1
|
Wang C, Wang C, Wang M, Wang M, Ni Q, Sun J, Sun B, Wang Y. Minimally Invasive Real-Time Monitoring for Rapid and Sensitive Diagnosis of Spinal Cord Injury. ACS Sens 2024; 9:5058-5068. [PMID: 39401952 DOI: 10.1021/acssensors.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological injury that is currently extremely difficult to cure clinically. SCI involves numerous pathophysiological processes, and microRNAs (miRNAs) play an important role in these processes. Meanwhile, miRNAs have received a lot of attention for their role in other diseases as well. Therefore, the detection of disease-related miRNAs is important for the study of disease development, treatment, and prognosis. With the rapid development of molecular biology, the traditional detection methods of miRNA can no longer meet the needs of experiments. Electrochemical detection methods are widely used because of their excellent detection performance. Here, we designed an electrochemical sensor prepared using borosilicate glass microneedle electrodes for real-time monitoring of miR-21-5p expression in vivo after SCI. The sensor showed a good linear relationship between the oxidation peak current value and the concentration of miR-21-5p in the concentration range 0-2 fM (Y = 12.025X + 90.396, R2 = 0.98). The limit of detection (LOD) of the sensor was 0.3667 fM. The experimental results showed that the borosilicate glass microneedle electrochemical sensor achieved fast, accurate, highly sensitive, highly specific, highly stable, and reproducible monitoring of miR-21-5p. More importantly, the electrochemical sensor has a better clinical translation prospect, which is important for the research of clinical diseases.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Cai Wang
- Binhai County People's Hospital, Yancheng, Jiangsu 224500, China
| | - Minyue Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
2
|
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L, Weber B. The Ambivalent Role of miRNA-21 in Trauma and Acute Organ Injury. Int J Mol Sci 2024; 25:11282. [PMID: 39457065 PMCID: PMC11508407 DOI: 10.3390/ijms252011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Since their initial recognition, miRNAs have been the subject of rising scientific interest. Especially in recent years, miRNAs have been recognized to play an important role in the mediation of various diseases, and further, their potential as biomarkers was recognized. Rising attention has also been given to miRNA-21, which has proven to play an ambivalent role as a biomarker. Responding to the demand for biomarkers in the trauma field, the present review summarizes the contrary roles of miRNA-21 in acute organ damage after trauma with a specific focus on the role of miRNA-21 in traumatic brain injury, spinal cord injury, cardiac damage, lung injury, and bone injury. This review is based on a PubMed literature search including the terms "miRNA-21" and "trauma", "miRNA-21" and "severe injury", and "miRNA-21" and "acute lung respiratory distress syndrome". The present summary makes it clear that miRNA-21 has both beneficial and detrimental effects in various acute organ injuries, which precludes its utility as a biomarker but makes it intriguing for mechanistic investigations in the trauma field.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60486 Frankfurt am Main, Germany; (J.H.); (S.B.); (D.H.); (I.M.); (L.L.); (B.W.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Shen W, Cai J, Li J, Li W, Shi P, Zhao X, Feng S. Regulation of MicroRNAs After Spinal Cord Injury in Adult Zebrafish. J Mol Neurosci 2024; 74:66. [PMID: 38990400 DOI: 10.1007/s12031-024-02242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Spinal cord injury (SCI) is a central nerve injury that often leads to loss of motor and sensory functions at or below the level of the injury. Zebrafish have a strong ability to repair after SCI, but the role of microRNAs (miRNAs) after SCI remains unclear. Locomotor behavior analysis showed that adult zebrafish recovered about 30% of their motor ability at 2 weeks and 55% at 3 weeks after SCI, reflecting their strong ability to repair SCI. Through miRNA sequencing, mRNA sequencing, RT-qPCR experiment verification, and bioinformatics predictive analysis, the key miRNAs and related genes in the repair of SCI were screened. A total of 38 miRNAs were significantly different, the top ten miRNAs were verified by RT-qPCR. The prediction target genes were verified by the mRNAs sequencing results at the same time point. Finally, 182 target genes were identified as likely to be networked regulated by the 38 different miRNAs. GO and KEGG enrichment analysis found that miRNAs targeted gene regulation of many key pathways, such as membrane tissue transport, ribosome function, lipid binding, and peroxidase activity. The PPI network analysis showed that miRNAs were involved in SCI repair through complex network regulation, among which dre-miR-21 may enhance cell reversibility through nop56, and that dre-miR-125c regulates axon growth through kpnb1 to repair SCI.
