1
|
Yokota H, Tanaka Y, Ohno H. Coculture of Bifidobacterium bifidum G9-1 With Butyrate-Producing Bacteria Promotes Butyrate Production. Microbiol Immunol 2025. [PMID: 40269463 DOI: 10.1111/1348-0421.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Supplementation with Bifidobacterium bifidum G9-1 (BBG9-1) has been established to enhance the production of butyrate, a short-chain fatty acid (SCFA) known for its beneficial effects in alleviating constipation. We hypothesized that BBG9-1 alters gut microbiota such that bacteria that produce butyric acid from lactate and acetate become more abundant. In this study, we sought to determine whether BBG9-1 promotes the growth of butyrate-producing bacteria and thereby enhances butyrate production. BBG9-1 was cocultured with different butyrate-producing bacteria to compare differences in the SCFA production of cocultures and monocultures. We indeed detected significant increases in the production of SCFAs in cocultures compared to monocultures. Moreover, lactate and butyrate production increased in a time-dependent manner in the BBG9-1 and Faecalibacterium prausnitzii ID 6052 coculture. In addition, acetate production in cocultures initially increased until 16 h, followed by a decline between 20 and 24 h, and a subsequent significant increase at 48 h. Comparatively, lactate and acetate production in the BBG9-1 and Anaerostipes caccae JCM 13470T coculture peaked at 16 h and declined thereafter, and butyrate production increased in a time-dependent manner. In contrast, lactate, acetate, and butyrate production in the BBG9-1 and Roseburia hominis JCM 17582T coculture increased in a time-dependent manner. These findings indicate that butyrate-producing bacteria increase butyrate production by utilizing BBG9-1-produced lactate and acetate. Thus, the butyrate-mediated physiological activity of BBG9-1 could be attributed to an indirect enhancement of butyrate production.
Collapse
|
2
|
Liu J, Yang D, Wang X, Asare PT, Zhang Q, Na L, Shao L. Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect Microbiol 2022; 12:774335. [PMID: 35444959 PMCID: PMC9014089 DOI: 10.3389/fcimb.2022.774335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is directly connected to the intestines through the portal vein, which enables the gut microbiota and gut-derived products to influence liver health. There is accumulating evidence of decreased gut flora diversity and alcohol sensitivity in patients with various chronic liver diseases, including non-alcoholic/alcoholic liver disease, chronic hepatitis virus infection, primary sclerosing cholangitis and liver cirrhosis. Increased intestinal mucosal permeability and decline in barrier function were also found in these patients. Followed by bacteria translocation and endotoxin uptake, these will lead to systemic inflammation. Specific microbiota and microbiota-derived metabolites are altered in various chronic liver diseases studies, but the complex interaction between the gut microbiota and liver is missing. This review article discussed the bidirectional relationship between the gut and the liver, and explained the mechanisms of how the gut microbiota ecosystem alteration affects the pathogenesis of chronic liver diseases. We presented gut-microbiota targeted interventions that could be the new promising method to manage chronic liver diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Paul Tetteh Asare
- Human and Animal Health Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Qingwen Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lixin Na
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lei Shao,
| |
Collapse
|
3
|
Wu S, Bhat ZF, Gounder RS, Mohamed Ahmed IA, Al-Juhaimi FY, Ding Y, Bekhit AEDA. Effect of Dietary Protein and Processing on Gut Microbiota-A Systematic Review. Nutrients 2022; 14:453. [PMID: 35276812 PMCID: PMC8840478 DOI: 10.3390/nu14030453] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
The effect of diet on the composition of gut microbiota and the consequent impact on disease risk have been of expanding interest. The present review focuses on current insights of changes associated with dietary protein-induced gut microbial populations and examines their potential roles in the metabolism, health, and disease of animals. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was used, and 29 highly relevant articles were obtained, which included 6 mouse studies, 7 pig studies, 15 rat studies, and 1 in vitro study. Analysis of these studies indicated that several factors, such as protein source, protein content, dietary composition (such as carbohydrate content), glycation of protein, processing factors, and protein oxidation, affect the digestibility and bioavailability of dietary proteins. These factors can influence protein fermentation, absorption, and functional properties in the gut and, consequently, impact the composition of gut microbiota and affect human health. While gut microbiota can release metabolites that can affect host physiology either positively or negatively, the selection of quality of protein and suitable food processing conditions are important to have a positive effect of dietary protein on gut microbiota and human health.
