essential role in the pathology of AS progression. The identified six lncRNAs from the aforementioned steps could distinguish advanced- from early-staged AS, with a strong diagnostic power for AS occurrence. In conclusion, the results of this study will improve our understanding about the ceRNA-mediated regulatory mechanisms in AS progression, and provide novel lncRNAs as biomarkers or therapeutic targets for acute cardiovascular events.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Meng Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xueying Yang
- Department of Medical Records, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
lncRNAs-mRNAs Co-Expression Network Underlying Childhood B-Cell Acute Lymphoblastic Leukaemia: A Pilot Study. Cancers (Basel) 2020; 12:cancers12092489. [PMID: 32887470 PMCID: PMC7564554 DOI: 10.3390/cancers12092489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is one of the most common childhood cancers. The ALL onset involves abnormal proliferation and arrest of differentiation of B or T cell progenitors. Recently, long non–coding RNAs (lncRNAs) gained great interest in the B–ALL leukemogenesis, however, so far few “omic” studies investigate lncRNAs and protein–coding gene networks. In our retrospective study, we conceived an integrated bioinformatic approach, by using NGS platform, to discover lncRNAs strongly correlated with aberrantly expressed protein–coding genes. We provided dysregulated lncRNA–mRNA pairs potentially underlying B–ALL pathogenesis. Diagnosis incidence peak of ALL appears approximatively between 1 and 19 years old. lncRNAs may be of clinical utility as non–invasive biomarker for B–ALL onset or therapy response in support of precision medicine. The identification of lncRNA as key regulators in B–ALL could lead to the identification of the altered pathways able to sustain the leukemic growth. Abstract Long non–coding RNAs (lncRNAs) are emerging as key gene regulators in the pathogenesis and development of various cancers including B lymphoblastic leukaemia (B–ALL). In this pilot study, we used RNA–Seq transcriptomic data for identifying novel lncRNA–mRNA cooperative pairs involved in childhood B–ALL pathogenesis. We conceived a bioinformatic pipeline based on unsupervised PCA feature extraction approach and stringent statistical criteria to extract potential childhood B–ALL lncRNA signatures. We then constructed a co–expression network of the aberrantly expressed lncRNAs (30) and protein–coding genes (754). We cross–validated our in–silico findings on an independent dataset and assessed the expression levels of the most differentially expressed lncRNAs and their co–expressed mRNAs through ex vivo experiments. Using the guilt–by–association approach, we predicted lncRNA functions based on their perfectly co–expressed mRNAs (Spearman’s correlation) that resulted closely disease–associated. We shed light on 24 key lncRNAs and their co–expressed mRNAs which may play an important role in B–ALL pathogenesis. Our results may be of clinical utility for diagnostic and/or prognostic purposes in paediatric B–ALL management.
Collapse
|
16
|
Piao M, Zhang L. Knockdown of SNHG16 suppresses the proliferation and induces the apoptosis of leukemia cells via miR‑193a‑5p/CDK8. Int J Mol Med 2020; 46:1175-1185. [PMID: 32705162 PMCID: PMC7387099 DOI: 10.3892/ijmm.2020.4671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Although small nucleolar RNA host gene 16 (SNHG16) is known to exhibit auxo‑action in certain types of tumor, its role in leukemia remains unclear. The present study analyzed the role and mechanisms of action of SNHG16 in leukemia cells in order to identify therapeutic targets for this disease. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to determine SNHG16 expression in human leukemia cell lines. Using TargetScan 7.2 and dual‑luciferase reporter assay, the target genes of SNHG16 were verified. Following the downregulation of the expression of SNHG16 or its target genes, Cell Counting kit‑8 (CCK‑8) assay was performed to examine the viability of the leukemia cells. In addition, flow cytometry was performed to analyze the cell apoptotic rates, and colony formation assays were used to determine the cell proliferative ability. RT‑qPCR and western blot analysis were used to determine the association between SNHG16 and its target genes. SNHG16 was found to be abnormally highly expressed in acute myeloblastic leukemia cell lines, the knockdown of which weakened the viability of the leukemia cells, suppressed cell proliferation and promoted cell apoptosis. miR‑193a‑5p could bind to SNHG16, and its target gene was CDK8. Moreover, the expression of miR‑193a‑5p increased with the decrease in SNHG16 expression, while the inhibition of miR‑193a‑5p promoted the expression of CDK8. The downregulation of miR‑193a‑5p enhanced the viability of the leukemia cells, accelerated cell cloning and reduced cell apoptosis, which was completely opposite to the effects observed with the silencing of CDK8. The knockdown of SNHG16 suppressed the viability of the leukemia cells, suppressed cell proliferation, and induced cell apoptosis by regulating miR‑193a‑5p/CDK8. Thus, SNHG16 may prove to be a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Meihua Piao
- Clinical Laboratory, Yanbian University Hospital (Yanbian Hospital), Yanji, Jilin 133000
| | - Li Zhang
- Department of Neonatology, Weinan Maternal and Child Health Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