Collapse
Affiliation(s)
- Wenyuan Shen
- Department of Orthopedics, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Jinze Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Wenchang Li
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Pengcheng Shi
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China
| | - Xiumei Zhao
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Shiqing Feng
- Department of Orthopedics, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
5
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
6
|
Baroudi M, Rezk A, Daher M, Balmaceno-Criss M, Gregoryczyk JG, Sharma Y, McDonald CL, Diebo BG, Daniels AH. Management of traumatic spinal cord injury: A current concepts review of contemporary and future treatment. Injury 2024; 55:111472. [PMID: 38460480 DOI: 10.1016/j.injury.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anna Rezk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerzy George Gregoryczyk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yatharth Sharma
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Lu CW, Lin TY, Chiu KM, Lee MY, Wang SJ. Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats. Biomolecules 2024; 14:589. [PMID: 38785996 PMCID: PMC11118014 DOI: 10.3390/biom14050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 μM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
8
|
Wang C, Wang C, Lu W, Wang Y, Yue Q, Xin D, Sun B, Wu J, Sun J, Wang Y. Novel SERS Signal Amplification Strategy for Ultrasensitive and Specific Detection of Spinal Cord Injury-Related miRNA. ACS Sens 2024; 9:736-744. [PMID: 38346401 DOI: 10.1021/acssensors.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The expression of microRNA (miRNA) changes in many diseases plays an important role in the diagnosis, treatment, and prognosis of diseases. Spinal cord injury (SCI) is a serious disease of the central nervous system, accompanied by inflammation, cell apoptosis, neuronal necrosis, axonal rupture, demyelination, and other pathological processes, resulting in impaired sensory and motor functions of patients. Studies have shown that miRNA expression has changed after SCI, and miRNAs participate in the pathophysiological process and treatment of SCI. Therefore, quantitative analysis and monitoring of the expression of miRNA were of great significance for the diagnosis and treatment of SCI. Through the SCI-related miRNA chord plot, we screened out miRNA-21-5p and miRNA-let-7a with a higher correlation. However, for traditional detection strategies, it is still a great challenge to achieve a fast, accurate, and sensitive detection of miRNA in complex biological environments. The most frequently used method for detecting miRNAs is polymerase chain reaction (PCR), but it has disadvantages such as being time-consuming and cumbersome. In this paper, a novel SERS sensor for the quantitative detection of miRNA-21-5p and miRNA-let-7a in serum and cerebrospinal fluid (CSF) was developed. The SERS probe eventually formed a sandwich-like structure of Fe3O4@hpDNA@miRNA@hpDNA@GNCs with target miRNAs, which had high specificity and stability. This SERS sensor achieved a wide range of detection from 1 fM to 1 nM and had a good linear relationship. The limits of detection (LOD) for miRNA-21-5p and miRNA-let-7a were 0.015 and 0.011 fM, respectively. This new strategy realized quantitative detection and long-term monitoring of miRNA-21-5p and miRNA-let-7a in vivo. It is expected to become a powerful biomolecule analysis tool and will provide ideas for the diagnosis and treatment of many diseases.
Collapse
Affiliation(s)
- Cai Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Yanjiao Wang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Qianwen Yue
- Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Dongyuan Xin
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingguo Wu
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
9
|
Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H, Wang X. Gypenoside Pretreatment Alleviates the Cerebral Ischemia Injury via Inhibiting the Microglia-Mediated Neuroinflammation. Mol Neurobiol 2024; 61:1140-1156. [PMID: 37688709 DOI: 10.1007/s12035-023-03624-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Neuroinflammation is closely related to prognosis in ischemic stroke. Microglia are the main immune cells in the nervous system. Under physiological conditions, microglia participate in clearance of dead cells, synapse pruning and regulation of neuronal circuits to maintain the overall health of the nervous system. Once ischemic stroke occurs, microglia function in the occurrence and progression of neuroinflammation. Therefore, the regulation of microglia-mediated neuroinflammation is a potential therapeutic strategy for ischemic stroke. The anti-inflammatory activity of gypenosides (GPs) has been confirmed to be related to the activity of microglia in other neurological diseases. However, the role of GPs in neuroinflammation after ischemic stroke has not been studied. In this study, we investigated whether GPs could reduce neuroinflammation by regulating microglia and the underlying mechanism through qRT-PCR and western blot. Results showed that GPs pretreatment mitigated blood-brain barrier (BBB) damage in the mice subjected to middle cerebral artery occlusion (MCAO) and improved motor function. According to the results of immunofluorescence staining, GPs pretreatment alleviated neuroinflammation in MCAO mice by reducing the number of microglia and promoting their phenotypic transformation from M1 to M2. Furthermore, GPs pretreatment reduced the number of astrocytes in the penumbra and inhibited their polarization into the A1 type. We applied oxygen and glucose deprivation (OGD) on BV2 cells to mimic ischemic conditions in vitro and found similar effect as that in vivo. At the molecular level, the STAT-3/HIF1-α and TLR-4/NF-κB/HIF1-α pathways were involved in the anti-inflammatory effects of GPs in vitro and in vivo. Overall, this research indicates that GPs are potential therapeutic agents for ischemic stroke and has important reference significance to further explore the possibility of GPs application in ischemic stroke.
