1
|
Barmchi MP, Hassan RN, Afkhami M, Masly JP, Brown H, Collins QP, Grunsted MJ. Drosophila Model of HPV18-Induced Pathogenesis Reveals a Role for E6 Oncogene in Regulation of NF-κB and Wnt to Inhibit Apoptosis. Tumour Virus Res 2025:200316. [PMID: 40074036 DOI: 10.1016/j.tvr.2025.200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025] Open
Abstract
Cancers caused by high-risk human papillomavirus (HPV) remain a significant health threat resulting in more than 300,000 deaths, annually. Persistent expression of two HPV oncogenes, E6 and E7, are necessary for cancer development and progression. E6 has several functions contributing to tumorigenesis one of which is blocking programmed cell death, apoptosis. The detailed mechanism of anti-apoptosis function of E6 is not fully understood. Here, using a Drosophila model of HPV18E6 and the human UBE3A-induced pathogenesis, we show that anti-apoptotic function of E6 is conserved in Drosophila. We demonstrate that the Drosophila homologs of human NF-κB transcription factors, Dorsal and Dif are proapoptotic. They induce the expression of Wingless (Wg, the Drosophila homolog of human Wnt), leading to apoptosis. Our results indicate that E6 oncogene inhibits apoptosis by downregulating the expression of Wg, Dorsal, and Dif. Additionally, we find that Dorsal and Dif, not only promote apoptosis but also regulate autophagy and necrosis. Dorsal promotes autophagy while Dif counteracts it, inducing the formation of acidic vacuoles and necrosis. Interestingly, although E6 blocks the proapoptotic function of Dorsal and Dif, it lacks the ability to interfere with their role in apoptosis-independent cell death. Given the high conservation of NF-κB transcription factors our results provide new insight into potential mechanisms mediated by NF-κB to intervene with cell immortalization action of E6 oncoprotein in HPV-infected cells.
Collapse
Affiliation(s)
| | - Rami N Hassan
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John P Masly
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Harrison Brown
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Quincy P Collins
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, BC, Canada
| | - Michael J Grunsted
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA; College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Kong S, Cai X, Cai B, Xian Y, Zhou Z, Cai D, Yang X, Lin D, Nie Q. Genomic and transcriptomic analyses unveil the genetic basis of green shank trait in small white-feather chickens. Poult Sci 2025; 104:104912. [PMID: 39985900 PMCID: PMC11904536 DOI: 10.1016/j.psj.2025.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025] Open
Abstract
Small white-feather chickens (SWFC) have become popular as a hybrid strain recently. Shank color is a notable economic trait in this strain. Despite numerous studies on the green shank trait from both physiological and genetic perspectives, research focusing specifically on the green shank trait in hybrid chickens (HC) remains limited. In this study, to investigate the genetic mechanisms and molecular basis of the green shank trait in HC, we created a population by intercrossing white-feathered and yellow-feathered broilers, both with yellow shanks. Physiological analysis confirmed that melanin deposition in the shank dermis is the primary cause of the green shank trait in HC. By combining genome-wide association studies (GWAS) and population genomics analysis, the 83.20-85.68 Mb region on the Z chromosome was identified as a candidate region for the green shank trait in HC. Transcriptome sequencing revealed differentially expressed genes (DEGs) between green shank and yellow shank individuals, with MTAP and CDKN1A identified as candidate genes in the genomic region associated with the green shank trait. Notably, the green shank trait includes a light green phenotype. Our study is the first to identify genes associated with different color depths of the green shank. The candidate genes influence both the biosynthesis and deposition of pigments.