17
|
Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci 2020; 111:3338-3349. [PMID: 32506598 PMCID: PMC7469810 DOI: 10.1111/cas.14516] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomal long noncoding RNA (lncRNA) has been found to be associated with the development of cancers. However, the expression characteristics and the biological roles of exosomal lncRNAs in hepatocellular carcinoma (HCC) remain unknown. Here, by RNA sequencing, we found 9440 mRNAs and 8572 lncRNAs were differentially expressed (DE-) in plasma exosomes between HCC patients and healthy controls. Exosomal DE-lncRNAs displayed higher expression levels and tissue specificity, lower expression variability and splicing efficiency than DE-mRNAs. Six candidate DE-lncRNAs (fold change 6 or more, P ≤ .01) were high in HCC cells and cell exosomes. The knockdown of these candidate DE-lncRNAs significantly affected the migration, proliferation, and apoptosis in HCC cells. In particular, a novel DE-lncRNA, RP11-85G21.1 (lnc85), promoted HCC cellular proliferation and migration by targeted binding and regulating of miR-324-5p. More importantly, the level of serum lnc85 was highly expressed in both Alpha-fetoprotein (AFP)-positive and AFP-negative HCC patients and allowed distinguishing AFP-negative HCC from healthy control and liver cirrhosis (area under the receiver operating characteristic curve, 0.869; sensitivity, 80.0%; specificity, 76.5%) with high accuracy. Our finding offers a new insight into the association between the dysregulation of exosomal lncRNA and HCC, suggesting that lnc85 could be a potential biomarker of HCC.
Collapse
Affiliation(s)
- Xuejing Huang
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Liyuan Sun
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Sha Wen
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Deli Deng
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fengjie Wan
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiao He
- School of Public HealthGuilin Medical UniversityGuilinChina
| | - Li Tian
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Lifang Liang
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Chunmeng Wei
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Kaiping Gao
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐ BioresourcesNanningChina
| | - Yasi Li
- School of Global Public HealthNew York UniversityNew YorkNYUSA
| | - Jianning Jiang
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rihong Zhai
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
- Carson Cancer CenterShenzhen UniversityShenzhenChina
| | - Min He
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
- Key Laboratory of High‐Incidence Tumor Prevention and Treatment (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
18
|
Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol 2020; 39:27-40. [PMID: 32621547 DOI: 10.1002/hon.2776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
The study of long non-coding RNAs (lncRNA) is a newly established field and our knowledge about them is rapidly growing. These kinds of RNAs are unchanged parts of the genome throughout evolution, that modulate cell growth, differentiation, and apoptosis during diverse physiological and pathological processes including leukemia development. They have the capability to be useful biomarkers for the diagnosis, clinical typing, prognosis, as well as potential therapeutic targets. In this study, we summarized the role of lncRNAs in the expression and function of white blood cells and oncogenic transformation into four main types of leukemia.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Soares-Lima SC, Pombo-de-Oliveira MS, Carneiro FRG. The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. J Leukoc Biol 2020; 108:1081-1099. [PMID: 32573851 DOI: 10.1002/jlb.2mr0420-707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
WNT proteins constitute a very conserved family of secreted glycoproteins that act as short-range ligands for signaling with critical roles in hematopoiesis, embryonic development, and tissue homeostasis. These proteins transduce signals via the canonical pathway, which is β-catenin-mediated and better-characterized, or via more diverse noncanonical pathways that are β-catenin independent and comprise the planar cell polarity (PCP) pathway and the WNT/Ca++ pathways. Several proteins regulate Wnt signaling through a variety of sophisticated mechanisms. Disorders within the pathway can contribute to various human diseases, and the dysregulation of Wnt pathways by different molecular mechanisms is implicated in the pathogenesis of many types of cancer, including the hematological malignancies. The types of leukemia differ considerably and can be subdivided into chronic, myeloid or lymphocytic, and acute, myeloid or lymphocytic, leukemia, according to the differentiation stage of the predominant cells, the progenitor lineage, the diagnostic age strata, and the specific molecular drivers behind their development. Here, we review the role of Wnt signaling in normal hematopoiesis and discuss in detail the multiple ways canonical Wnt signaling can be dysregulated in acute leukemia, including alterations in gene expression and protein levels, epigenetic regulation, and mutations. Furthermore, we highlight the different impacts of these alterations, considering the distinct forms of the disease, and the therapeutic potential of targeting Wnt signaling.