Collapse
Affiliation(s)
- Xue Xia
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyuan Ren
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingli Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haoyang Cheng
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Deng WY, Zhou CL, Zeng MY. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117070. [PMID: 37625608 DOI: 10.1016/j.jep.2023.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.
Collapse
Affiliation(s)
- Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Cheng-Long Zhou
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, Guangdong, PR China
| | - Meng-Ya Zeng
- Cardiovascular Disease Clinical Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China.
| |
Collapse
|
11
|
Li B, Mei XF. Naringin may promote functional recovery following spinal cord injury by modulating microglial polarization through the PPAR-γ/NF-κB signaling pathway. Brain Res 2023; 1821:148563. [PMID: 37661010 DOI: 10.1016/j.brainres.2023.148563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE The flavonoid Naringin (Nar) has been extensively investigated and found to have multiple pharmacological properties, including neuroprotection. Although recent reports have shown that Nar can effectively treat spinal cord injury (SCI), its potential mechanism remains unknown. This study aimed to investigate the effects of Nar on motor recovery and inflammatory responses after SCI and to elucidate its mechanism. METHODS SCI rat models were established using Allen's weight-drop method. The rats were intragastrically given Nar (40 mg/kg) for 21 d, and their motor function before surgery and on the 1st, 3rd, 7th, 14th, 21st days after surgery was assessed by the Basso-Beattie-Bresnahan (BBB) scale and examined by the grid walking test (GWT). The enzyme linked immunosorbent assay (ELISA) was used to detect the interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 levels in rat spinal cord tissues, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure the mRNA expression levels of microglial activation markers CD68 and ionized calcium binding adaptor molecule 1 (Iba-1), M1 markers inducible nitric oxide synthase (iNOS) and IL-6, and M2 markers CD206 and Arginase 1 (Arg1). The expression levels of peroxisome proliferator-activated receptor gamma/nuclear factor kappa B (PPAR-γ/NF-κB) pathway-related proteins in rat spinal cord tissues were determined using western blotting. RESULTS Nar significantly increased the BBB score and decreased the mean error rate of GWT in SCI rats. Additionally, Nar effectively inhibited microglial activation and expression of M1 markers in spinal cord tissues. It also elevated M2 polarization-related gene expression and significantly lowered the levels of inflammatory factors. Further investigation showed that Nar enhanced the expression of PPAR-γ protein and inhibited NF-κB pathway activity. CONCLUSION Nar promotes functional recovery by regulating microglial polarization and inhibiting the inflammatory response in SCI, and its mechanism may be related to the PPAR-γ/NF-κB signaling pathway activity.
Collapse
Affiliation(s)
- Bo Li
- Suzhou Medical College of Soochow University. Suzhou, Jiangsu 215000, China; Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xi-Fan Mei
- Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China.