Collapse
Affiliation(s)
- Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180009, India;
| | - Rochelle S. Gounder
- Department of Food Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Fahad Y. Al-Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
4
|
Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020; 12:1802866. [PMID: 32835590 PMCID: PMC7524325 DOI: 10.1080/19490976.2020.1802866] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new 'generation' of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Cathy Lordan
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
1-Kestose supplementation mitigates the progressive deterioration of glucose metabolism in type 2 diabetes OLETF rats. Sci Rep 2020; 10:15674. [PMID: 32973311 PMCID: PMC7515885 DOI: 10.1038/s41598-020-72773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The fructooligosaccharide 1-kestose cannot be hydrolyzed by gastrointestinal enzymes, and is instead fermented by the gut microbiota. Previous studies suggest that 1-kestose promotes increases in butyrate concentrations in vitro and in the ceca of rats. Low levels of butyrate-producing microbiota are frequently observed in the gut of patients and experimental animals with type 2 diabetes (T2D). However, little is known about the role of 1-kestose in increasing the butyrate-producing microbiota and improving the metabolic conditions in type 2 diabetic animals. Here, we demonstrate that supplementation with 1-kestose suppressed the development of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, possibly through improved glucose tolerance. We showed that the cecal contents of rats fed 1-kestose were high in butyrate and harbored a higher proportion of the butyrate-producing genus Anaerostipes compared to rats fed a control diet. These findings illustrate how 1-kestose modifications to the gut microbiota impact glucose metabolism of T2D, and provide a potential preventative strategy to control glucose metabolism associated with dysregulated insulin secretion.
Collapse
|
6
|
Komorniak N, Martynova-Van Kley A, Nalian A, Wardziukiewicz W, Skonieczna-Żydecka K, Styburski D, Palma J, Kowalewski B, Kaseja K, Stachowska E. Can the FUT 2 Gene Variant Have an Effect on the Body Weight of Patients Undergoing Bariatric Surgery?-Preliminary, Exploratory Study. Nutrients 2020; 12:E2621. [PMID: 32872099 PMCID: PMC7551162 DOI: 10.3390/nu12092621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The FUT2 gene (Se gene) encoding the enzyme α-1,2-L-fucosyltransferase 2 seems to have a significant effect on the number and type of bacteria colonizing the intestines. METHODS In a group of 19 patients after bariatric surgery, the polymorphism (rs601338) of FUT2 gene was analyzed in combination with body mass reduction, intestinal microbiome (16S RNA sequencing), and short chain fatty acids (SCFA) measurements in stools. RESULTS Among the secretors (Se/Se polymorphism of the FUT2 gene rs601338, carriers of GG variant), correlations between waist-hip ratio (WHR) and propionate content and an increase in Prevotella, Escherichia, Shigella, and Bacteroides were observed. On the other hand-in non-secretors (carriers of GA and AA variants)-higher abundance of Enterobacteriaceae, Ruminococcaceae, Enterobacteriaceae, Clostridiales was recorded. CONCLUSIONS The increased concentrations of propionate observed among the GG variants of FUT 2 may be used as an additional source of energy for the patient and may have a higher risk of increasing the WHR than carriers of the other variants (GA and AA).
