1
|
Yang L, Li H, Wu H, Sun X, Liu S, Lang K, He Z. Astral-based DIA proteomics explored the flavor enhancement mechanism of Chinese traditional smoked bacon by staphylococcal co-fermentation. Food Chem 2025; 463:141563. [PMID: 39395352 DOI: 10.1016/j.foodchem.2024.141563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The proteolysis pattern during mixed fermentation of Staphylococcus cohnii WX-M8 and S. saprophyticus MY-A10 on Chinese bacon was still unknown. In this study, the changing laws of protein degradation products during staphylococcal mixed fermentation were analyzed, followed by an investigation of endogenous enzymes and cellular components, and finally an examination of flavor profiles. Results indicated that mixed fermentation improved protein degradation and promoted the production of peptides and free amino acids (FAAs). Proteolysis of S. saprophyticus MY-A10 was non-specific, and it promoted protein degradation by cooperating with cathepsin L1. S. cohnii WX-M8 was specific and acted mainly with calpain-3 in the thin filament. The fulfillment of S. cohnii WX-M8 function was enhanced in the presence of S. saprophyticus MY-A10. Mixed fermentation showed synergism with endogenous peptidases in degrading peptides to small-molecule peptides or FAAs and complementarity with endogenous dehydrogenases in converting FAAs to volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Li Yang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xueling Sun
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuyun Liu
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Kaitong Lang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
2
|
Maya-González C, De Ståhl TD, Wessman S, Taylan F, Tesi B, Lagerstedt-Robinson K, Tettamanti G, Dukic M, Poluha A, Ljungman G, Nordgren A. Pediatric Soft Tissue Sarcoma in Limb-Girdle Muscular Dystrophy: Molecular Findings and Clinical Implications. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e945715. [PMID: 39733240 PMCID: PMC11694770 DOI: 10.12659/ajcr.945715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas. However, the DSRCT risk and general cancer risk in patients with LGMD is unknown. Here, we delineate the clinical, molecular, and genetic findings of a patient with LGMDR1 who developed a DSRCT. CASE REPORT The patient was a boy who was diagnosed at the age of 9 years with LGMDR1, caused by the biallelic pathogenic variants NP_000061.1:p.(Arg448Cys) and NP_000061.1:p.(Thr184ArgfsTer36) in CAPN3. At 17 years of age, a pathologic soft tissue mass was found in the right pelvis. Immunostaining was positive for Desmin and negative for Myogenin and MyoD1, and RNA sequencing showed a EWSR1::WT1 fusion transcript, confirming the diagnosis of DSRCT. The patient relapsed after 1 year and, following a second relapse, he was started on palliative treatment. No germline variants in childhood cancer predisposition genes were detected by whole genome sequencing. CONCLUSIONS We describe a patient with LGMDR1 who developed a DSRCT. Since associations between LGMD and pediatric cancer are hitherto unknown, further studies are warranted, as little information is currently published about the pediatric cancer risk in this patient group.
