1
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Zou X, Lu RL, Liao B, Liu SJ, Dai SX. Causal relationship between asthma and ulcerative colitis and the mediating role of interleukin-18: a bidirectional Mendelian study and mediation analysis. Front Immunol 2023; 14:1293511. [PMID: 38162651 PMCID: PMC10757619 DOI: 10.3389/fimmu.2023.1293511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Numerous observational investigations have documented a correlation between asthma and ulcerative colitis(UC). In this Mendelian Randomization (MR) study, we utilized extensive summary data from Genome-Wide Association Studies (GWAS) to further estimate the association between adult-onset asthma and the risk of UC, and to investigate the role of Interleukin-18 (IL-18) as a potential mediator. Materials and methods A two-step, two-sample MR study was conducted through mediation analysis. For this study, we employed a two-sample MR analysis using the inverse variance-weighted (IVW), weighted median, weighted mode, and MR-Egger regression techniques. We utilized publicly accessible summary statistics from a GWAS meta-analysis of adult-onset asthma in the UK Biobank (n=327,253; cases=26,582; controls=300,671) as the exposure factor. The outcomes were derived from GWAS data of individuals with European ancestry (n=26,405; cases=6,687; controls=19,718). GWAS data for IL-18 were obtained from individuals of European ancestry (n=9,785,222; cases=3,636; controls=9,781,586). Results The MR analysis indicates that adult-onset asthma is associated with an increased risk of UC, with an odds ratio (OR) of 1.019 (95% CI 1.001-1.045, P=0.006). However, there is no strong evidence to suggest that UC significantly impacts the risk of adult-onset asthma. IL-18 may act as a potential mediator in the causal relationship between adult-onset asthma and UC, with a mediation proportion of 3.9% (95% CI, 0.6%-6.9%). Conclusion In summary, our study established a causal relationship between asthma and UC, in which IL-18 contributes to a small extent. However, the primary factors underlying the influence of asthma on UC remain unclear. Future research should focus on identifying other potential mediators. In clinical practice, it is important to pay greater attention to intestinal lesions in patients with asthma.
Collapse
Affiliation(s)
- Xin Zou
- Department of Gastroenterology, Ganzhou Municipal Hospital(Guangdong Provincial People’s Hospital Ganzhou Hospital), Ganzhou, Jiangxi, China
| | - Rui-Ling Lu
- Department of Gastroenterology, Ganzhou Municipal Hospital(Guangdong Provincial People’s Hospital Ganzhou Hospital), Ganzhou, Jiangxi, China
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
| | - Bin Liao
- Department of Gastroenterology, Ganzhou Municipal Hospital(Guangdong Provincial People’s Hospital Ganzhou Hospital), Ganzhou, Jiangxi, China
| | - Shi-Jie Liu
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou, Jiangxi, China
| | - Shi-Xue Dai
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Fagundes RR, Bravo-Ruiseco G, Hu S, Kierans SJ, Weersma RK, Taylor CT, Dijkstra G, Harmsen HJM, Faber KN. Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway. Front Microbiol 2023; 14:1298304. [PMID: 38163085 PMCID: PMC10755969 DOI: 10.3389/fmicb.2023.1298304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). Methods Mucosal samples from patients with IBD (n = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2-HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. Results Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2-HIF1A-null cells. Conclusion Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD.