| |
Collapse
|
12
|
Zang L, Fu D, Zhang F, Li N, Ma X. Tenuigenin activates the IRS1/Akt/mTOR signaling by blocking PTPN1 to inhibit autophagy and improve locomotor recovery in spinal cord injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116841. [PMID: 37355079 DOI: 10.1016/j.jep.2023.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TEN) is a main pharmacologically active component of Polygala tenuifolia Willd. (Polygalaceae), which has shown neuroprotective functions in Alzheimer's disease. Moreover, TEN also demonstrated an anti-oxidative impact in an in vitro model of Parkinson's disease, reducing damage and loss of dopaminergic neurons. AIM This work focuses on the impact of TEN on locomotor recovery following spinal cord injury (SCI) and underpinning molecules involved. METHODS A rat model of SCI was generated, and the rats were treated with TEN, oe-PTPN1 (PTP non-receptor type 1), a protein kinase B (Akt)/mammalian target of rapamycin (mTOR) antagonist LY294002, or an autophagy inhibitor 3-methyladenine (3-MA). Subsequently, locomotor function was detected. Pathological changes and neuronal activity in the spinal cord tissues were analyzed by hematoxylin and eosin staining, Nissl staining, and TUNEL assays. Protein expression of Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I, PTPN1, IRS1, mTOR, and phosphorylated Akt (p-Akt) was analyzed by western blot assays. The LC3B expression was further examined by immunofluorescence staining. RESULTS Treatment with TEN restored the locomotor function of SCI rats, reduced the cavity area and cell apoptosis, upregulated growth-associated protein 43 and neurofilament 200, and decreased the Beclin-1 and LC3B-II/LC3B-I levels in the spinal cord. TEN suppressed PTPN1 protein level, while PTPN1 suppressed IRS1 protein to reduce the p-Akt and mTOR levels. Either PTPN1 overexpression or LY294002 treatment blocked the promoting effect of TEN on SCI recovery. However, treatment with 3-MA suppressed autophagy, which consequently rescued the locomotor function and reduced neuron loss induced by PTPN1. CONCLUSION This study demonstrates that TEN suppresses autophagy to promote function recovery in SCI rats by blocking PTPN1 and rescuing the IRS1/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Ning Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Xue Ma
- Department of Emergency, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, PR China.
| |
Collapse
|
13
|
Zhou K, Zhang Y, Zhou Y, Xu M, Yu S. Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo. Molecules 2023; 28:7001. [PMID: 37836844 PMCID: PMC10574100 DOI: 10.3390/molecules28197001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The enzymatic transformation of the sugar moiety of the gypenosides provides a new way to obtain more pharmacologically active components. A gene encoding a family 1 glycosyl hydrolase from Bifidobacterium dentium was cloned and expressed in Escherichia coli. The recombinant enzyme was purified, and its molecular weight was approximately 44 kDa. The recombinant BdbglB exhibited an optimal activity at 35 °C and pH 5.4. The purified recombinant enzyme, exhibiting β-glucosidase activity, was used to produce gypenoside XVII (Gyp XVII) via highly selective and efficient hydrolysis of the outer glucose moiety linked to the C-3 position in ginsenoside Rb1 (G-Rb1). Under the optimal reaction conditions for large scale production of gypenoside XVII, 40 g ginsenoside Rb1 was transformed by using 45 g crude enzyme at pH 5.4 and 35 °C for 10 h with a molar yield of 100%. Furthermore, the anti-inflammatory effects of the product gypenoside XVII and its conversion precursor ginsenoside Rb1 were evaluated by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammation model of mouse ear edema, respectively. Gypenoside XVII showed improved anti-inflammatory activity, which significantly inhibited the generation of TNF-α and IL-6 more effectively than its precursor ginsenoside Rb1. In addition, the swelling inhibition rate of gypenoside XVII was 80.55%, while the rate of its precursor was 40.47%, the results also indicated that gypenoside XVII had better anti-inflammatory activity than ginsenoside Rb1. Hence, this enzymatic method would be useful in the large-scale production of gypenoside XVII, which may become a new potent anti-inflammatory candidate drug.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (K.Z.); (Y.Z.); (Y.Z.); (M.X.)