Collapse
Affiliation(s)
- Carolina Maya-González
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Teresita Díaz De Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Giorgio Tettamanti
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Milena Dukic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Poluha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Gustaf Ljungman
- Pediatric Oncology, Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Xiong H, Zhang Y, Zhao Z. Investigation of single nucleotide polymorphisms in differentially expressed genes and proteins reveals the genetic basis of skeletal muscle growth differences between Tibetan and Large White pigs. Anim Biosci 2024; 37:2021-2032. [PMID: 38938033 PMCID: PMC11541014 DOI: 10.5713/ab.24.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Skeletal muscle growth is an important economic trait for meat production, with notable differences between Tibetan pigs (TIBPs, a slow-growing breed) and Large White pigs (LWPs, a fast-growing breed). However, the genetic underpinnings of this disparity remain unclear. METHODS In the current study, we integrated differentially expressed genes (DEGs) and proteins (DEPs) from 60-day-old embryonic muscle tissue, along with whole-genome single nucleotide polymorphisms (SNPs) displaying absolute allele frequency differences (ΔAF) of 0.5 or more between the TIBP and LWP breeds, to unravel the genetic factors influencing skeletal muscle growth. RESULTS Our analysis revealed 3,499 DEGs and 628 DEPs with SNPs having a ΔAF equal to or greater than 0.5. Further functional analysis identified 145 DEGs and 23 DEPs involved in biological processes related to skeletal muscle development, and 22 DEGs and 3 DEPs implicated in the mechanistic target of rapamycin kinase signaling pathway, which is known for positively regulating protein synthesis. Among these genes, several DEGs and DEPs, enriched with TIPB-specific SNPs in regulatory or/and coding regions, showed marked ΔAF between the TIBP and LWP breeds, including MYF5, MYOF, ASB2, PDE9A, SDC1, PDGFRA, MYOM2, ACVR1, ZIC3, COL11A1, TGFBR1, EDNRA, TGFB2, PDE4D, PGAM2, GRK2, SCN4B, CACNA1S, MYL4, IGF1, and FOXO1. Additionally, genes such as CAPN3, MYOM2, and PGAM2, identified as both DEPs and DEGs related to skeletal muscle development, contained multiple TIBP-specific and LWP-predominant SNPs in regulatory and/or coding regions, underscoring significant ΔAF differences between the two breeds. CONCLUSION This comprehensive investigation of SNPs in DEGs and DEPs identified a significant number of SNPs and genes related to skeletal muscle development during the prenatal stage. These findings not only shed light on potential causal genes for muscle divergence between the TIBP and LWP breeds but also offer valuable insights for pig breeding strategies aimed at enhancing meat production.
Collapse
Affiliation(s)
- Heli Xiong
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Yan Zhang
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| | - Zhiyong Zhao
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224,
China
| |
Collapse
|
4
|
Cuk M, Unal B, Bevanda A, Hayes CP, Walker M, Abraamyan F, Beluzic R, Gornik KC, Ozretic D, Prutki M, Nie Q, Reddi HV, Ghazani AA. Diagnosis of Two Unrelated Syndromes of Prader-Willi and Calpainopathy: Insight from Trio Whole Genome Analysis and Isodisomy Mapping. Genes (Basel) 2024; 15:946. [PMID: 39062725 PMCID: PMC11276144 DOI: 10.3390/genes15070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). METHODS Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. RESULTS Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. CONCLUSION This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.
Collapse
Affiliation(s)
- Mario Cuk
- Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Busra Unal
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | | | - Connor P. Hayes
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - McKenzie Walker
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - Feruza Abraamyan
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
| | - Robert Beluzic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, Division of Cytogenetics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - David Ozretic
- Department for Diagnostic and Interventional Neuroradiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Maja Prutki
- Department of Radiology, School of Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Qian Nie
- Precision Medicine Laboratory, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (H.V.R.)
| | - Honey V. Reddi
- Precision Medicine Laboratory, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Q.N.); (H.V.R.)
| | - Arezou A. Ghazani
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA; (B.U.); (C.P.H.); (M.W.); (F.A.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Nunes AM, Ramirez MM, Garcia-Collazo E, Jones TI, Jones PL. Muscle eosinophilia is a hallmark of chronic disease in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2024; 33:872-883. [PMID: 38340007 PMCID: PMC11070135 DOI: 10.1093/hmg/ddae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by the aberrant increased expression of the DUX4 retrogene in skeletal muscle cells. The DUX4 gene encodes a transcription factor that functions in zygotic genome activation and then is silenced in most adult somatic tissues. DUX4 expression in FSHD disrupts normal muscle cell function; however, the downstream pathogenic mechanisms are still unclear. Histologically, FSHD affected muscles show a characteristic dystrophic phenotype that is often accompanied by a pronounced immune cell infiltration, but the role of the immune system in FSHD is not understood. Previously, we used ACTA1;FLExDUX4 FSHD-like mouse models varying in severity as discovery tools to identify increased Interleukin 6 and microRNA-206 levels as serum biomarkers for FSHD disease severity. In this study, we use the ACTA1;FLExDUX4 chronic FSHD-like mouse model to provide insight into the immune response to DUX4 expression in skeletal muscles. We demonstrate that these FSHD-like muscles are enriched with the chemoattractant eotaxin and the cytotoxic eosinophil peroxidase, and exhibit muscle eosinophilia. We further identified muscle fibers with positive staining for eosinophil peroxidase in human FSHD muscle. Our data supports that skeletal muscle eosinophilia is a hallmark of FSHD pathology.