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | | | - Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (A.M.-V.K.); (A.N.)
| | - Wiktoria Wardziukiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Bartosz Kowalewski
- Independent Provincial Public Hospital Complex in Szczecin—Zdunowo, 70-891 Szczecin, Poland;
| | - Krzysztof Kaseja
- Department of General Surgery and Transplantation, Independent Public Clinical Hospital No.2, 70-111 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| |
Collapse
|
7
|
Shao Y, Zhou J, Xiong X, Zou L, Kong X, Tan B, Yin Y. Differences in Gut Microbial and Serum Biochemical Indices Between Sows With Different Productive Capacities During Perinatal Period. Front Microbiol 2020; 10:3047. [PMID: 32010103 PMCID: PMC6978668 DOI: 10.3389/fmicb.2019.03047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Maternal gut microflora changes dramatically during perinatal period and plays a vital role in animal health and reproductive performance. However, little is known about the microbial differences between sows with different productive capacities during perinatal period. Hence, this study explored fecal microbial diversity, composition, metabolic functions, and phenotypes differences between high productive capacity (HPC, litter size ≥ 15) and low productive capacity (LPC, litter size ≤ 7) sows during late pregnancy (LP, the third day before due date) and early stage after parturition (EAP, the third day after parturition) as well as serum biochemical indices differences after parturition. Results showed that HPC sows had lower microbial richness at LP stage and higher microbial diversity at EAP stage than LPC sows. Several genera belonging to the Prevotellaceae family exhibited higher abundance, while some genera belonging to the Ruminococcaceae family exhibited lower abundance in HPC sows compared to LPC sows at LP stage. Moreover, the relative abundance of Eubacterium_coprostanoligenes_group and Ruminococcaceae_UCG-014 in HPC sows was significantly higher than that in LPC sows at EAP stage. The predicted metabolic functions related to Lipopolysaccharide biosynthesis were significantly higher in HPC sows at LP stage. Further, HPC sows had significantly higher blood urea nitrogen (BUN) and high-density lipoprotein cholesterol (HDL-C) levels after parturition, and there were strong correlations between BUN level and the relative abundance of genera belonging to the Ruminococcaceae families. These results indicated that the HPC sows may experience greater inflammation than LPC sows at LP stage. Inflammation environment might impact health but promote parturition. The microbial differences at EAP stage might be beneficial to hemostasis and anti-inflammation, which might contribute to postpartum recovery in HPC sow.
Collapse
Affiliation(s)
- Yirui Shao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Xiong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lijun Zou
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Naseer M, Poola S, Uraz S, Tahan V. Therapeutic Effects of Prebiotics on Constipation: A Schematic Review. CURRENT CLINICAL PHARMACOLOGY 2020; 15:207-215. [PMID: 32048977 DOI: 10.2174/1574884715666200212125035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Constipation is a highly prevalent functional gastrointestinal disorder that may significantly affect the quality of life and health care costs. Treatment for constipation has been broadly reviewed by cognitive therapies, medications, and surgical interventions. Gut microbiota such as Bifidobacterium, Clostridium, Bacteroidetes, and Lactobacilli have been demonstrated in functional gastrointestinal disorders and prebiotics to play a role in augmenting their presence. Prebiotics are ingredients in foods that remain undigested, stimulating the bacteria. There are a variety of prebiotics; however, there exists only a handful of studies that describe their efficacy for chronic constipation. The purpose of this study is to review the available literature on the utility of different commercially available prebiotics in patients with functional and chronic idiopathic constipation. To fulfil the objectives of the study, published articles in the English language on databases such as Pubmed, Ovid Medline, and EMBASE were searched. The terms prebiotics, constipation, chronic constipation, functional constipation were used. We reviewed and included 21 randomized controlled trials exploring the role of prebiotics in constipated adults. Prebiotics are effective treatments for chronic idiopathic constipation and showed improvement in the stool consistency, number of bowel moments and bloating. Although which prebiotic formulary would promote improved symptoms of constipation is still not clear.