| |
Collapse
|
14
|
Zhang L, Wang X, He S, Zhang F, Li Y. Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116466. [PMID: 37031821 DOI: 10.1016/j.jep.2023.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of renal fibrosis caused by chronic kidney disease is increasing year by year. Preventing the activation and conversion of kidney-intrinsic fibroblasts to a myofibroblast phenotype is an important target for blocking the development of renal interstitial fibrosis. Our team established a stable renal interstitial fibrosis cell model in the early stage, and the screening results showed that GPs has good anti-fibrosis potential. At this stage, only a few literatures have reported its anti-fibrosis effect, and the mechanism of action is still unclear. AIM OF THE STUDY The massive synthesis and secretion of extracellular-matrix (ECM) components by activated fibroblasts in the kidneys causes irreversible renal interstitial fibrosis. Gypenosides (GPs) have been shown to decelerate this process, in which micro RNAs (miRNAs) play an important regulatory role. This study aimed to evaluate the mechanism underlying the suppressive effect of GPs on renal fibrosis. MATERIALS AND METHODS This study used TGF-β1-stimulated NRK-49F renal cells as an in-vitro model of renal interstitial fibrosis. First, the concentration range of GPs that significantly affects the cytoactive was determined. Then, the anti-fibrotic effects of various concentrations of GPs in the in-vitro model were assessed via immunofluorescence, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Non-coding-RNA sequencing combined with bioinformatics was used to predict the mechanistic basis of the anti-fibrotic effect of GPs, and qRT-PCR was used to verify the sequencing results and bioinformatic predictions. The identified relationships of the anti-fibrotic effect of GPs with miR-378a-5p and the PI3K/AKT signaling were evaluated using a miR-NC mimic and the PI3K inhibitor LY294002 as controls, respectively. RESULTS TGF-β1 stimulation up-regulated α-SMA, COL1, and COL3 in NRK-49F cells, and this effect was suppressed by GPs. Additionally, TGF-β1 stimulation significantly changed the expression levels of 151 miRNAs, and GPs significantly suppressed the effect of TGF-β1 on the levels of 18 of these miRNAs. Among them, miR-3588 and miR-378a-5p were down-regulated, and miR-135b-5p and miR-3068-5p were up-regulated upon TGF-β1 induction. Of these miRNAs, miR-378a-5p was predicted to target the mRNAs of numerous proteins mainly enriched in the PI3K/AKT signaling pathway. The miRNA transfection experiments with the miR-NC mimic and PI3K inhibitor as controls showed that miR-378a-5p overexpression could suppress the TGF-β1-induced up-regulation of α-SMA, COL1, PI3K, and AKT, including the phosphorylated form (p-AKT). CONCLUSION GPs inhibit the PI3K/AKT signaling by up-regulating miR-378a-5p in TGF-β1-stimulated NRK-49F cells and thereby reduce their massive secretion of ECM components. Given that this in-vitro model of renal interstitial fibrosis closely mimics the in-vivo pathogenesis, our results most likely apply to the in-vivo conditions.
Collapse
Affiliation(s)
- Lan Zhang
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Xiting Wang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55 Zhongguancun East Road, Beijing, 100190, China.
| | - Shuangshuang He
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Fang Zhang
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Yu Li
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
15
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
16
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
17
|
Wang Y, Luo H, Liu Y, Yang C, Yin Y, Tan B. Multimodal rehabilitation promotes axonal sprouting and functional recovery in a murine model of spinal cord injury (SCI). Neurosci Lett 2023; 795:137029. [PMID: 36566832 DOI: 10.1016/j.neulet.2022.137029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder affecting millions of people worldwide, resulting in severe and permanent disabilities that significantly impact the individual's life. Rehabilitation is a commonly accepted and effective clinical treatment modality for neurological disabilities. A single form of rehabilitation training is, however, limited. Indeed, recent studies have reported that a combination of various training strategies may be more promising in promoting functional recovery. However, few studies have focused on combining different forms of rehabilitative training. Here, we investigated the effect of combining treadmill training and single pellet grasping in a well-established model of murine SCI to assess whether combining rehabilitation approaches improve outcomes. In brief, one week following crush SCI, mice were subjected to the treadmill and single pellet grasping training (SPG) for a period of six weeks. Biotinylated dextran amine (BDA) was used to anterogradely trace corticospinal tract axons to assess functionally relevant axonal sprouting. Our results revealed that the combined training upregulated p-S6 expression, facilitated axonal sprouting, increased the formation of functional synaptic connections, and promoted functional recovery of the upper limb. Our study provides experimental evidence for the benefit of combining multiple modalities of rehabilitative strategies.