Collapse
Affiliation(s)
- Sheila C Soares-Lima
- Epigenetics Group, Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program Research Center, National Cancer Institute, Rio de Janeiro, Brazil
| | - Flávia R G Carneiro
- FIOCRUZ, Center of Technological Development in Health (CDTS), Rio de Janeiro, Brazil.,FIOCRUZ, Laboratório Interdisciplinar de Pesquisas Médicas-Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
21
|
Ma L, Wang YY, Jiang P. LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun 2020; 527:654-661. [PMID: 32423818 DOI: 10.1016/j.bbrc.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to involve in a variety of cancers. Our present study aimed to explore the exact roles of lncRNA LINC00909 (LINC00909) in the progression of pediatric acute myeloid leukemia (AML) and to study the potential molecular mechanism. In this study, the levels of LINC00909 were observed to be distinctly upregulated in AML patients and cell lines. Higher levels of LINC00909 were associated with FAB classification, cytogenetics and poorer prognosis. Functionally, knockdown of LINC00909 suppressed cell viabilities, migration and invasion, and promoted apoptosis of NB4 and HL-60 cells. Mechanistically, we demonstrated that LINC00909 functioned as a molecular sponge for miR-625. In addition, we observed that Wnt/β-catenin signaling pathway was suppressed by LINC00909 knockdown. Moreover, miR-625 levels were dramatically decreased in AML cells when Wnt/β-catenin signaling was activated. Overall, our findings identified a new AML-related lncRNA LINC00909 which may represent a novel biomarker and a potential therapeutic target of AML.
Collapse
Affiliation(s)
- Lei Ma
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Yan-Yan Wang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Peng Jiang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
22
|
Yu YH, Xin F, Dong L, Ge L, Zhai CY, Shen XL. Weighted gene coexpression network analysis identifies critical genes in different subtypes of acute myeloid leukaemia. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yan-Hui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Fei Xin
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Chun-Yan Zhai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Xu-Liang Shen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| |
Collapse
|
23
|
Zeng H, Wu H, Yan M, Tang L, Guo X, Zhao X. Characterization of a 4 lncRNAs-based prognostic risk scoring system in adults with acute myeloid leukemia. Leuk Res 2019; 88:106261. [PMID: 31739140 DOI: 10.1016/j.leukres.2019.106261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The study aims to develop a prognostic scoring system based on prognostic lncRNAs for acute myeloid leukemia (AML). METHODS Based on lncRNA expression profiles downloaded from The Cancer Genome Atlas (TCGA), differentially expressed long noncoding RNAs (DELs) between good prognosis and bad prognosis samples were screened, from which prognosis-related lncRNAs were selected using uni-variate and multi-variate Cox regression analysis. Based on the expression profiles of these signature prognosis-related lncRNAs, a risk scoring system was developed and applied to a training set and validated on a testing set. With sample-matched mRNAs of the signature lncRNAs, lncRNA-mRNA networks were built, followed by function analysis for the mRNAs in these networks. RESULT Total 66 DELs were identified between good prognosis and bad prognosis samples. Among these DELs, LINC01003, CTD-2234N14, RP1-137K24, and RP11-834C111 were found to be independent predictors of prognosis. A risk scoring system based on the expressions of the 4 signature lncRNAs was developed. Kaplan-Meier survival analysis found that the risk score system could classify patients into high-risk and low-risk groups with significantly different survival outcomes. Function analysis showed that the mRNAs in these lncRNA-mRNA networks were significantly linked to mTOR signaling pathway, apoptosis, Fc epsilon RI signaling pathway, B cell receptor signaling pathway, natural killer cell mediated cytotoxicity, and T cell receptor signaling pathway. CONCLUSION This study suggested a promising 4 prognostic lncRNAs-based risk scoring system in AML. These 4 lncRNAs may play roles in regulating prognosis partly via mTOR signaling pathway, apoptosis, and some immune-related pathways.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Haibing Wu
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Minchao Yan
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Lun Tang
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Xiaojun Guo
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China
| | - Xiaoyan Zhao
- Department of Hematology, The Frist Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, 314000, China.