Collapse
Affiliation(s)
- Maliha Naseer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shiva Poola
- Department of Internal and Pediatric Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Suleyman Uraz
- Department of Internal Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| | - Veysel Tahan
- Department of Internal Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| |
Collapse
|
9
|
The Effect of Peroral Administration of Lactobacillus Fermentum Culture on Dairy Cows Health Indices. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.2478/macvetrev-2018-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The culture of Lactobacillus fermentum was isolated from the biogas substrate. The aim was to evaluate the efficiency of perorally applied L. fermentum additive to prevent metabolic diseases in the early lactation period of dairy cows. The experiment was performed in the early lactation group of a herd with 240 cows. The control and experimental group each consisted of 10 clinically healthy cows with normal concentration of β-hydroxybutyrate and glucose. On day 1–5 (D1–D5), the experimental cows received orally 150 ml of L. fermentum product of 8.1x105 CFU/ml. On D1, D2, D5 and D20, the rumen fluid samples were collected from all animals in both groups with an oral-ruminal probe once per day for detection of pH and concentration of volatile fatty acids, on D1, D5 and D20 – blood samples for biochemical analyses. The data were analyzed using Microsoft Excel. Results: Significant changes were observed in the concentration of the liver enzymes AST and GGT. On D1, in the experimental animals AST concentration 100.5±14.0 IU/L was higher than in control cows – 51.4±5.7 IU/L (p<0.05). On D20, AST was reduced significantly only in experimental cows. On D1, GGT concentration 31.5±6.91 IU/L was higher (p<0.05) in experimental animals than in control cows – 13.6±1.53 IU/L, but on D5, GGT concentration in experimental animals was reduced to 18.4±6.41 IU/L (p<0.05), and remained until D20. Conclusion: L. fermentum culture administered orally for five days improved the blood liver enzymes in cows, and the effect lasted for two weeks.
Collapse
|
10
|
Rahman H, Kim M, Leung G, Green JA, Katz S. Drug-Herb Interactions in the Elderly Patient with IBD: a Growing Concern. ACTA ACUST UNITED AC 2017; 15:618-636. [PMID: 28918484 DOI: 10.1007/s11938-017-0154-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Inflammatory bowel disease (IBD), which includes conditions such as Crohn's disease and ulcerative colitis, is becoming more prevalent with the elderly being the fastest growing group. Parallel to this, there is an increasing interest in the use of complementary and alternative medicine (CAM). Nearly half of patients with IBD have used CAM at one time. The elderly patients, however, are burdened by comorbid conditions, polypharmacy, and altered functional status. With increasing use of complementary and alternative medicine in our elderly patients with IBD, it is vital for the provider to provide counsel on drug-herb potential interactions. CAM includes herbal products, diet, dietary supplements, acupuncture, and prayer. In this paper, we will review common CAM, specifically herbs, that are used in patients with IBD including the herb background, suggested use, evidence in IBD, and most importantly, potential interactions with IBD medications used in elderly patients. Most important evidence-based adverse events and drug-herb interactions are summarized. The herbs discussed include Triticum aestivum (wheat grass), Andrographis paniculata (chiretta), Boswellia serrata, tormentil, bilberry, curcumin (turmeric), Plantago ovata (blond psyllium), Oenothera biennis (evening primrose oil), germinated barley foodstuff, an herbal preparation of myrrh, chamomile and coffee extract, chios mastic gum, wormwood (absinthe, thujone), Cannabis sativa (marijuana, THC), tripterygium wilfordii (thunder god vine), Ulmus rubra (slippery elm bark), trigonella foenugraecum (fenugreek), Dioscorea mexicana (wild yam), Harpagophytum procumbens (devil's claw), ginger, cinnamon, licorice, and peppermint.
Collapse
Affiliation(s)
- Haider Rahman
- Department of Internal Medicine, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Marina Kim
- Division of Gastroenterology, New York Presbyterian Brooklyn Methodist Hospital Weill Cornell College of Medicine, 506 Sixth Street Suite 312 Buckley Pavilion, Brooklyn, NY, 11215, USA.
| | - Galen Leung
- New York University School of Medicine, 550 1st Avenue NBV 16 North 30, New York, NY, USA
| | - Jesse A Green
- Perelman School of Medicine, Division of Gastroenterology, University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, PA, 19104, USA
| | - Seymour Katz
- Division of Gastroenterology, New York University School of Medicine NYC North Shore University - Long Island Jewish Hospital System, Manhasset, NY, USA.,St. Francis Hospital, Roslyn, NY, USA
| |
Collapse
|
11
|
Astakhova L, Ngara M, Babich O, Prosekov A, Asyakina L, Dyshlyuk L, Midtvedt T, Zhou X, Ernberg I, Matskova L. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells. PLoS One 2016; 11:e0154102. [PMID: 27441625 PMCID: PMC4956219 DOI: 10.1371/journal.pone.0154102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/09/2016] [Indexed: 11/25/2022] Open
Abstract
The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype.