Collapse
Affiliation(s)
- Shaofen Kong
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaodian Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bolin Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yuanrong Xian
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Duo Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
3
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Yu XH, Guo XN, Li K, Li JW, Wang K, Wang D, Liu BC. The Role of Wnt5a in Inflammatory Diseases. Immunology 2025; 174:203-212. [PMID: 39668514 DOI: 10.1111/imm.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Wnt5a plays an important role in cell development and maturation and is closely associated with various diseases, such as malignant tumours, metabolic disorders, fibrosis, growth and development. Recent studies have shown that Wnt5a expression and signal transduction are strongly involved in the inflammatory response. This study comprehensively reviewed the latest research progress on the association between Wnt5a and several inflammatory diseases, such as sepsis, asthma, chronic obstructive pulmonary disease, tuberculosis, rheumatoid arthritis, atherosclerosis and psoriasis vulgare. We elucidated the mechanism by which the Wnt5a protein is involved in the pathogenesis of these diseases, providing a basis for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xin-Hua Yu
- Department of Pediatrics, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Ning Guo
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Wei Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaijin Wang
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bi-Cui Liu
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Almet AA, Tsai YC, Watanabe M, Nie Q. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat Methods 2024; 21:1806-1817. [PMID: 39187683 PMCID: PMC11466815 DOI: 10.1038/s41592-024-02380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
From single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST), one can extract high-dimensional gene expression patterns that can be described by intercellular communication networks or decoupled gene modules. These two descriptions of information flow are often assumed to occur independently. However, intercellular communication drives directed flows of information that are mediated by intracellular gene modules, in turn triggering outflows of other signals. Methodologies to describe such intercellular flows are lacking. We present FlowSig, a method that infers communication-driven intercellular flows from scRNA-seq or ST data using graphical causal modeling and conditional independence. We benchmark FlowSig using newly generated experimental cortical organoid data and synthetic data generated from mathematical modeling. We demonstrate FlowSig's utility by applying it to various studies, showing that FlowSig can capture stimulation-induced changes to paracrine signaling in pancreatic islets, demonstrate shifts in intercellular flows due to increasing COVID-19 severity and reconstruct morphogen-driven activator-inhibitor patterns in mouse embryogenesis.
Collapse
Affiliation(s)
- Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Yuan-Chen Tsai
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Momoko Watanabe
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Liu J, Qu L, Wang F, Mei Z, Wu X, Wang B, Liu H, He L. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118021. [PMID: 38492793 DOI: 10.1016/j.jep.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-β, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-β, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-β signalling pathways to exert its influence. CONCLUSION The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.
Collapse
Affiliation(s)
- Junxi Liu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Liping Qu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Feifei Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Zaoju Mei
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Xinlang Wu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Bo Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Haiyang Liu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
| | - Li He
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China.
| |
Collapse
|
7
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
8
|
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT, Zhang J. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation 2024; 21:75. [PMID: 38532410 DOI: 10.1186/s12974-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a β-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFβ1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of β-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active β-catenin labeling. In vitro, Wnt5a/ROR1, active β-catenin, and some other Wnt signaling molecules were upregulated in the TGFβ1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active β-catenin, as well as the EMT in TGFβ1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS Our study reveals a reciprocal activation between Wnt5a and β-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
9
|
Hiura K, Watanabe M, Hirose N, Nakano K, Okamura T, Sasaki H, Sasaki N. Mitotic Spindle Positioning (MISP) Facilitates Colorectal Cancer Progression by Forming a Complex with Opa Interacting Protein 5 (OIP5) and Activating the JAK2-STAT3 Signaling Pathway. Int J Mol Sci 2024; 25:3061. [PMID: 38474305 DOI: 10.3390/ijms25053061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.