Collapse
Affiliation(s)
- Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
18
|
Dong X, Nao J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154501. [PMID: 36368284 DOI: 10.1016/j.phymed.2022.154501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurological disorders, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, and glioblastoma often lead to long-term disability and death. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs of approximately 22 nucleotides, known to participate in both normal and pathological development, making them ideal therapeutic targets for clinical intervention. Several recent studies have suggested that plant-derived bioactive compounds (PDBCs) can have anti-atherosclerosis, antioxidant, and anti-inflammatory effects by regulating miRNAs. Thus, miRNAs are novel targets for the action of PDBCs. PURPOSE The aim of this review was to evaluate the current status of PDBCs targeted miRNAs by dissecting their development status through a literature review. METHODS A manual and electronic search was performed for English articles available from inception up to June 2022 reporting PDBCs and their regulating relationship with miRNAs for the therapeutic potential of neurological disorders. Information was retrieved from scientific databases including PubMed, ScienceDirect, Web of Science, Google Scholar and Chemical Abstracts Services. Keywords used for the search engines were "miRNAs" AND "Plant-derived bioactive compounds" in conjunction with "(native weeds OR alien invasive)" AND "traditional herbal medicine". RESULTS A total of 37 articles were retrieved on PDBCs and their related miRNAs in neurological disorders. These PDBCs from traditional herbal medicine may play a therapeutic role in neurological disorders in a variety of mechanisms by regulating the corresponding miRNAs. These mechanisms mainly include inhibiting oxidative stress, anti-neuroinflammation, anti-autophagy, and anti-apoptosis. PDBC are a group of chemically distinct compounds derived from medicinal plants, some of which have therapeutic effects on neurological disorders. CONCLUSION The emergence of miRNAs as pathological regulatory factors provides a new direction for the study of bioactive compounds in Traditional Chinese medicine and the elucidating of their epigenetic effects. Elucidating the regulatory relationship between bioactive compounds and miRNAs may help to identify new therapeutic targets and promoting the application of these compounds in precision medicine through their targeted molecular activity.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
19
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
20
|
Jin X, Guan K, Chen Z, Sun Y, Huo H, Wang J, Dong H. The protective effects of nesfatin-1 in neurological dysfunction after spinal cord injury by inhibiting neuroinflammation. Brain Behav 2022; 12:e2778. [PMID: 36271663 PMCID: PMC9660404 DOI: 10.1002/brb3.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Spinal cord injury (SCI) is one of the most severe neurological diseases. However, there is still no effective treatment for it. Nesfatin, a precursor neuropeptide derived from nucleobindin 2 (NUCB2), has displayed a wide range of protective effects in different types of cells and tissue. However, the effects of nesfatin-1 in SCI have not been reported before. MATERIALS AND METHODS A SCI model was established. The behavior of mice was assessed using the Basso, Beattie, and Bresnahan (BBB) assessment. RESULTS Here, we report that the administration of nesfatin-1 improved neurological recovery in SCI mice by increasing BBB scores, reducing lesion area volume and spinal cord water content. Also, nesfatin-1 ameliorated oxidative stress by reducing reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. We also found that nesfatin-1 prevented neuronal apoptosis in SCI mice by reducing caspase 3 activity and the expression of Bax, as well as increasing B-cell lymphoma-2 (Bcl-2). Additionally, nesfatin-1 reduced the levels of interleukin 6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Nesfatin-1 also promoted microglia towards M2 polarization by increasing the marker CD206 but reducing CD16. Importantly, nesfatin-1 enhanced the phosphorylation of signal transducer and activator of transcription 1 (STAT1) but reduced the expression levels of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor kappa-B p65 (p-NF-κB p65). CONCLUSION Our findings imply that nesfatin-1 exerts neuroprotective actions in SCI by promoting the activation of M2 microglia, and its underlying mechanisms might be related to the activation of STAT1 and inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Kai Guan
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Zhengyu Chen
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Yongwei Sun
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Hongjun Huo
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Jinle Wang
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Huihui Dong
- Department of Orthopedics II, the First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| |
Collapse
|
21
|
Zheng F, Zhao H, Wang N, Zhong P, Zhou K, Yu S. Cloning and characterization of thermophilic endoglucanase and its application in the transformation of ginsenosides. AMB Express 2022; 12:136. [DOI: 10.1186/s13568-022-01473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractA novel endoglucanase (BcelFp) was identified from Fervidobaterium pennivorans DSM9078 which had biotransformation activity for protopanaxadiol (PPD)-type ginsenosides. Sequence analysis of BcelFp revealed that it could be classified into glycoside hydrolase family 5 (GH5). The gene encoding a 323-amino acid protein was cloned and expressed in Escherichia coli. The recombinant enzyme was purified, and its molecular weight was approximate 37 kDa. The recombinant BcelFp exhibited an optimal activity at 95 oC and pH 5.5 and showed high thermostability. The endoglucanase had high selectivity for cleaving the outer glucose moiety at the C3 carbon of ginsenoside Rb1, Rb2, Rc and Rd, which produced stronger pharmacologically active gypenoside XVII (GypXVII), Compound O (CO), Compound Mc1 (CMc1) and F2, respectively. The Km values for Rb1, Rb2, Rc and Rd were 3.66 ± 0.04 µM, 4.02 ± 0.12 µM, 5.95 ± 0.03 µM, 0.67 ± 0.006 µM, respectively. The kcat/Km value of BcelFp for ginsenoside Rd was 27.91 mM-1s-1, which was much higher than that of the previously enzymes. This study was the first report of the highly efficient and selective transformation of GypXVII, CO, CMc1 and F2 from Rb1, Rb2, Rc and Rd by a GH5-family thermophilic endoglucanase.