Collapse
Affiliation(s)
- Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Monique M Ramirez
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Enrique Garcia-Collazo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Takako Iida Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| |
Collapse
|
6
|
Gebauer J, Hodkovicova N, Tosnerova K, Skoupa K, Batik A, Bartejsova I, Charvatova M, Leva L, Jarosova R, Sladek Z, Faldyna M, Stastny K. Anabolic steroids induced changes at the level of protein expression: Effects of prolonged administration of testosterone and nandrolone to pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104422. [PMID: 38521435 DOI: 10.1016/j.etap.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Synthetic derivatives of steroid hormones, specifically anabolic-androgenic steroids (AAS), have gained prominence due to their observed benefits in enhancing meat quality. The study replicated the administration of banned AAS and investigated their impacts on pigs to contribute to the understanding of animal biochemistry and to explore the feasibility of detecting AAS administration by employing a non-targeted analysis. The effects were corroborated by evaluating changes in the expression of selected proteins, as well as examining haematological and biochemical profiles and histological alterations. Exposure to AAS influenced the expression of proteins related to drug-metabolizing enzymes, muscle and lipid metabolism, kidney function, reproductive processes, immune system functions, and carcinogenic changes. The effects of AAS appear intricate and contingent on factors such as the specific drug used, dosage, and duration of administration. The results underscore that protein expression analysis holds promise as a valuable tool for detecting illicit AAS use in the fattening process.
Collapse
Affiliation(s)
- Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kristyna Skoupa
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Iva Bartejsova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Charvatova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Rea Jarosova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Zbysek Sladek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
7
|
Mao B, Yang J, Zhao X, Jia X, Shi X, Zhao L, Banerjee S, Zhang L, Ma X. Identification and functional characterization of a novel heterozygous splice‑site mutation in the calpain 3 gene causes rare autosomal dominant limb‑girdle muscular dystrophy. Exp Ther Med 2024; 27:97. [PMID: 38356676 PMCID: PMC10865457 DOI: 10.3892/etm.2024.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2023] [Indexed: 02/16/2024] Open
Abstract
Limb-girdle muscular dystrophies are a group of extremely heterogenous neuromuscular disorders that manifest with gradual and progressive weakness of both proximal and distal muscles. Autosomal dominant limb-girdle muscular dystrophy (LGMDD4) or calpainopathy is a very rare form of myopathy characterized by weakness and atrophy of both proximal and distal muscles with a variable age of onset. LGMDD4 is caused by germline heterozygous mutations of the calpain 3 (CAPN3) gene. Patients with LGMDD4 often show extreme phenotypic heterogeneity; however, most patients present with gait difficulties, increased levels of serum creatine kinase, myalgia and back pain. In the present study, a 16-year-old male patient, clinically diagnosed with LGMDD4, was investigated. The proband had been suffering from weakness and atrophy of both of their proximal and distal muscles, and had difficulty walking and standing independently. The serum creatine kinase levels (4,754 IU/l; normal, 35-232 IU/l) of the patient were markedly elevated. The younger sister and mother of the proband were also clinically diagnosed with LGMDD4, while the father was phenotypically normal. Whole exome sequencing identified a heterozygous novel splice-site (c.2440-1G>A) mutation in intron 23 of the CAPN3 gene in the proband. Sanger sequencing confirmed that this mutation was also present in both the younger sister and mother of the proband, but the father was not a carrier of this mutation. This splice-site (c.2440-1G>A) mutation causes aberrant splicing of CAPN3 mRNA, leading to the skipping of the last exon (exon 24) of CAPN3 mRNA and resulting in the removal of eight amino acids from the C-terminal of domain IV of the CAPN3 protein. Hence, this splice site mutation causes the formation of a truncated CAPN3 protein (p.Trp814*) of 813 amino acids instead of the wild-type CAPN3 protein that consists of 821 amino acids. This mutation causes partial loss of domain IV (PEF domain) in the CAPN3 protein, which is involved in calcium binding and homodimerization; therefore, this is a loss-of-function mutation. Relative expression of the mutated CAPN3 mRNA was reduced in comparison with the wild-type CAPN3 mRNA in the proband, and their younger sister and mother. This mutation was also not present in 100 normal healthy control individuals of the same ethnicity. The present study reported the first case of CAPN3 gene-associated LGMDD4 in the Chinese population.