Collapse
Affiliation(s)
- Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Naoki Hirose
- The Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| |
Collapse
|
10
|
Mukhopadhyay C, Zhou P. Role(s) of G3BPs in Human Pathogenesis. J Pharmacol Exp Ther 2023; 387:100-110. [PMID: 37468286 PMCID: PMC10519580 DOI: 10.1124/jpet.122.001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BP) are RNA binding proteins that play a critical role in stress granule (SG) formation. SGs protect critical mRNAs from various environmental stress conditions by regulating mRNA stability and translation to maintain regulated gene expression. Recent evidence suggests that G3BPs can also regulate mRNA expression through interactions with RNA outside of SGs. G3BPs have been associated with a number of disease states, including cancer progression, invasion, metastasis, and viral infections, and may be useful as a cancer therapeutic target. This review summarizes the biology of G3BP including their structure, function, localization, role in cancer progression, virus replication, mRNA stability, and SG formation. We will also discuss the potential of G3BPs as a therapeutic target. SIGNIFICANCE STATEMENT: This review will discuss the molecular mechanism(s) and functional role(s) of Ras-GTPase-activating protein (SH3 domain)-binding proteins in the context of stress granule formation, interaction with viruses, stability of RNA, and tumorigenesis.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| |
Collapse
|
11
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
12
|
Lv X, Li Y, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo J, Haile A, Li Y, Sun W. Association between DNA Methylation in the Core Promoter Region of the CUT-like Homeobox 1 ( CUX1) Gene and Lambskin Pattern in Hu Sheep. Genes (Basel) 2023; 14:1873. [PMID: 37895221 PMCID: PMC10606103 DOI: 10.3390/genes14101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
CUT-like homeobox 1 (CUX1) has been proven to be a key regulator in sheep hair follicle development. In our previous study, CUX1 was identified as a differential expressed gene between Hu sheep lambskin with small wave patterns (SM) and straight wool patterns (ST); however, the exact molecular mechanism of CUX1 expression has been obscure. As DNA methylation can regulate the gene expression, the potential association between CUX1 core promotor region methylation and lambskin pattern in Hu sheep was explored in the present study. The results show that the core promoter region of CUX1 was present at (-1601-(-1) bp) upstream of the transcription start site. A repressive region (-1151-(-751) bp) was also detected, which had a strong inhibitory effect on CUX1 promoter activity. Bisulfite amplicon sequencing revealed that no significant difference was detected between the methylation levels of CUX1 core promoter region in SM tissues and ST tissues. Although the data demonstrated the differential expression of CUX1 between SM and ST probably has no association with DNA methylation, the identification of the core region and a potential repressive region of CUX1 promoter can enrich the role of CUX1 in Hu sheep hair follicle development.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yue Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal Husbandry and Veterinary Station, Zhuba Street, Hongze District, Huai’an 223100, China
| | - Weihao Chen
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd., Saint Lucia, QLD 4067, Australia;
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
13
|
Duan R, Pan H, Li D, Liao S, Han B. Ergothioneine improves myocardial remodeling and heart function after acute myocardial infarction via S-glutathionylation through the NF-ĸB dependent Wnt5a-sFlt-1 pathway. Eur J Pharmacol 2023; 950:175759. [PMID: 37121564 DOI: 10.1016/j.ejphar.2023.175759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by reducing circulating levels of sFlt-1. In this study, we aimed to investigate the mechanism by which ERG protects the heart after MI in rats. Our results indicate that treatment with 10 mg/kg ERG for 7 days can improve cardiac function as determined by echocardiography. Additionally, ERG can reduce the size of the damaged area, prevent heart remodeling, fibrosis, and reduce cardiomyocyte death after MI. To explain the mechanism behind the cardioprotective effects of ERG, we conducted several experiments. We observed a significant reduction in the expression of monocyte chemoattractant protein-1 (MCP-1), p65, and p-p65 proteins in heart tissues of ERG-treated rats compared to the control group. ELISA results also showed that ERG significantly reduced plasma levels of sFlt-1. Using Glutaredoxin-1 (GLRX) and CD31 immunofluorescence, we found that GLRX was expressed in clusters in the myocardial tissue surrounding the coronary artery, and ERG can reduce the expression of GLRX caused by MI. In vitro experiments using a human coronary artery endothelial cell (HCAEC) hypoxia model confirmed that ERG can reduce the expression of sFlt-1, GLRX, and Wnt5a. These findings suggest that ERG protects the heart from MI damage by reducing s-glutathionylation through the NF-ĸB-dependent Wnt5a-sFlt-1 pathway.
Collapse
Affiliation(s)
- Rui Duan
- Department of Cardiology, Xuzhou Central Hospital, Jiangsu, PR China
| | - Haotian Pan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, PR China
| | - DongCheng Li
- Department of Cardiology, Huai'an First People's Hospital, Jiangsu, PR China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, PR China.