Collapse
Affiliation(s)
- Lidiia Astakhova
- Institute of Food Science and Technology, Kemerovo, Russia
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mtakai Ngara
- Department of Cell and Molecular Biology (CMB), Ludwig Institute for Cancer Research (LICR), Karolinska Institutet, Stockholm, Sweden
| | - Olga Babich
- Institute of Food Science and Technology, Kemerovo, Russia
| | | | | | | | - Tore Midtvedt
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Gut Microbiota and Lifestyle Interventions in NAFLD. Int J Mol Sci 2016; 17:447. [PMID: 27023533 PMCID: PMC4848903 DOI: 10.3390/ijms17040447] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed "dysbiosis", has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host-microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis.
Collapse
|
13
|
Germinated barley as a functional ingredient in chicken sausages: effect on physicochemical and technological properties at different levels. Journal of Food Science and Technology 2016; 53:872-9. [PMID: 26788010 DOI: 10.1007/s13197-015-2058-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
The objective of this study was to evaluate the effect of germinated barley (GB) levels on physicochemical and technological properties of cooked chicken sausages. The chicken sausages were formulated with 0-4 % GB. Addition of GB increased pH and yellowness but decreased lightness of the cooked chicken sausages. However, there was no difference in redness among treatments (P > 0.05). Based on the positive effects of GB on measurements related to water and/or fat retention ability, such as emulsion stability, cooking loss, and thawing loss, such results depended upon the added amount of GB. In addition, apparent viscosity increased with increasing levels of GB, resulting in hardness, springiness, and chewiness (P < 0.05). These results could be associated with polysaccharides contained in GB, such as insoluble fiber, β-glucan, and starch. Therefore, our results suggests that GB could be a functional ingredient to improve physicochemical and technological properties of chicken sausages and optimal level of GB was determined as minimum 2 %.
Collapse
|
14
|
Verma AK, Verma R, Ahuja V, Paul J. Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol 2012; 12:183. [PMID: 22913622 PMCID: PMC3534334 DOI: 10.1186/1471-2180-12-183] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 07/30/2012] [Indexed: 02/07/2023] Open
Abstract
Background Amebic dysentery is caused by the protozoan parasite Entamoeba histolytica and the ingestion of quadrinucleate cyst of E. histolytica from fecally contaminated food or water initiates infection. Excystation occurs in the lumen of small intestine, where motile and potentially invasive trophozoites germinate from cysts. The ability of trophozoites to interact and digest gut bacteria is apparently important for multiplication of the parasite and its pathogenicity; however the contribution of resident bacterial flora is not well understood. We quantified the population of Bacteroides, Bifidobacterium, Ruminococcus, Lactobacillus, Clostridium leptum subgroup, Clostridium coccoides subgroup, Eubacterium, Campylobacter, Methanobrevibacter smithii and Sulphur reducing bacteria using genus specific primers in healthy (N = 22) vs amebic patients (E. histolytica positive, N = 17) stool samples by Real-time PCR. Results Absolute quantification of Bacteroides (p = .001), Closrtridium coccoides subgroup (p = 0.002), Clostridium leptum subgroup (p = 0.0001), Lactobacillus (p = 0.037), Campylobacter (p = 0.0014) and Eubacterium (p = 0.038) show significant drop in their population however, significant increase in Bifdobacterium (p = 0.009) was observed where as the population of Ruminococcus (p = 0.33) remained unaltered in healthy vs amebic patients (E. histolytica positive). We also report high prevalence of nimE gene in stool samples of both healthy volunteers and amebic patients. No significant decrease in nimE gene copy number was observed before and after the treatment with antiamebic drug. Conclusions Our results show significant alteration in predominant gut bacteria in E. histolytica infected individuals. The frequent episodes of intestinal amoebic dysentery thus result in depletion of few predominant genera in gut that may lead to poor digestion and absorption of food in intestine. It further disturbs the homeostasis between gut epithelium and bacterial flora. The decrease in beneficial bacterial population gives way to dysbiosis of gut bacteria which may contribute to final outcome of the disease. Increase in the copy number of nimE gene harboring bacteria in our population reflects possible decrease in the availability of metronidazole drug during treatment of amoebiasis.