Collapse
Affiliation(s)
- Bin Mao
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jie Yang
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaodong Zhao
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xueling Jia
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Shi
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lihui Zhao
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lili Zhang
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoling Ma
- The Reproductive Medicine Centre, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
8
|
Aguti S, Gallus GN, Bianchi S, Salvatore S, Rubegni A, Berti G, Formichi P, De Stefano N, Malandrini A, Lopergolo D. Novel Biomarkers for Limb Girdle Muscular Dystrophy (LGMD). Cells 2024; 13:329. [PMID: 38391941 PMCID: PMC10886967 DOI: 10.3390/cells13040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE To identify novel biomarkers as an alternative diagnostic tool for limb girdle muscular dystrophy (LGMD). BACKGROUND LGMD encompasses a group of muscular dystrophies characterized by proximal muscles weakness, elevated CK levels and dystrophic findings on muscle biopsy. Heterozygous CAPN3 mutations are associated with autosomal dominant LGMD-4, while biallelic mutations can cause autosomal recessive LGMD-1. Diagnosis is currently often based on invasive methods requiring muscle biopsy or blood tests. In most cases Western blotting (WB) analysis from muscle biopsy is essential for a diagnosis, as muscle samples are currently the only known tissues to express the full-length CAPN3 isoform. METHODS We analyzed CAPN3 in a cohort including 60 LGMD patients. Selected patients underwent a complete neurological examination, electromyography, muscle biopsy, and skin biopsies for primary fibroblasts isolation. The amount of CAPN3 was evaluated by WB analysis in muscle and skin tissues. The total RNA isolated from muscle, fibroblast and urine was processed, and cDNA was used for qualitative analysis. The expression of CAPN3 was investigated by qRT-PCR. The CAPN3 3D structure has been visualized and analyzed using PyMOL. RESULTS Among our patients, seven different CAPN3 mutations were detected, of which two were novel. After sequencing CAPN3 transcripts from fibroblast and urine, we detected different CAPN3 isoforms surprisingly including the full-length transcript. We found comparable protein levels from fibroblasts and muscle tissue; in particular, patients harboring a novel CAPN3 mutation showed a 30% reduction in protein compared to controls from both tissues. CONCLUSIONS Our findings showed for the first time the presence of the CAPN3 full-length transcript in urine and skin samples. Moreover, we demonstrated surprisingly comparable CAPN3 protein levels between muscle and skin samples, thus allowing us to hypothesize the use of skin biopsy and probably of urine samples as an alternative less invasive method to assess the amount of CAPN3 when molecular diagnosis turns out to be inconclusive.
Collapse
Affiliation(s)
- Sara Aguti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Simona Salvatore
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Anna Rubegni
- Molecular Medicine for Neurodegenerative and Neuromuscular Disease Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.A.); (G.N.G.); (S.B.); (S.S.); (G.B.); (P.F.); (N.D.S.); (A.M.)