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Jiangsu, PR China.
| |
Collapse
|
14
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
15
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
16
|
Martín-Medina A, Cerón-Pisa N, Martinez-Font E, Shafiek H, Obrador-Hevia A, Sauleda J, Iglesias A. TLR/WNT: A Novel Relationship in Immunomodulation of Lung Cancer. Int J Mol Sci 2022; 23:6539. [PMID: 35742983 PMCID: PMC9224119 DOI: 10.3390/ijms23126539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
The most frequent cause of death by cancer worldwide is lung cancer, and the 5-year survival rate is still very poor for patients with advanced stage. Understanding the crosstalk between the signaling pathways that are involved in disease, especially in metastasis, is crucial to developing new targeted therapies. Toll-like receptors (TLRs) are master regulators of the immune responses, and their dysregulation in lung cancer is linked to immune escape and promotes tumor malignancy by facilitating angiogenesis and proliferation. On the other hand, over-activation of the WNT signaling pathway has been reported in lung cancer and is also associated with tumor metastasis via induction of Epithelial-to-mesenchymal-transition (EMT)-like processes. An interaction between both TLRs and the WNT pathway was discovered recently as it was found that the TLR pathway can be activated by WNT ligands in the tumor microenvironment; however, the implications of such interactions in the context of lung cancer have not been discussed yet. Here, we offer an overview of the interaction of TLR-WNT in the lung and its potential implications and role in the oncogenic process.
Collapse
Affiliation(s)
- Aina Martín-Medina
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Esther Martinez-Font
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Antònia Obrador-Hevia
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Molecular Diagnosis Unit, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
17
|
Feng Y, Wang Y, Guo K, Feng J, Shao C, Pan M, Ding P, Liu H, Duan H, Lu D, Wang Z, Zhang Y, Zhang Y, Han J, Li X, Yan X. The value of WNT5A as prognostic and immunological biomarker in pan-cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:466. [PMID: 35571400 PMCID: PMC9096401 DOI: 10.21037/atm-22-1317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background Finding new immune-related biomarkers is one of the promising research directions for tumor immunotherapy. The WNT5A gene could stimulate the WNT pathway and regulate the progression of various tumors. Recent studies have partially revealed the relationship between WNT5A and tumor immunity, but the correlation and underlying mechanisms in pan-cancer remain obscure. Thus, we conducted this study aiming to characterize the prognostic value and immunological portrait of WNT5A in cancer. Methods The data obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases was utilized to analyze WNT5A expression levels by Kruskal-Wallis test and correlation to prognosis by Cox regression test and Kaplan-Meier test, while the data was also used to study the association between WNT5A expression and immune microenvironment, immune neoantigens, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI) in pan-cancer. Gene set enrichment analysis (GSEA) was used to clarify the relevant signaling pathways. The R package was used for data analysis and to create the plots. Results The pan-cancer analysis revealed that the expression level of WNT5A is generally elevated in most tumors (19/34, 55.88%), and high WNT5A expression was correlated with poor prognosis in esophageal carcinoma (ESCA, P<0.05), low-grade glioma (LGG, P<0.01), adrenocortical carcinoma (ACC, P<0.01), pancreatic adenocarcinoma (PAAD, P<0.01), and head and neck squamous cell carcinoma (HNSC, P<0.05). In addition, WNT5A expression was positively associated with immune infiltration, stromal score, and immune checkpoints in most cancers, and correlated to immune neoantigens, TMB, and MSI. Finally, GSEA indicated that WNT5A is implicated in the transforming growth factor β (TGFβ), Notch, and Hedgehog signaling pathways, which may be related to tumor immunity. Conclusions The expression of WNT5A is elevated in most tumors and associated with tumor prognosis. Furthermore, WNT5A is associated with tumor immunity and may be an immunological biomarker in cancer.