Collapse
|
22
|
Liu YP, Tian MY, Yang YD, Li H, Zhao TT, Zhu J, Mou FF, Cui GH, Guo HD, Shao SJ. Schwann cells-derived exosomal miR-21 participates in high glucose regulation of neurite outgrowth. iScience 2022; 25:105141. [PMID: 36204278 PMCID: PMC9529988 DOI: 10.1016/j.isci.2022.105141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
As a common complication of diabetes, the pathogenesis of diabetic peripheral neuropathy (DPN) is closely related to high glucose but has not been clarified. Exosomes can mediate crosstalk between Schwann cells (SC) and neurons in the peripheral nerve. Herein, we found that miR-21 in serum exosomes from DPN rats was decreased. SC proliferation was inhibited, cell apoptosis was increased, and the expression of miR-21 in cells and exosomes was downregulated when cultured in high glucose. Increasing miR-21 expression reversed these changes, while knockdown of miR-21 led to the opposite results. When co-cultured with exosomes derived from SC exposed to high glucose, neurite outgrowth was inhibited. On the contrary, neurite outgrowth was accelerated when incubated with exosomes rich in miR-21. We further demonstrated that the SC-derived exosomal miR-21 participates in neurite outgrowth probably through the AKT signaling pathway. Thus, SC-derived exosomal miR-21 contributes to high glucose regulation of neurite outgrowth. The miR-21 was decreased in serum exosomes and sciatic nerve of DPN rats High glucose inhibited SC viability and downregulated the expression of miR-21 Exosomes derived from SC cultured in high glucose inhibited the neurite outgrowth SC-derived exosomes rich in miR-21 accelerated the neurite outgrowth of neuron
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Ming-yue Tian
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
- Corresponding author
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| |
Collapse
|
23
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
24
|
Geng YN, Zhao M, Yang JL, Cheng X, Han Y, Wang CB, Jiang XF, Fan M, Zhu LL. GP-14 protects against severe hypoxia-induced neuronal injury through the AKT and ERK pathways and its induced transcriptome profiling alteration. Toxicol Appl Pharmacol 2022; 448:116092. [PMID: 35654276 DOI: 10.1016/j.taap.2022.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Gypenosides are major bioactive ingredients of G. pentaphyllum. In our previous study, we found that gypenosides had neuroprotective effects against hypoxia-induced injury. In the current study, we focused on the protective effects of gypenoside-14 (GP-14), which is one of the newly identified bioactive components, on neuronal injury caused by severe hypoxia (0.3% O2). The results showed that GP-14 pretreatment alleviated the cell viability damage and apoptosis induced by hypoxia in PC12 cells. Moreover, GP-14 pretreatment also attenuated primary neuron injuries under hypoxic conditions. Additionally, GP-14 pretreatment significantly ameliorated neuronal damage in the hippocampal region induced by high-altitude cerebral edema (HACE). At the molecular level, GP-14 pretreatment reversed the decreased activities of the AKT and ERK signaling pathways caused by hypoxia in PC12 cells and primary neurons. To comprehensively explore the possible mechanisms, transcriptome sequencing was conducted, and these results indicated that GP-14 could alter the transcriptional profiles of primary neuron. Taken together, our results suggest that GP-14 acts as a neuroprotective agent to protect against neuronal damage induced by severe hypoxia and it is a promising compound for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Ya-Nan Geng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ying Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xiu-Fang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Fan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China; School of information Science & Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China; Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
25
|
Wang X, Fu Y, Botchway BOA, Zhang Y, Zhang Y, Jin T, Liu X. Quercetin Can Improve Spinal Cord Injury by Regulating the mTOR Signaling Pathway. Front Neurol 2022; 13:905640. [PMID: 35669881 PMCID: PMC9163835 DOI: 10.3389/fneur.2022.905640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of spinal cord injury (SCI) is complex. At present, there is no effective treatment for SCI, with most current interventions focused on improving the symptoms. Inflammation, apoptosis, autophagy, and oxidative stress caused by secondary SCI may instigate serious consequences in the event of SCI. The mammalian target of rapamycin (mTOR), as a key signaling molecule, participates in the regulation of inflammation, apoptosis, and autophagy in several processes associated with SCI. Quercetin can reduce the loss of myelin sheath, enhance the ability of antioxidant stress, and promote axonal regeneration. Moreover, quercetin is also a significant player in regulating the mTOR signaling pathway that improves pathological alterations following neuronal injury. Herein, we review the therapeutic effects of quercetin in SCI through its modulation of the mTOR signaling pathway and elaborate on how it can be a potential interventional agent for SCI.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yuke Fu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yufeng Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| |