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100 Siena, Italy
| |
Collapse
|
9
|
ŞAHİN İO, KARATAŞ E, DEMİR M, TAN B, PER H, ÖZKUL Y, DÜNDAR M. A retrospective study on the clinical and molecular outcomes of calpainopathy in a Turkish patient cohort. Turk J Med Sci 2023; 54:86-98. [PMID: 38812636 PMCID: PMC11031166 DOI: 10.55730/1300-0144.5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/15/2024] [Accepted: 12/18/2023] [Indexed: 05/31/2024] Open
Abstract
Background and aim Calpainopathy, also known as limb-girdle muscular dystrophy recessive type 1, is a progressive muscle disorder that impacts the muscles around the hips and shoulders. The disease is caused by defects in the CAPN3 gene and can be inherited in both recessive and dominant forms. In this retrospective study, we aimed to evaluate the clinical and molecular results of our patients with calpainopathy and to examine the CAPN3 variants in Turkish and global populations. Materials and methods Molecular analyses were performed using the next-generation sequencing (NGS) method. CAPN3 variants were identified through the examination of various databases. Results In this retrospective study, the cohort consisted of seven patients exhibiting the CAPN3 (NM_000070.3) mutation and a phenotype compatible with calpainopathy at a single center in Türkiye. All patients displayed high CK levels and muscle weakness. We report a novel missense c.2437G>A variant that causes the autosomal dominant form of calpainopathy. Interestingly, the muscle biopsy report for the patient with the novel mutation indicated sarcoglycan deficiency. Molecular findings for the remaining individuals in the cohort included a compound heterozygous variant (frameshift and missense), one homozygous nonsense, one homozygous intronic deletion, and three homozygous missense variants. The most common variant in the Turkish population was c.550del. In both populations, pathogenic variants were most frequently located in exon 21, according to exon length. Variants were stochastically distributed based on consequences in CAPN3 domains. Conclusion Therefore, the NGS method proves highly effective in diagnosing rare diseases characterized by clinical heterogeneity. Assessing variants based on ethnicity holds significance in the development of precise therapies.
Collapse
Affiliation(s)
- İzem Olcay ŞAHİN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Emine KARATAŞ
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Mikail DEMİR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Büşra TAN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Hüseyin PER
- Department of Pediatric Neurology, Faculty of Medicine, Children’s Hospital, Erciyes University, Kayseri,
Turkiye
| | - Yusuf ÖZKUL
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| | - Munis DÜNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri,
Turkiye
| |
Collapse
|
10
|
Lin F, Yang K, Lin X, Jin M, Chen L, Zheng FZ, Qiu LL, Ye ZX, Chen HZ, Lin MT, Wang N, Wang ZQ. Clinical features, imaging findings and molecular data of limb-girdle muscular dystrophies in a cohort of Chinese patients. Orphanet J Rare Dis 2023; 18:356. [PMID: 37974208 PMCID: PMC10652577 DOI: 10.1186/s13023-023-02897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophies (LGMDs) are a group of heterogeneous inherited diseases predominantly characterized by limb-girdle muscle weakness and dystrophic changes on histological analysis. The frequency of LGMD subtypes varies among regions in China and ethnic populations worldwide. Here, we analyzed the prevalence of LGMD subtypes, their corresponding clinical manifestations, and molecular data in a cohort of LGMD patients in Southeast China. METHODS A total of 81 consecutive patients with clinically suspected LGMDs from 62 unrelated families across Southeast China were recruited for targeted next-generation sequencing and whole-exome sequencing from July 2017 to February 2020. RESULTS Among 50 patients (41 families) with LGMDs, the most common subtypes were LGMD-R2/LGMD2B (36.6%) and LGMD-R1/LGMD2A (29.3%). Dystroglycanopathies (including LGMD-R9/LGMD2I, LGMD-R11/LGMD2K, LGMD-R14/LGMD2N and LGMD-R20/LGMD2U) were the most common childhood-onset subtypes and were found in 12.2% of the families. A total of 14.6% of the families had the LGMD-R7/LGMD2G subtype, and the mutation c.26_33dupAGGTGTCG in TCAP was the most frequent (83.3%). The only patient with the rare subtype LGMD-R18/LGMD2S had TRAPPC11 mutations; had a later onset than those previously reported, and presented with proximal‒distal muscle weakness, walking aid dependency, fatty liver disease and diabetes at 33 years of age. A total of 22.0% of the patients had cardiac abnormalities, and one patient with LMNA-related muscular dystrophy/LGMD1B experienced sudden cardiac death at 37 years of age. A total of 15.4% of the patients had restrictive respiratory insufficiency. Muscle imaging in patients with LGMD-R1/LGMD2A and LGMD-R2/LGMD2B showed subtle differences, including more severe fatty infiltration of the posterior thigh muscles in those with LGMD-R1/LGMD2A and edema in the lower leg muscles in those with LGMD-R2/LGMD2B. CONCLUSION We determined the prevalence of different LGMD subtypes in Southeast China, described the detailed clinical manifestations and distinct muscle MRI patterns of these LGMD subtypes and reported the frequent mutations and the cardiorespiratory involvement frequency in our cohort, all of which might facilitate the differential diagnosis of LGMDs, allowing more timely treatment and guiding future clinical trials.