Collapse
Affiliation(s)
- Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China.,Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Junjun Feng
- Department of Human Resource Management, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Honggang Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Yujing Zhang
- Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Dehghani-Ghobadi Z, Sheikh Hasani S, Arefian E, Hossein G. Wnt5A and TGFβ1 Converges through YAP1 Activity and Integrin Alpha v Up-Regulation Promoting Epithelial to Mesenchymal Transition in Ovarian Cancer Cells and Mesothelial Cell Activation. Cells 2022; 11:cells11020237. [PMID: 35053353 PMCID: PMC8773996 DOI: 10.3390/cells11020237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/28/2023] Open
Abstract
In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.
Collapse
Affiliation(s)
- Zeinab Dehghani-Ghobadi
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
| | - Shahrzad Sheikh Hasani
- Department of Gynecology Oncology Valiasr, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran 1419733141, Iran;
| | - Ehsan Arefian
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
- Correspondence: ; Tel.: +98-21-6111-2622; Fax: +98-21-6649-2992
| |
Collapse
|
19
|
Kopylov AT, Papysheva O, Gribova I, Kaysheva AL, Kotaysch G, Kharitonova L, Mayatskaya T, Nurbekov MK, Schipkova E, Terekhina O, Morozov SG. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine (Baltimore) 2021; 100:e27829. [PMID: 34766598 PMCID: PMC8589259 DOI: 10.1097/md.0000000000027829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Pregestational or gestational diabetes are the main risk factors for diabetic fetopathy. There are no generalized signs of fetopathy before the late gestational age due to insufficient sensitivity of currently employed instrumental methods. In this cross-sectional observational study, we investigated several types of severe diabetic fetopathy (cardiomyopathy, central nervous system defects, and hepatomegaly) established in type 2 diabetic mothers during 30 to 35 gestational weeks and confirmed upon delivery. We examined peripheral blood plasma and determined a small proportion of proteins strongly associated with a specific type of fetopathy or anatomical malfunction. Most of the examined markers participate in critical processes at different stages of embryogenesis and regulate various phases of morphogenesis. Alterations in CDCL5 had a significant impact on mRNA splicing and DNA repair. Patients with central nervous system defects were characterized by the greatest depletion (ca. 7% of the basal level) of DFP3, a neurotrophic factor needed for the proper specialization of oligodendrocytes. Dysregulation of noncanonical wingless-related integration site signaling pathway (Wnt) signaling guided by pigment epithelium-derived factor (PEDF) and disheveled-associated activator of morphogenesis 2 (DAAM2) was also profound. In addition, deficiency in retinoic acid and thyroxine transport was exhibited by the dramatic increase of transthyretin (TTHY). The molecular interplay between the identified serological markers leads to pathologies in fetal development on the background of a diabetic condition. These warning serological markers can be quantitatively examined, and their profile may reflect different severe types of diabetic fetopathy, producing a beneficial effect on the current standard care for pregnant women and infants.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., Moscow, Russia
| | | | - Malik K. Nurbekov
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Ekaterina Schipkova
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Olga Terekhina
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Sergey G. Morozov
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| |
Collapse
|
20
|
Long-Term Hypoxia Maintains a State of Dedifferentiation and Enhanced Stemness in Fetal Cardiovascular Progenitor Cells. Int J Mol Sci 2021; 22:ijms22179382. [PMID: 34502291 PMCID: PMC8431563 DOI: 10.3390/ijms22179382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Early-stage mammalian embryos survive within a low oxygen tension environment and develop into fully functional, healthy organisms despite this hypoxic stress. This suggests that hypoxia plays a regulative role in fetal development that influences cell mobilization, differentiation, proliferation, and survival. The long-term hypoxic environment is sustained throughout gestation. Elucidation of the mechanisms by which cardiovascular stem cells survive and thrive under hypoxic conditions would benefit cell-based therapies where stem cell survival is limited in the hypoxic environment of the infarcted heart. The current study addressed the impact of long-term hypoxia on fetal Islet-1+ cardiovascular progenitor cell clones, which were isolated from sheep housed at high altitude. The cells were then cultured in vitro in 1% oxygen and compared with control Islet-1+ cardiovascular progenitor cells maintained at 21% oxygen. RT-PCR, western blotting, flow cytometry, and migration assays evaluated adaptation to long term hypoxia in terms of survival, proliferation, and signaling. Non-canonical Wnt, Notch, AKT, HIF-2α and Yap1 transcripts were induced by hypoxia. The hypoxic niche environment regulates these signaling pathways to sustain the dedifferentiation and survival of fetal cardiovascular progenitor cells.