Collapse
Affiliation(s)
- Raphael R. Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gabriela Bravo-Ruiseco
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah J. Kierans
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T. Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Coufal S, Kverka M, Kreisinger J, Thon T, Rob F, Kolar M, Reiss Z, Schierova D, Kostovcikova K, Roubalova R, Bajer L, Jackova Z, Mihula M, Drastich P, Tresnak Hercogova J, Novakova M, Vasatko M, Lukas M, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Serum TGF- β1 and CD14 Predicts Response to Anti-TNF- α Therapy in IBD. J Immunol Res 2023; 2023:1535484. [PMID: 37383609 PMCID: PMC10299888 DOI: 10.1155/2023/1535484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Tumor necrosis factor-alpha (TNF-α) agonists revolutionized therapeutic algorithms in inflammatory bowel disease (IBD) management. However, approximately every third IBD patient does not respond to this therapy in the long term, which delays efficient control of the intestinal inflammation. Methods We analyzed the power of serum biomarkers to predict the failure of anti-TNF-α. We collected serum of 38 IBD patients at therapy prescription and 38 weeks later and analyzed them with relation to therapy response (no-, partial-, and full response). We used enzyme-linked immunosorbent assay to quantify 16 biomarkers related to gut barrier (intestinal fatty acid-binding protein, liver fatty acid-binding protein, trefoil factor 3, and interleukin (IL)-33), microbial translocation, immune system regulation (TNF-α, CD14, lipopolysaccharide-binding protein, mannan-binding lectin, IL-18, transforming growth factor-β1 (TGF-β1), osteoprotegerin (OPG), insulin-like growth factor 2 (IGF-2), endocrine-gland-derived vascular endothelial growth factor), and matrix metalloproteinase system (MMP-9, MMP-14, and tissue inhibitors of metalloproteinase-1). Results We found that future full-responders have different biomarker profiles than non-responders, while partial-responders cannot be distinguished from either group. When future non-responders were compared to responders, their baseline contained significantly more TGF-β1, less CD14, and increased level of MMP-9, and concentration of these factors could predict non-responders with high accuracy (AUC = 0.938). Interestingly, during the 38 weeks, levels of MMP-9 decreased in all patients, irrespective of the outcome, while OPG, IGF-2, and TGF-β1 were higher in non-responders compared to full-responders both at the beginning and the end of the treatment. Conclusions The TGF-β1 and CD14 can distinguish non-responders from responders. The changes in biomarker dynamics during the therapy suggest that growth factors (such as OPG, IGF-2, and TGF-β) are not markedly influenced by the treatment and that anti-TNF-α therapy decreases MMP-9 without influencing the treatment outcome.
Collapse
Affiliation(s)
- Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Kreisinger
- Laboratory of Animal Evolutionary Biology, Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Rob
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
| | - Martin Kolar
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
| | - Zuzana Reiss
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Bajer
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Jackova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Mihula
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Tresnak Hercogova
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
- Dermatology Prof. Hercogova, Center for Biological Therapy, Prague, Czech Republic
| | - Michaela Novakova
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
| | - Martin Vasatko
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
| | - Milan Lukas
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.
AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.
METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).
RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.
CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
7
|
Olivier S, Diounou H, Pochard C, Frechin L, Durieu E, Foretz M, Neunlist M, Rolli-Derkinderen M, Viollet B. Intestinal Epithelial AMPK Deficiency Causes Delayed Colonic Epithelial Repair in DSS-Induced Colitis. Cells 2022; 11:cells11040590. [PMID: 35203241 PMCID: PMC8869996 DOI: 10.3390/cells11040590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Dysfunctions in the intestinal barrier, associated with an altered paracellular pathway, are commonly observed in inflammatory bowel disease (IBD). The AMP-activated protein kinase (AMPK), principally known as a cellular energy sensor, has also been shown to play a key role in the stabilization and assembly of tight junctions. Here, we aimed to investigate the contribution of intestinal epithelial AMPK to the initiation, progression and resolution of acute colitis. We also tested the hypothesis that protection mediated by metformin administration on intestinal epithelium damage required AMPK activation. A dextran sodium sulfate (DSS)-induced colitis model was used to assess disease progression in WT and intestinal epithelial cell (IEC)-specific AMPK KO mice. Barrier integrity was analyzed by measuring paracellular permeability following dextran-4kDa gavage and pro-inflammatory cytokines and tight junction protein expression. The deletion of intestinal epithelial AMPK delayed intestinal injury repair after DSS exposure and was associated with a slower re-epithelization of the intestinal mucosa coupled with severe ulceration and inflammation, and altered barrier function. Following intestinal injury, IEC AMPK KO mice displayed a lower goblet cell counts with concomitant decreased Muc2 gene expression, unveiling an impaired restitution of goblet cells and contribution to wound healing process. Metformin administration during the recovery phase attenuated the severity of DSS-induced colitis through improvement in intestinal repair capacity in both WT and IEC AMPK KO mice. Taken together, these findings demonstrate a critical role for IEC-expressed AMPK in regulating mucosal repair and epithelial regenerative capacity following acute colonic injury. Our studies further underscore the therapeutic potential of metformin to support repair of the injured intestinal epithelium, but this effect is conferred independently of intestinal epithelial AMPK.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Hanna Diounou
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Camille Pochard
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Lisa Frechin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Emilie Durieu
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
| | - Michel Neunlist
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Malvyne Rolli-Derkinderen
- Université de Nantes, TENS, The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l’Appareil Digestif, F-44093 Nantes, France; (C.P.); (E.D.); (M.N.); (M.R.-D.)