| |
Collapse
|
24
|
Ye C, Ma S, Xia B, Zheng C. Weighted Gene Coexpression Network Analysis Identifies Cysteine-Rich Intestinal Protein 1 (CRIP1) as a Prognostic Gene Associated with Relapse in Patients with Acute Myeloid Leukemia. Med Sci Monit 2019; 25:7396-7406. [PMID: 31577790 PMCID: PMC6790098 DOI: 10.12659/msm.918092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is associated with a high relapse rate and poor prognosis. This study aimed to use weighted gene coexpression network analysis (WGCNA) of gene coexpression networks to identify candidate prognostic biomarker genes in patients with AML and to investigate the expression of these genes in the human U937 cell line in vitro. MATERIAL AND METHODS RNA-seq data were retrieved from the Cancer Genome Atlas (TCGA) and included bone marrow samples and survival data of patients with AML (N=151), patients who did not relapse after treatment (N=119), and patients with relapse (N=40). Differentially expressed genes were identified, WGCNA was used to detect functional modules, and survival analysis was performed. The Cell Counting Kit-8 (CCK-8) assay investigated the proliferation of U937 cells transfected with short hairpin RNAs (shRNAs), shCRIP1, shHIST1H1C, and shHIST1H1E. RNA-seq analysis identified gene expression following CRIP1 knockdown. RESULTS Eighty-two genes were associated with both relapse and prognosis in patients with AML. There were two prognosis-related gene modules in the coexpression network. In the coexpression network, the histone cluster 1 H1 family member gene, HIST1H1C had the maximum relapse fold change, HIST1H1E had the lowest survival p-value, and the cysteine-rich intestinal protein 1 (CRIP1) gene had the most edge numbers and was significantly associated with poor prognosis (P=0.0165786). RNA-seq data showed that there was a significant difference in gene expression after CRIP1 knockdown in U937 cells. CONCLUSIONS WGCNA of gene coexpression networks identified CRIP1 as a potential prognostic biomarker gene in patients with AML.
Collapse
Affiliation(s)
- Chengyu Ye
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland).,Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Blood Chemotherapy, Wenzhou Central Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Shenglin Ma
- Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Bing Xia
- Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Cuiping Zheng
- Department of Blood Chemotherapy, Wenzhou Central Hospital, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
25
|
Cao H, Qi H, Liu Z, Peng WJ, Guo CY, Sun YY, Pao C, Xiang YT, Zhang L. CeRNA network analysis and functional enrichment of salt sensitivity of blood pressure by weighted-gene co-expression analysis. PeerJ 2019; 7:e7534. [PMID: 31565555 PMCID: PMC6746216 DOI: 10.7717/peerj.7534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. The pathogenic mechanisms of SSBP are still uncertain. This study aimed to construct the co-regulatory network of SSBP and data mining strategy based on the competitive endogenous RNA (ceRNA) theory. Methods LncRNA and mRNA microarray was performed to screen for candidate RNAs. Four criteria were used to select the potential differently expressed RNAs. The weighted correlation network analysis (WGCNA) package of R software and target miRNA and mRNA prediction online databases were used to construct the ceRNA co-regulatory network and discover the pathways related to SSBP. Gene ontology enrichment, gene set enrichment analysis (GSEA) and KEGG pathway analysis were performed to explore the functions of hub genes in networks. Results There were 274 lncRNAs and 36 mRNAs that differently expressed between salt-sensitive and salt-resistant groups (P < 0.05). Using WGCNA analysis, two modules were identified (blue and turquoise). The blue module had a positive relationship with salt-sensitivity (R = 0.7, P < 0.01), high-density lipoprotein (HDL) (R = 0.53, P = 0.02), and total cholesterol (TC) (R = 0.55, P = 0.01). The turquoise module was positively related with triglyceride (TG) (R = 0.8, P < 0.01) and low-density lipoprotein (LDL) (R = 0.54, P = 0.01). Furthermore, 84 ceRNA loops were identified and one loop may be of great importance for involving in pathogenesis of SSBP. KEGG analysis showed that differently expressed mRNAs were mostly enriched in the SSBP-related pathways. However, the enrichment results of GSEA were mainly focused on basic physical metabolic processes. Conclusion The microarray data mining process based on WGCNA co-expression analysis had identified 84 ceRNA loops that closely related with known SSBP pathogenesis. The results of our study provide implications for further understanding of the pathogenesis of SSBP and facilitate the precise diagnosis and therapeutics.