Collapse
Affiliation(s)
- Anil Kumar Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
15
|
Araki Y, Mukaisho KI, Fujiyama Y, Hattori T, Sugihara H. The herbal medicine rikkunshito exhibits strong and differential adsorption properties for bile salts. Exp Ther Med 2012; 3:645-649. [PMID: 22969945 DOI: 10.3892/etm.2012.478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022] Open
Abstract
Anti-secretory drugs, particularly proton pump inhibitors (PPIs), are the preferred treatment agents for patients with gastroesophageal reflux disease (GERD). However, refractory GERD, which may manifest as an incomplete or lack of response to PPI therapy, is common. Despite the administration of PPIs for symptomatic control, duodenogastroesophageal reflux (DGER) containing bile is successfully controlled in only one-third of patients. It has previously been reported that the traditional Japanese herbal medicine rikkunshito, which has a prokinetic action on gastric emptying, exhibits clinically therapeutic effects against GERD and DGER that does not respond to PPIs. However, the precise mechanisms responsible for the effects of rikkunshito are still unknown. It has been suggested that the cytotoxicity of the bile salts in the gut lumen is important in GERD and DGER. The aim of the present study was to investigate whether rikkunshito is able to adsorb bile salts through the mechanism by which it ameliorates the symptoms of GERD and DGER. The binding capacities of rikkunshito for bile salts were measured using Langmuir's method. The morphology of rikkunshito was also observed by light microscopy. Rikkunshito strongly adsorbed bile salts. The binding capabilities of rikkunshito were far beyond those of a typical dietary fiber, α-cellulose, or an oral adsorbent. In addition, rikkunshito had higher binding capacities for hydrophobic bile salts as compared with hydrophilic bile salts. In conclusion, rikkunshito has a great capacity to adsorb bile salts. This may be part of the mechanism(s) responsible for the therapeutic effects of rikkunshito in patients with GERD and DGER.
Collapse
|
16
|
Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 2009; 299:128-34. [PMID: 19732152 DOI: 10.1111/j.1574-6968.2009.01750.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High concentrations of sulphide are toxic for the gut epithelium and may contribute to bowel disease. Lactate is a favoured cosubstrate for the sulphate-reducing colonic bacterium Desulfovibrio piger, as shown here by the stimulation of sulphide formation by D. piger DSM749 by lactate in the presence of sulphate. Sulphide formation by D. piger was also stimulated in cocultures with the lactate-producing bacterium Bifidobacterium adolescentis L2-32. Other lactate-utilizing bacteria such as the butyrate-producing species Eubacterium hallii and Anaerostipes caccae are, however, expected to be in competition with the sulphate-reducing bacteria (SRB) for the lactate formed in the human colon. Strains of E. hallii and A. caccae produced 65% and 96% less butyrate from lactate, respectively, in a coculture with D. piger DSM749 than in a pure culture. In triculture experiments involving B. adolescentis L2-32, up to 50% inhibition of butyrate formation by E. hallii and A. caccae was observed in the presence of D. piger DSM749. On the other hand, sulphide formation by D. piger was unaffected by E. hallii or A. caccae in these cocultures and tricultures. These experiments strongly suggest that lactate can stimulate sulphide formation by SRB present in the colon, with possible consequences for conditions such as colitis.