Collapse
Affiliation(s)
- Feng Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Long Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Zhi-Xian Ye
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China.
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China.
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| |
Collapse
|
11
|
Tastekin B, Pelit A, Sapmaz T, Celenk A, Majeed M, Mundkur L, Nagabhushanam K. The Effects of Antioxidants and Pulsed Magnetic Fields on Slow and Fast Skeletal Muscle Atrophy Induced by Streptozotocin: A Preclinical Study. J Diabetes Res 2023; 2023:6657869. [PMID: 38020198 PMCID: PMC10661870 DOI: 10.1155/2023/6657869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Results Our findings suggest that antioxidants and PMF may alleviate impaired protein synthesis and degradation pathways in skeletal muscle atrophy. PTS showed a positive effect on the anabolic pathway, while RSV and PMF demonstrated potential for ameliorating the catabolic pathway. Notably, the combination therapy of antioxidants and PMF exhibited a stronger ameliorative effect on skeletal muscle atrophy than either intervention alone. Conclusion The present results highlight the benefits of employing a multimodal approach, involving both antioxidant and PMF therapy, for the management of muscle-wasting conditions. These treatments may have potential therapeutic implications for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Bora Tastekin
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Aykut Pelit
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Tugce Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Alper Celenk
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Muhammed Majeed
- Sami-Sabinsa Group Ltd., 19/1 & 19/2 I Main, II Phase, Peenya Industrial Area, Bangalore, India
- Sabinsa Corporation, 20 Lake Drive, East Windsor, New Jersey, USA
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Ltd., 19/1 & 19/2 I Main, II Phase, Peenya Industrial Area, Bangalore, India
| | | |
Collapse
|
12
|
Chung Tran N, Lien NTK, Ta TD, Nguyen VH, Tran HT, Van Tung N, Xuan NT, Huy Hoang N, Tran VK. Novel mutations in the SGCA gene in unrelated Vietnamese patients with limb-girdle muscular dystrophies disease. Front Genet 2023; 14:1248338. [PMID: 37900180 PMCID: PMC10611451 DOI: 10.3389/fgene.2023.1248338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Limb-girdle muscular dystrophy (LGMD) is a group of inherited neuromuscular disorders characterized by atrophy and weakness in the shoulders and hips. Over 30 subtypes have been described in five dominant (LGMD type 1 or LGMDD) and 27 recessive (LGMD type 2 or LGMDR). Each subtype involves a mutation in a single gene and has high heterogeneity in age of onset, expression, progression, and prognosis. In addition, the lack of understanding of the disease and the vague, nonspecific symptoms of LGMD subtypes make diagnosis difficult. Even as next-generation sequencing (NGS) genetic testing has become commonplace, some patients remain undiagnosed for many years. Methods: To identify LGMD-associated mutations, Targeted sequencing was performed in the patients and Sanger sequencing was performed in patients and family members. The in silico analysis tools such as Fathmm, M-CAP, Mutation Taster, PolyPhen 2, PROVEAN, REVEL, SIFT, MaxEntScan, Spliceailookup, Human Splicing Finder, NetGene2, and Fruitfly were used to predict the influence of the novel mutations. The pathogenicity of the mutation was interpreted according to the ACMG guidelines. Results: In this study, six patients from four different Vietnamese families were collected for genetic analysis at The Center for Gene and Protein Research and The Department of Molecular Pathology Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam. Based on clinical symptoms and serum creatine kinase (CK) levels, the patients were diagnosed with limb-girdle muscular dystrophies. Five mutations, including four (c.229C>T, p.Arg77Cys; exon one to three deletion; c.983 + 5G>C; and c.257_258insTGGCT, p.Phe88Leufs*125) in the SGCA gene and one (c.946-4_946-1delACAG) in the CAPN3 gene, were detected in six LGMD patients from four unrelated Vietnamese families. Two homozygous mutations (c.983 + 5G>C and c.257_258insTGGCT) in the SGCA gene were novel. These mutations were identified as the cause of the disease in the patients. Conclusion: Our results contribute to the general understanding of the etiology of the disease and provide the basis for definitive diagnosis and support genetic counseling and prenatal screening.