Collapse
Affiliation(s)
- Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Qi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Zheng Liu
- Science Department, Peking University People's Hospital, Beijing, China
| | - Wen-Juan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chun-Yue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yan-Yan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Christine Pao
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yu-Tao Xiang
- Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
26
|
Zhang M, Jiang N, Cui R, Du S, Ou H, Chen T, Ge R, Ma D, Zhang J. Deregulated lncRNA expression profile in the mouse lung adenocarcinomas with KRAS-G12D mutation and P53 knockout. J Cell Mol Med 2019; 23:6978-6988. [PMID: 31410985 PMCID: PMC6787463 DOI: 10.1111/jcmm.14584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/05/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated that aberrant long non‐coding RNAs (lncRNAs) expression are suggested to be closely associated with multiple human diseases, lung cancer included. However, the roles of lncRNAs in lung cancer are not well understood. In this study, we used microarrays to investigate the aberrantly expressed lncRNAs in the mouse lung adenocarcinoma with P53 knockout and the KrasG12D mutation. Results revealed that 6424 lncRNAs were differentially expressed (≥ 2‐fold change, P < .05). Two hundred and ten lncRNAs showed more than 8‐fold change and conserved across human and were further analysed in the primary mouse lung adenocarcinoma KP cells, which were isolated from the p53 knockout and the KrasG12D mutation mice. Among all the 210 lncRNAs, 11 lncRNAs' expression was regulated by P53, 33 lncRNAs by KRAS and 13 lncRNAs by hypoxia in the primary KP cells, respectively. NONMMUT015812, which was remarkably up‐regulated in the mouse lung adenocarcinoma and negatively regulated by the P53 re‐expression, was detected to analyse its cellular function. Results showed that knockdown of NONMMUT015812 by shRNAs decreased proliferation and migration abilities of KP cells. Among those aberrantly expressed lncRNAs in the mouse lung adenocarcinoma, NONMMUT015812 was a potential oncogene.
Collapse
Affiliation(s)
- Meiqin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sichen Du
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huayuan Ou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tinglan Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runsheng Ge
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
28
|
Liu Y, Gao X, Tian X. High expression of long intergenic non-coding RNA LINC00662 contributes to malignant growth of acute myeloid leukemia cells by upregulating ROCK1 via sponging microRNA-340-5p. Eur J Pharmacol 2019; 859:172535. [PMID: 31306637 DOI: 10.1016/j.ejphar.2019.172535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulatory factors in diverse pathological processes, especially in tumorigenesis. Accumulating evidence has demonstrated that long intergenic non-coding RNA 00662 (LINC00662) is overexpressed in multiple cancers and facilitates cancer development and progression. However, whether LINC00662 is involved in acute myeloid leukemia (AML) remains unknown. This study was aimed to explore the expression, biological function and regulatory mechanism of LINC00662 in AML. Here, we found that LINC00662 was significantly increased in AML tissues and cell lines. Knockdown of LINC00662 significantly reduced the growth of AML cells and upregulated AML cell apoptosis. In contrast, overexpression of LINC00662 promoted AML cell growth. MicroRNA-340-5p (miR-340-5p) was predicted as a target of LINC00662. Luciferase reporter assays and RNA pull-down assays confirmed that LINC00662 directly interacted with miR-340-5p. Expression of miR-340-5p was downregulated in AML and silencing of LINC00662 upregulated miR-340-5p expression in AML cells. Moreover, overexpression of miR-340-5p inhibited cell growth and increased apoptosis in AML cells. Inhibition of miR-340-5p significantly reversed the inhibitory effect of LINC00662 silencing on AML cell growth. In addition, Rho-associated protein kinase 1 (ROCK1) was verified as a target gene of miR-340-5p in AML cells. Restoration of ROCK1 expression partially reversed LINC00662 silencing or miR-340-5p overexpression-mediated inhibitory effect on AML cell growth. Overall, our results demonstrate that LINC00662 contributes to the malignant growth of AML cells by upregulating ROCK1 via sponging miR-340-5p, highlighting the important role of the LINC00662/miR-340-5p/ROCK1 axis in regulating the malignant behavior of AML cells.