Collapse
Affiliation(s)
- Perrine Marquet
- INRA-UR454 Microbiologie, CR de Clermont-Ferrand/Theix, Saint-Genes-Champanelle, France
| | | | | | | | | |
Collapse
|
17
|
Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol 2009; 75:2668-76. [PMID: 19286790 DOI: 10.1128/aem.02492-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although their exact function remains enigmatic, bifidobacteria are among the first colonizers of the newborn infant gut and further develop into abundant communities, notably in response to diet. Therefore, the transcriptional responses of bifidobacteria in rapidly processed fecal samples from young infants that were fed either breast milk or a formula containing a mixture of galacto- and fructo-oligosaccharides were studied. The presence and diversity of the bifidobacterial fecal communities were determined using PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR for specific species. Changes in the total number of bifidobacteria as well as in species diversity were observed, indicating the metabolic activities of the bifidobacteria within the infant gut. In addition, total RNAs isolated from infant feces were labeled and hybridized to a bifidobacterium-specific microarray comprising approximately 6,000 clones of the major bifidobacterial species of the human gut. Approximately 270 clones that showed the most prominent hybridization with the samples were sequenced. Fewer than 10% of the hybridizing clones contained rRNA genes, whereas the vast majority of the inserts showed matches with protein-encoding genes predicted to originate from bifidobacteria. Although a wide range of functional groups was covered by the obtained sequences, the largest fraction (14%) of the transcribed genes assigned to a functional category were predicted to be involved in carbohydrate metabolism, while some were also implicated in exopolysaccharide production or folate production. A total of three of the above-described protein-encoding genes were selected for quantitative PCR and sequence analyses, which confirmed the expression of the corresponding genes and the expected nucleotide sequences. In conclusion, the results of this study show the feasibility of obtaining insight into the transcriptional responses of intestinal bifidobacteria by analyzing fecal RNA and highlight the in vivo expression of bifidobacterial genes implicated in host-related functions.
Collapse
|
18
|
Falony G, Vlachou A, Verbrugghe K, De Vuyst L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006; 72:7835-41. [PMID: 17056678 PMCID: PMC1694233 DOI: 10.1128/aem.01296-06] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/09/2006] [Indexed: 02/07/2023] Open
Abstract
In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose breakdown. R. intestinalis DSM 14610 could degrade oligofructose, but only after acetate was added to the medium. Detailed kinetic analyses of oligofructose breakdown by the last strain revealed simultaneous degradation of the different chain length fractions, in contrast with the preferential degradation of shorter fractions by B. longum BB536. In a coculture of both strains, initial oligofructose degradation and acetate production by B. longum BB536 took place, which in turn also allowed oligofructose breakdown by R. intestinalis DSM 14610. These and similar cross-feeding mechanisms could play a role in the colon ecosystem and contribute to the combined bifidogenic/butyrogenic effect observed after addition of inulin-type fructans to the diet.
Collapse
Affiliation(s)
- Gwen Falony
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
19
|
Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006; 72:3593-9. [PMID: 16672507 PMCID: PMC1472403 DOI: 10.1128/aem.72.5.3593-3599.2006] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [(13)C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.
Collapse
Affiliation(s)
- Alvaro Belenguer
- Microbial Ecology Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Kanauchi O, Fukuda M, Matsumoto Y, Ishii S, Ozawa T, Shimizu M, Mitsuyama K, Andoh A. Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J Gastroenterol 2006; 12:1071-7. [PMID: 16534848 PMCID: PMC4087899 DOI: 10.3748/wjg.v12.i7.1071] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of Eubacterium limosum (E.limosum) on colonic epithelial cell line in vitro, and to evaluate the effect of E.limosum on experimental colitis.
METHODS: E.limosum was inoculated anaerobically and its metabolites were obtained. The growth stimulatory effect of the E.limosum metabolites on T84 cells was evaluated by SUDH activity, and the anti-inflammatory effect by IL-6 production. The change in mRNA of toll like receptor 4 (TLR4) was evaluated by real time PCR. Colitis was induced by feeding BALB/C mice with 2.0% dextran sodium sulfate. These mice received either 5% lyophilized E.limosum (n = 7) or control diet (n = 7). Seven days after colitis induction, clinical and histological scores, colon length, and cecal organic acid levels were determined.
RESULTS: The E.limosum produced butyrate, acetate, propionate, and lactate at 0.25, 1.0, 0.025 and 0.07 mmol/L, respectively in medium. At this concentration, each acid had no growth stimulating activity on T84 cells; however, when these acids were mixed together at the above levels, it showed significantly high activity than control. Except for lactate, these acids significantly attenuated IL-6 production at just 0.1 mmol/L. In addition, under TNF-α stimulation, butyrate attenuated the production of TLR4 mRNA. The treatment with E.limosum significantly attenuated clinical and histological scores of colitis with an increase of cecal butyrate levels, compared with the control group.