Collapse
Affiliation(s)
- Nam Chung Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Dat Ta
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| | | | | | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Khanh Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
13
|
Chen B, Wang Y, Hou D, Zhang Y, Zhang B, Niu Y, Ji H, Tian Y, Liu X, Kang X, Cai H, Li Z. Transcriptome-Based Identification of the Muscle Tissue-Specific Expression Gene CKM and Its Regulation of Proliferation, Apoptosis and Differentiation in Chicken Primary Myoblasts. Animals (Basel) 2023; 13:2316. [PMID: 37508090 PMCID: PMC10376263 DOI: 10.3390/ani13142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Bochun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| |
Collapse
|
14
|
Hayashi T, Fujita R, Okada R, Hamada M, Suzuki R, Fuseya S, Leckey J, Kanai M, Inoue Y, Sadaki S, Nakamura A, Okamura Y, Abe C, Morita H, Aiba T, Senkoji T, Shimomura M, Okada M, Kamimura D, Yumoto A, Muratani M, Kudo T, Shiba D, Takahashi S. Lunar gravity prevents skeletal muscle atrophy but not myofiber type shift in mice. Commun Biol 2023; 6:424. [PMID: 37085700 PMCID: PMC10121599 DOI: 10.1038/s42003-023-04769-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.
Collapse
Affiliation(s)
- Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryo Fujita
- Divsion of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - James Leckey
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayano Nakamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yui Okamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Nutrition Management, Tokai Gakuin University, Gifu, 504-8511, Japan
| | - Tatsuya Aiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Teruhiro Senkoji
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michihiko Shimomura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Maki Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Daisuke Kamimura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| |
Collapse
|
15
|
Liu YF, Zhang M, Shan YJ, Pang LC, Ji GG, Ju XJ, Tu YJ, Shi SY, Bai H, Zou JM, Shu JT. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification. Front Genet 2022; 13:1008649. [PMID: 36186474 PMCID: PMC9521549 DOI: 10.3389/fgene.2022.1008649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) might play critical roles in skeletal myofiber specification. In a previous study, we found that chicken miR-499-5p is specifically expressed in slow-twitch muscle and that its potential target gene is SOX6. In this study, we performed RNA sequencing to investigate the effects of SOX6 and miR-499-5p on the modulation and regulation of chicken muscle fiber type and its regulatory mechanism. The expression levels of miR-499-5p and SOX6 demonstrated opposing trends in different skeletal muscles and were associated with muscle fiber type composition. Differential expression analysis revealed that miR-499-5p overexpression led to significant changes in the expression of 297 genes in chicken primary myoblasts (CPMs). Myofiber type-related genes, including MYH7B and CSRP3, showed expression patterns similar to those in slow-twitch muscle. According to functional enrichment analysis, differentially expressed genes were mostly associated with muscle development and muscle fiber-related processes. SOX6 was identified as the target gene of miR-499-5p in CPM using target gene mining and luciferase reporter assays. SOX6 knockdown resulted in upregulation of the slow myosin genes and downregulation of fast myosin genes. Furthermore, protein-protein interaction network analysis revealed that MYH7B and RUNX2 may be the direct targets of SOX6. These results indicated that chicken miR-499-5p may promote slow-twitch muscle fiber formation by repressing SOX6 expression. Our study provides a dataset that can be used as a reference for animal meat quality and human muscle disease studies.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ming Zhang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yan-Ju Shan
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Li-Chuan Pang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Gai-Ge Ji
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Xiao-Jun Ju
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yun-Jie Tu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Shi-Ying Shi
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of China, Yangzhou University, Yangzhou, China
| | - Jian-Min Zou
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jing-Ting Shu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jing-Ting Shu,
| |
Collapse
|
16
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|