Collapse
Affiliation(s)
- Yuan Liu
- Hematology, The First Hospital of Yulin, Yulin City, Shaanxi Province, 719000, China
| | - Xiaoyan Gao
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China.
| | - Xiaoqing Tian
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China
| |
Collapse
|
29
|
El-Khazragy N, Elayat W, Matbouly S, Seliman S, Sami A, Safwat G, Diab A. The prognostic significance of the long non-coding RNAs "CCAT1, PVT1" in t(8;21) associated Acute Myeloid Leukemia. Gene 2019; 707:172-177. [PMID: 30943439 DOI: 10.1016/j.gene.2019.03.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Long non-coding RNA (LncRNA) is recently linked to various types of cancers, CCAT and PVT1 are two LncRNAs linked to t(8;21) associated Acute Myeloid Leukemia, the interplay between CCAT, PVT1 and the MYC proto-oncogene implicated in t(8;21) could present an opportunity for using LncRNA as prognostic biomarker or a target for therapy, We investigated the expression levels of LncRNAs in 70 patients; 30 with t(8;21) positive AML and 40 with t(8;21) negative AML, We found that CCAT1 and PVT1 are expressed in higher levels in t(8;21) positive -AML by 5.3 folds compared to t(8;21) negative group; the expression values were significantly associated with high-risk clinical criteria; moreover, they are associated with lower overall survival (OS) rate and leukemia-free survival (LFS), however we didn't find a statistically significant cut-off value of LncRNAs using the Cox regression analysis for Lnc_PVT1 except with LFS, we conclude that high expression levels of CCAT1 and PVT1 are associated with poor prognosis while being poor prognostic biomarkers in t(8;21) associated AML.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Clinical Pathology and Hematology Department, Faculty of Medicine, Ain Shams University Biomedical Research Department, Cairo, P.O. Box 11381, Egypt.
| | - Wael Elayat
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Egypt
| | - Safa Matbouly
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Egypt
| | - Sarah Seliman
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Ashraqat Sami
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
30
|
Long Non-Coding RNA and Acute Leukemia. Int J Mol Sci 2019; 20:ijms20030735. [PMID: 30744139 PMCID: PMC6387068 DOI: 10.3390/ijms20030735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute leukemia (AL) is the main type of cancer in children worldwide. Mortality by this disease is high in developing countries and its etiology remains unanswered. Evidences showing the role of the long non-coding RNAs (lncRNAs) in the pathophysiology of hematological malignancies have increased drastically in the last decade. In addition to the contribution of these lncRNAs in leukemogenesis, recent studies have suggested that lncRNAs could be used as biomarkers in the diagnosis, prognosis, and therapeutic response in leukemia patients. The focus of this review is to describe the functional classification, biogenesis, and the role of lncRNAs in leukemogenesis, to summarize the evidence about the lncRNAs which are playing a role in AL, and how these genes could be useful as potential therapeutic targets.