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France; (S.O.); (H.D.); (L.F.); (M.F.)
- Correspondence: ; Tel.: +33-1-4441-2401
| |
Collapse
|
8
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
9
|
Ahmed I, Yusuf K, Roy BC, Stubbs J, Anant S, Attard TM, Sampath V, Umar S. Dietary Interventions Ameliorate Infectious Colitis by Restoring the Microbiome and Promoting Stem Cell Proliferation in Mice. Int J Mol Sci 2021; 23:339. [PMID: 35008767 PMCID: PMC8745185 DOI: 10.3390/ijms23010339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022] Open
Abstract
Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring Firmicutes and Bacteroidetes and by increasing mucus production. RNA-seq in young adult mouse colon (YAMC) cells identified higher expression of Lgr4, Lgr6, DCLK1, Muc2, and SIGGIR after Butyrate treatment. Lineage tracing in CR-infected Lgr5-EGFP-IRES-CreERT2/ROSA26-LacZ (Lgr5-R) mice also revealed an expansion of LacZ-labeled Lgr5(+) stem cells in the colons of both Pectin and Tributyrin-treated mice compared to control. Interestingly, gut microbiota was required for Pectin but not Tributyrin-induced Lgr5(+) stem cell expansion. YAMC cells treated with sodium butyrate exhibited increased Lgr5 promoter reporter activity due to direct Butyrate binding with Lgr5 at -4.0 Kcal/mol, leading to thermal stabilization. Upon ChIP-seq, H3K4me3 increased near Lgr5 transcription start site that contained the consensus binding motif for a transcriptional activator of Lgr5 (SPIB). Thus, a multitude of effects on gut microbiome, differential gene expression, and/or expansion of Lgr5(+) stem cells seem to underlie amelioration of colitis following dietary intervention.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; (I.A.); (K.Y.); (B.C.R.)
| | - Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; (I.A.); (K.Y.); (B.C.R.)
| | - Badal C. Roy
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; (I.A.); (K.Y.); (B.C.R.)
| | - Jason Stubbs
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Shrikant Anant
- Cancer Biology Department, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Thomas M. Attard
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA; (T.M.A.); (V.S.)
| | - Venkatesh Sampath
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA; (T.M.A.); (V.S.)
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; (I.A.); (K.Y.); (B.C.R.)
| |
Collapse
|
10
|
Zheng Z, Qiu K, Huang W. Long Non-Coding RNA (lncRNA) RAMS11 Promotes Metastatis and Cell Growth of Prostate Cancer by CBX4 Complex Binding to Top2α. Cancer Manag Res 2021; 13:913-923. [PMID: 33564266 PMCID: PMC7866953 DOI: 10.2147/cmar.s270144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Studies have confirmed that parts of the non-coding genes in the human genome play an important role in the pathogenesis and metastasis of prostate cancer. Among them, long non-coding RNAs (lncRNAs) are vitally involved in the biological regulation of prostate cancer. In addition, lncRNAs are closely associated with the recurrence, metastasis and prognosis of prostate cancer. However, the molecular pathogenesis of lncRNAs in regulating cell growth and metastasis of prostate cancer remains unclear. Therefore, this study was designed to explore the function and mechanism of lncRNA RAMS11 in cell growth and metastasis of prostate cancer. Methods Prostate cancer and para-carcinoma tissue samples were obtained from 42 patients who were diagnosed from March 2013 to September 2014 at Quanzhou First Hospital Affiliated to Fujian Medical University. Microarray experiments and real-time polymerase chain reaction (PCR) measured the expression of lncRNA. RWPE-2, LNCap, PC3 and DU145 cells were used for an in vitro model. Results The expression of lncRNA RAMS11 was up-regulated in prostate cancer tissue samples. LncRNA RAMS11 promoted cell growth and metastasis of prostate cancer cells. Down-regulation of lncRNA RAMS11 attenuated cell growth and metastasis of prostate cancer cells. We also demonstrated that lncRNA RAMS11 bound to CBX4 to activate expression of Top2α. LncRNA RAMS11 promoted tumor growth of prostate cancer in the mouse model. The inhibition of CBX4 attenuated the pro-cancer effects of lncRNA AMS11 in prostate cancer cells, while the activation of Top2α attenuated the anti-cancer effects of si-lncRNA RAMS11 in prostate cancer cells. Discussion Our results indicated that lncRNA RAMS11 promoted cell growth and metastasis of prostate cancer by CBX4 complex via binding to Top2α, and might be developed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhixiong Zheng
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Kaiyan Qiu
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Weiwen Huang