Collapse
|
26
|
Li XW, Wu P, Yao J, Zhang K, Jin GY. Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via TLR4-Mediated Microglial Polarization. Appl Bionics Biomech 2022; 2022:4790344. [PMID: 35498148 PMCID: PMC9054478 DOI: 10.1155/2022/4790344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The present study was designed to study the effect of genistein on spinal cord injury (SCI) in mice and to explore its underlying mechanisms. Methods We established SCI mouse model, and genistein was administered for treatment. We used the Basso, Beattie, and Bresnahan (BBB) exercise rating scale to evaluate exercise recovery, and the detection of spinal cord edema was done using the wet/dry weight method. Apoptosis was determined by TUNEL staining, and inflammation was evaluated by measuring inflammatory factors by an ELISA kit. The expression of M1 and M2 macrophage markers was determined using flow cytometry, and the expression of proteins was detected using immunoblotting. Results Genistein treatment not only improved the BBB score but also reduced spinal cord edema in SCI mice. Genistein treatment reduced apoptosis by increasing Bcl2 protein expression and decreasing Bax and caspase 3 protein expression. It also reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in the SCI area of SCI mice. Flow cytometry analysis indicated that genistein treatment significantly decreased the ratio of M1 macrophages (CD45+/Gr-1-/CD11b+/iNOS+) and increased the ratio of M2 macrophages (CD45+/Gr-1-/CD11b+/Arginase 1+) in the SCI area of SCI mice on the 28th day after being treated with genistein. We also found that genistein treatment significantly decreased the expression of TLR4, MyD88, and TRAF6 protein in the SCI area of SCI mice on 28th day after being treated with genistein. Conclusion Our findings suggested that genistein exerted neuroprotective action by inhibiting neuroinflammation by promoting the activation of M2 macrophages, and its underlying mechanisms might be related to the inhibition of the TLR4-mediated MyD88-dependent signaling pathway.
Collapse
Affiliation(s)
- Xin-Wu Li
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Peng Wu
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Jian Yao
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 200011 Shanghai, China
| | - Gen-Yang Jin
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| |
Collapse
|
27
|
The Role of Tissue Geometry in Spinal Cord Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040542. [PMID: 35454380 PMCID: PMC9028021 DOI: 10.3390/medicina58040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Unlike peripheral nerves, axonal regeneration is limited following injury to the spinal cord. While there may be reduced regenerative potential of injured neurons, the central nervous system (CNS) white matter environment appears to be more significant in limiting regrowth. Several factors may inhibit regeneration, and their neutralization can modestly enhance regrowth. However, most investigations have not considered the cytoarchitecture of spinal cord white matter. Several lines of investigation demonstrate that axonal regeneration is enhanced by maintaining, repairing, or reconstituting the parallel geometry of the spinal cord white matter. In this review, we focus on environmental factors that have been implicated as putative inhibitors of axonal regeneration and the evidence that their organization may be an important determinant in whether they inhibit or promote regeneration. Consideration of tissue geometry may be important for developing successful strategies to promote spinal cord regeneration.
Collapse
|
28
|
Meng X, Zhang Y, Li Z, Hu J, Zhang D, Cao W, Li M, Ma G, Wang S, Cui P, Cai Q, Huang G. A novel natural PPARγ agonist, Gypenoside LXXV, ameliorates cognitive deficits by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice. Phytother Res 2022; 36:1770-1784. [PMID: 35192202 DOI: 10.1002/ptr.7413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xiangbao Meng
- College of Pharmacy Jinan University Guangzhou China
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Yuan Zhang
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Zongyang Li
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Jinxian Hu
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Di Zhang
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Weiwei Cao
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Min Li
- School of Chinese Medicine Hong Kong Baptist University Kowloon Hong Kong, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Sicen Wang
- School of Medicine Xi'an Jiaotong University Xi'an China
| | - Ping Cui
- Department of Pharmacy Shenzhen Children's Hospital Shenzhen China
| | - Qian Cai
- College of Pharmacy Jinan University Guangzhou China
| | - Guodong Huang
- Department of Neurosurgery Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| |
Collapse
|