Collapse
|
31
|
Qian C, Li H, Chang D, Wei B, Wang Y. Identification of functional lncRNAs in atrial fibrillation by integrative analysis of the lncRNA-mRNA network based on competing endogenous RNAs hypothesis. J Cell Physiol 2018; 234:11620-11630. [PMID: 30478836 DOI: 10.1002/jcp.27819] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
A mounting body of evidence has suggested that long noncoding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, the functions and ceRNA mechanisms of lncRNAs in atrial fibrillation (AF) remain to date unclear. In this study, we constructed an AF-related lncRNA-mRNA network (AFLMN) based on ceRNA theory, by integrating probe reannotation pipeline and microRNA (miRNA)-target regulatory interactions. Two lncRNAs with central topological properties in the AFLMN were first obtained. By using bidirectional hierarchical clustering, we identified two modules containing four lncRNAs, which were significantly enriched in many known pathways of AF. To elucidate the ceRNA interactions in certain disease or normal condition, the dysregulated lncRNA-mRNA crosstalks in AF were further analyzed, and six hub lncRNAs were obtained from the network. Furthermore, random walk analysis of the AFLMN suggested that lncRNA RP11-296O14.3 may function importantly in the pathological process of AF. All these eight lncRNAs that were identified from previous steps (RP11-363E7.4, GAS5, RP11-410L14.2, HAGLR, RP11-421L21.3, RP11-111K18.2, HOTAIRM1, and RP11-296O14.3) exhibited a strong diagnostic power for AF. The results of our study provide new insights into the functional roles and regulatory mechanisms of lncRNAs in AF, and facilitate the discovery of novel diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Danqi Chang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Baozhu Wei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Fan Z, Gao S, Chen Y, Xu B, Yu C, Yue M, Tan X. Integrative analysis of competing endogenous RNA networks reveals the functional lncRNAs in heart failure. J Cell Mol Med 2018; 22:4818-4829. [PMID: 30019841 PMCID: PMC6156393 DOI: 10.1111/jcmm.13739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure-related lncRNA-mRNA network by integrating probe re-annotation pipeline and miRNA-target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure-related lncRNA-mRNA network. Then, the lncRNA-associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure-related pathways. To investigate the role of lncRNA-associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA-associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure-related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Zhimin Fan
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Shanshan Gao
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Yequn Chen
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Bayi Xu
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Chengzhi Yu
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Minghui Yue
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Xuerui Tan
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
33
|
Wang X, Zhang L, Zhao F, Xu R, Jiang J, Zhang C, Liu H, Huang H. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol 2018; 97:1375-1389. [PMID: 29654398 DOI: 10.1007/s00277-018-3315-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Lina Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Fan Zhao
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Ruirong Xu
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Jie Jiang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Chenglu Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hong Liu
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
34
|
Ma QL, Wang JH, Yang M, Wang HP, Jin J. MiR-362-5p as a novel prognostic predictor of cytogenetically normal acute myeloid leukemia. J Transl Med 2018. [PMID: 29540187 PMCID: PMC5853092 DOI: 10.1186/s12967-018-1445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background MicroRNAs are of special interest in cancer research and hold significant promise as diagnostic and prognostic biomarkers for malignant disease. MiR-362-5p have been found to exert both oncogenic and tumor suppressive effects depending highly on the cellular context. The aim of this study was to determine whether the expression of miR-362-5p can be served as a prognostic factor for patients with cytogentically normal acute myeloid leukemia (CN-AML). Methods We enrolled 224 patients with CN-AML and measured the expression of miR-362-5p by quantitative real time PCR analysis. We classified patients into high and low expression based on the median value. The Cox regression analyses were carried out to assess the prognostic significance of miR-362-5p expression in the context of the well-established predictors. Additionally, microRNA expression profiling were conducted to identify the biological insights between high and low group. Results High expressers had older age. High expressers obtained shorter overall survival in the univariate analysis. The independent prognostic value of miR-362-5p remained in the context of the well-established clinical and cytogenetic predictors. Moreover, the prognostic value of miR-362-5p was also validated in an independent cohort of CN-AML. Notably, numerous oncomiRs were also high expressed in high miR-362-5p group. Conclusion High miR-362-5p expression was associated with poorer overall survival implicating the oncogenic function in AML development.