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| |
Collapse
|
11
|
Jackson DN, Panopoulos M, Neumann WL, Turner K, Cantarel BL, Thompson-Snipes L, Dassopoulos T, Feagins LA, Souza RF, Mills JC, Blumberg RS, Venuprasad K, Thompson WE, Theiss AL. Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut 2020; 69:1928-1938. [PMID: 32111635 PMCID: PMC7483170 DOI: 10.1136/gutjnl-2019-319523] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although perturbations in mitochondrial function and structure have been described in the intestinal epithelium of Crohn's disease and ulcerative colitis patients, the role of epithelial mitochondrial stress in the pathophysiology of inflammatory bowel diseases (IBD) is not well elucidated. Prohibitin 1 (PHB1), a major component protein of the inner mitochondrial membrane crucial for optimal respiratory chain assembly and function, is decreased during IBD. DESIGN Male and female mice with inducible intestinal epithelial cell deletion of Phb1 (Phb1iΔIEC ) or Paneth cell-specific deletion of Phb1 (Phb1ΔPC ) and Phb1fl/fl control mice were housed up to 20 weeks to characterise the impact of PHB1 deletion on intestinal homeostasis. To suppress mitochondrial reactive oxygen species, a mitochondrial-targeted antioxidant, Mito-Tempo, was administered. To examine epithelial cell-intrinsic responses, intestinal enteroids were generated from crypts of Phb1iΔIEC or Phb1ΔPC mice. RESULTS Phb1iΔIEC mice exhibited spontaneous ileal inflammation that was preceded by mitochondrial dysfunction in all IECs and early abnormalities in Paneth cells. Mito-Tempo ameliorated mitochondrial dysfunction, Paneth cell abnormalities and ileitis in Phb1iΔIEC ileum. Deletion of Phb1 specifically in Paneth cells (Phb1ΔPC ) was sufficient to cause ileitis. Intestinal enteroids generated from crypts of Phb1iΔIEC or Phb1ΔPC mice exhibited decreased viability and Paneth cell defects that were improved by Mito-Tempo. CONCLUSION Our results identify Paneth cells as highly susceptible to mitochondrial dysfunction and central to the pathogenesis of ileitis, with translational implications for the subset of Crohn's disease patients exhibiting Paneth cell defects.
Collapse
Affiliation(s)
- Dakota N Jackson
- Department of Medicine, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Marina Panopoulos
- Department of Medicine, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | | | - Kevin Turner
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Brandi L Cantarel
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - LuAnn Thompson-Snipes
- Department of Medicine, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | | | - Linda A Feagins
- Gastroenterology and Hepatology, Veteran Affairs North Texas Health Care System, Dallas, Texas, USA
| | - Rhonda F Souza
- Department of Medicine, Baylor Scott and White Center for Esophageal Research, Dallas, Texas, USA
| | - Jason C Mills
- Internal Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | | | - K Venuprasad
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | - Arianne L Theiss
- Department of Medicine, Baylor Scott and White Research Institute, Dallas, Texas, USA
| |
Collapse
|
12
|
Bartlett A, Gullickson RG, Singh R, Ro S, Omaye ST. The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. APPLIED SCIENCES 2020; 10:6421. [DOI: 10.3390/app10186421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this review is to provide recent evidence for the oral–gut axis connection and to discuss gastrointestinal (GI) immune response, inflammatory bowel disease (IBD) pathogenesis, and potential salivary biomarkers for determining GI health. IBD affects an estimated 1.3% of the US adult population. While genetic predisposition and environment play a role, abnormal immune activity and microbiota dysbiosis within the gastrointestinal tract are also linked in IBD pathogenesis. It has been inferred that a reduced overall richness of bacterial species as well as colonization of opportunistic bacteria induce systemic inflammation in the GI tract. Currently, there is supporting evidence that both oral and gut microbiota may be related to the development of IBD. Despite this, there are currently no curative therapies for IBD, and diagnosis requires samples of blood, stool, and invasive diagnostic imaging techniques. Considering the relative ease of collection, emerging evidence of association with non-oral diseases may imply that saliva microbiome research may have the potential for gut diagnostic or prognostic value. This review demonstrates a link between saliva and intestinal profiles in IBD patients, suggesting that saliva sampling has the potential to serve as a non-invasive biomarker for gut diseases such as IBD in the oral–gut axis.