CONCLUSION: E.limosum can ameliorate experimental colonic inflammation. In part, the metabolite of E.limosum, butyrate, increases mucosal integrity and shows anti-inflammatory action modulation of mucosal defense system via TLR4.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Kirin Brewery Co. Ltd., 10-1-2 Shinkawa Chuo-ku, Tokyo 104-8288, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810-7. [PMID: 15466518 PMCID: PMC522113 DOI: 10.1128/aem.70.10.5810-5817.2004] [Citation(s) in RCA: 778] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Microbial Genetics Group, Rowett Research Institute, Greenburn Rd., Bucksburn, Aberdeen AB21 9SB, UK
| | | | | |
Collapse
|
22
|
Zhu XY, Lubeck J, Kilbane JJ. Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 2003; 69:5354-63. [PMID: 12957923 PMCID: PMC194955 DOI: 10.1128/aem.69.9.5354-5363.2003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 06/19/2003] [Indexed: 11/20/2022] Open
Abstract
Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales: Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion.
Collapse
Affiliation(s)
- Xiang Y Zhu
- Environmental Science and Technology Center, Gas Technology Institute, Des Plaines, Illinois 60018, USA.
| | | | | |
Collapse
|
23
|
Kanauchi O, Suga T, Tochihara M, Hibi T, Naganuma M, Homma T, Asakura H, Nakano H, Takahama K, Fujiyama Y, Andoh A, Shimoyama T, Hida N, Haruma K, Koga H, Mitsuyama K, Sata M, Fukuda M, Kojima A, Bamba T. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 2002; 37 Suppl 14:67-72. [PMID: 12572869 DOI: 10.1007/bf03326417] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Germinated barley foodstuff (GBF) is a prebiotic foodstuff that effectively increases luminal butyrate production by stimulating the growth of protective bacteria. In the first pilot study, GBF has been shown to reduce both clinical activity and mucosal inflammation in ulcerative colitis (UC). The aim of this study was to investigate the efficacy of GBF in the treatment of UC in a multicenter open control trial. METHODS Eighteen patients with mildly to moderately active UC were divided into two groups using a random allocation protocol. The control group (n = 7) were given a baseline anti-inflammatory therapy for 4 weeks. In the GBF-treated group (n = 11), patients received 20-30 g GBF daily, together with the baseline treatment, for 4 weeks. The response to the treatments was evaluated clinically and endoscopically. Fecal microflora were also analyzed. RESULTS After 4 weeks of observation, the GBF-treated group showed a significant decrease in clinical activity index scores compared with the control group (P < 0.05). No side effects related to GBF were observed. GBF therapy increased fecal concentrations of Bifidobacterium and Eubacterium limosum. CONCLUSIONS Oral GBF therapy may have the potency to reduce clinical activity of UC. We believe that these results support the use of GBF administration as a new adjunct therapy for UC.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Nutrient Food and Feed Division, Kirin Brewery, 10-1-2 Shinkawa, Chuo-ku, Tokyo 104-8288, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68:5186-90. [PMID: 12324374 PMCID: PMC126392 DOI: 10.1128/aem.68.10.5186-5190.2002] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Accepted: 06/26/2002] [Indexed: 12/19/2022] Open
Abstract
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Division of Gut Microbiology and Immunology, Rowett Research Institute Bucksburn, Aberdeen AB21 9SB, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Schwiertz A, Le Blay G, Blaut M. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 2000; 66:375-82. [PMID: 10618251 PMCID: PMC91833 DOI: 10.1128/aem.66.1.375-382.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 10/15/1999] [Indexed: 11/20/2022] Open
Abstract
Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.
Collapse
Affiliation(s)
- A Schwiertz
- Deutsches Institut für Ernährungsforschung, Abteilung Gastrointestinale Mikrobiologie, 14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|