Collapse
Affiliation(s)
- Qiu-Ling Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University of Medicine, No. 79 Qingchun Road, 310003, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jing-Han Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University of Medicine, No. 79 Qingchun Road, 310003, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University of Medicine, No. 79 Qingchun Road, 310003, Hangzhou, Zhejiang, People's Republic of China
| | - Huan-Ping Wang
- Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University of Medicine, No. 79 Qingchun Road, 310003, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
35
|
Zhang C, Song G, Song G, Li R, Gao M, Zhang H. CAT104 silence behaves as a tumor suppressor in human leukemia cells by down regulating miR-182 expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11393-11404. [PMID: 31966495 PMCID: PMC6966021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND LncRNAs and miRNAs are found to play crucial roles in the tumorigenesis of acute myeloid leukemia (AML). We aimed to investigate the functions and mechanisms of lncRNA-CAT104 and miR-182 in AML. METHODS Expression of CAT104, miR-182, and ZEB1 in K562 and HL60 cell lines was respectively or synchronously altered by transfection. Expressions of CAT104, miR-182 and ZEB1 in cell were then analyzed by qRT-PCR. Cell viability, migration, invasion and apoptosis were evaluated by MTT, transwell assays and flow cytometry, respectively. Protein expressions of ZEB1 and factors related with apoptosis and two signal pathways (Wnt/β-catenin and JNK) were detected by western blot. RESULTS CAT104 expressed highly in K562 and HL60 cells compared to embryonic kidney cell line HEK293 (P < 0.001). Knockdown of CAT104 inhibited cell viability, migration and invasion, but increased cell apoptosis of K562 and HL60 cells through inhibitionof miR-182 (P < 0.05). miR-182 promoted cell survival, migration and invasion through upregulatingthe expression of ZEB1 (P < 0.05). miR-182 silence deactivated Wnt/β-catenin and JNK signal pathways by downregulating the expression of ZEB1 in K562 and HL60 cells. CONCLUSION LncRNA-CAT104 expressed highly in leukemia cells and its silence inhibited cell survival, migration and invasion by downregulating miR-182 expression. miR-182 functioned as an oncogene by upregulating ZEB1 via which miR-182 silence deactivated Wnt/β-catenin and JNK signal pathways in leukemia cells.
Collapse
Affiliation(s)
- Chengfang Zhang
- Department of Clinical Laboratory, Jining No. 1 People’s HospitalJining 272011, Shandong, China
| | - Guanli Song
- Department of Preventive and Health Care, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Guanbo Song
- Department of Clinical Laboratory, Jining Chinese Medicine HospitalJining 272000, Shandong, China
| | - Ruolei Li
- Department of Clinical Laboratory, Jining No. 1 People’s HospitalJining 272011, Shandong, China
| | - Min Gao
- Department of Clinical Laboratory, Jining No. 1 People’s HospitalJining 272011, Shandong, China
| | - Haiguo Zhang
- Department of Hematology, Jining No. 1 People’s HospitalJining 272011, Shandong, China
| |
Collapse
|
36
|
Genome-Wide Analysis of mRNA and Long Noncoding RNA Profiles in Chronic Actinic Dermatitis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7479523. [PMID: 29359156 PMCID: PMC5735319 DOI: 10.1155/2017/7479523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023]
Abstract
Chronic actinic dermatitis (CAD), a photosensitive dermatosis, is characterized by inflammatory lesions, especially on sun-exposed skin. However, its pathogenesis remains unclear. In this study, second-generation RNA sequencing and comprehensive bioinformatics analyses of mRNAs and long noncoding RNAs (lncRNAs) were performed to determine the transcriptome profiles of patients with CAD. A total 6889 annotated lncRNAs, 341 novel lncRNAs, and 65091 mRNAs were identified. Interestingly, patients with CAD and healthy controls showed distinct transcriptome profiles. Indeed, 198 annotated (81.48%) and 45 novel (18.52%) lncRNAs were differentially expressed between the two groups. GO, KEGG, and RGSEA analyses of lncRNAs showed that inflammatory and immune response related pathways played crucial roles in the pathogenetic mechanism of CAD. In addition, we unveiled key differentially expressed lncRNAs, including lncRNA RP11-356I2.4 which plays a role probably by regulating TNFAIP3 and inflammation. qRT-PCR data validated the differentially expressed genes. The newly identified lncRNAs may have potential roles in the development of CAD; these findings lay a solid foundation for subsequent functional exploration of lncRNAs and mRNAs as therapeutic targets for CAD.
Collapse
|
37
|
Chen S, Liang H, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Long non-coding RNAs: The novel diagnostic biomarkers for leukemia. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:81-86. [PMID: 28841440 DOI: 10.1016/j.etap.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (LncRNAs) are a category of non-coding RNAs (ncRNAs) with a length of 200nt-100kb lacking a significant open reading frame. The study of lncRNAs is a newly established field, due in part to their capability to act as the novel biomarkers in disease. A growing body of research shows that lncRNAs may not only useful as biomarkers for the diagnosis and clinical typing and prognosis of cancers, but also as potential targets for novel therapies. Differential expression of lncRNAs has been found in leukemia in the last two years, however, the majority of the lncRNAs described here are transcripts of unknown function and their role in leukemogenesis is still unclear. Here, we summarize the lncRNAs associated with leukemia in order to find a potential classification tool for leukemia, and a new field of research is being explored.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|