Collapse
Affiliation(s)
- Allison Bartlett
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | | | - Rajan Singh
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Stanley T. Omaye
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
13
|
Carco C, Young W, Gearry RB, Talley NJ, McNabb WC, Roy NC. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front Cell Infect Microbiol 2020; 10:468. [PMID: 33014892 PMCID: PMC7509092 DOI: 10.3389/fcimb.2020.00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Caterina Carco
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Richard B Gearry
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Wen JJ, Cummins C, Radhakrishnan RS. Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020. [DOI: https:/doi.org/10.3390/cells9061393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
15
|
Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020; 9:cells9061393. [PMID: 32503314 PMCID: PMC7349507 DOI: 10.3390/cells9061393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
16
|
Chleilat F, Klancic T, Ma K, Schick A, Nettleton JE, Reimer RA. Human Milk Oligosaccharide Supplementation Affects Intestinal Barrier Function and Microbial Composition in the Gastrointestinal Tract of Young Sprague Dawley Rats. Nutrients 2020; 12:nu12051532. [PMID: 32466125 PMCID: PMC7284880 DOI: 10.3390/nu12051532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are chief maternal milk constituents that feed the intestinal microbiota and drive maturation of the infant gut. Our objective was to determine whether supplementing individual HMOs to a weanling diet alters growth and gut health in rats. Healthy three-week-old Sprague Dawley rat pups were randomized to control, 2'-O-fucosyllactose (2'FL)- and 3'sialyllactose (3'SL)-fortified diets alone or in combination at physiological doses for eight weeks. Body composition, intestinal permeability, serum cytokines, fecal microbiota composition, and messenger RNA (mRNA) expression in the gastrointestinal tract were assessed. Males fed a control diet were 10% heavier and displayed elevated interleukin (IL-18) (p = 0.01) in serum compared to all HMO-fortified groups at week 11. No differences in body composition were detected between groups. In females, HMOs did not affect body weight but 2'FL + 3'SL significantly increased cecum weight. All female HMO-fortified groups displayed significant reductions in intestinal permeability compared to controls (p = 0.02). All HMO-fortified diets altered gut microbiota composition and mRNA expression in the gastrointestinal tract, albeit differently according to sex. Supplementation with a fraction of the HMOs found in breast milk has a complex sex-dependent risk/benefit profile. Further long-term investigation of gut microbial profiles and supplementation with other HMOs during early development is warranted.
Collapse
Affiliation(s)
- Faye Chleilat
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (F.C.); (T.K.); (K.M.); (J.E.N.)
| | - Teja Klancic
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (F.C.); (T.K.); (K.M.); (J.E.N.)
| | - Kyle Ma
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (F.C.); (T.K.); (K.M.); (J.E.N.)
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Jodi E. Nettleton
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (F.C.); (T.K.); (K.M.); (J.E.N.)
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (F.C.); (T.K.); (K.M.); (J.E.N.)
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
17
|
Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Front Immunol 2020; 11:965. [PMID: 32508838 PMCID: PMC7251035 DOI: 10.3389/fimmu.2020.00965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes, are proposed to be critical components of an innate immune response in the colon against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These short cationic peptides are bactericidal against both Gram-positive and -negative enteric pathogens, but may also exert killing effects on intestinal luminal microbiota. Simultaneously, these peptides modulate numerous cellular responses crucial for gut defenses, including leukocyte chemotaxis and migration, wound healing, cytokine production, cell proliferation, and pathogen sensing. This review discusses recent advances in our understanding of expression, mechanisms of action and microbicidal and immunomodulatory functions of major colonic host defense peptides, namely cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III (RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed herein uncover roles of host defense peptides aimed to promote epithelial defenses and prevent pathogen colonization, mediated through a combination of direct antimicrobial function and fine-tuning of host immune response and inflammation. This interactive host defense peptide network may decode how the intestinal immune system functions to quickly clear infections, restore homeostasis and avoid damaging inflammation associated with pathogen persistence during infectious colitis. This information is of interest in development of host defense peptides (either alone or in combination with reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for controlling infectious colitis.
Collapse
Affiliation(s)
- Graham A D Blyth
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Connors
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Fodor
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|