Collapse
|
21
|
WNT5A inhibition alters the malignant peripheral nerve sheath tumor microenvironment and enhances tumor growth. Oncogene 2021; 40:4229-4241. [PMID: 34079083 PMCID: PMC8217297 DOI: 10.1038/s41388-021-01773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas that cause significant mortality in adults with neurofibromatosis type 1. We compared gene expression of growth factors in normal human nerves to MPNST and normal human Schwann cells to MPNST cell lines. We identified WNT5A as the most significantly upregulated ligand-coding gene and verified its protein expression in MPNST cell lines and tumors. In many contexts WNT5A acts as an oncogene. However, inhibiting WNT5A expression using shRNA did not alter MPNST cell proliferation, invasion, migration, or survival in vitro. Rather, shWNT5A-treated MPNST cells upregulated mRNAs associated with the remodeling of extracellular matrix and with immune cell communication. In addition, these cells secreted increased amounts of the proinflammatory cytokines CXCL1, CCL2, IL6, CXCL8, and ICAM1. Versus controls, shWNT5A-expressing MPNST cells formed larger tumors in vivo. Grafted tumors contained elevated macrophage/stromal cells, larger and more numerous blood vessels, and increased levels of Mmp9, Cxcl13, Lipocalin-1, and Ccl12. In some MPNST settings, these effects were mimicked by targeting the WNT5A receptor ROR2. These data suggest that the non-canonical Wnt ligand WNT5A inhibits MPNST tumor formation by modulating the MPNST microenvironment, so that blocking WNT5A accelerates tumor growth in vivo.
Collapse
|
22
|
Eguchi A, Ueki A, Hoshiyama J, Kuwata K, Chikaoka Y, Kawamura T, Nagatoishi S, Tsumoto K, Ueki R, Sando S. A DNA Aptamer That Inhibits the Aberrant Signaling of Fibroblast Growth Factor Receptor in Cancer Cells. JACS AU 2021; 1:578-585. [PMID: 34467321 PMCID: PMC8395645 DOI: 10.1021/jacsau.0c00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 06/13/2023]
Abstract
Growth factor receptors are activated through dimerization by the binding of their ligands and play pivotal roles in normal cell function. However, the aberrant activity of the receptors has been associated with cancer malignancy. One of the main causes of the aberrant receptor activation is the overexpression of receptors and the resultant formation of unliganded receptor dimers, which can be activated in the absence of external ligand molecules. Thus, the unliganded receptor dimer is a promising target to inhibit aberrant signaling in cancer. Here, we report an aptamer that specifically binds to fibroblast growth factor receptor 2b and inhibits the aberrant receptor activation and signaling. Our investigation suggests that this aptamer inhibits the formation of the receptor dimer occurring in the absence of external ligand molecules. This work presents a new inhibitory function of aptamers and the possibility of oligonucleotide-based therapeutics for cancer.
Collapse
Affiliation(s)
- Akihiro Eguchi
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Ueki
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Hoshiyama
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keiko Kuwata
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoko Chikaoka
- Proteomics
Laboratory, Isotope Science Center, The
University of Tokyo, 2-11-16, Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Takeshi Kawamura
- Proteomics
Laboratory, Isotope Science Center, The
University of Tokyo, 2-11-16, Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Satoru Nagatoishi
- The
Institute of Medical Science, The University
of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The
Institute of Medical Science, The University
of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology andDepartment of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Brunt L, Greicius G, Rogers S, Evans BD, Virshup DM, Wedgwood KCA, Scholpp S. Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling. Nat Commun 2021; 12:2058. [PMID: 33824332 PMCID: PMC8024337 DOI: 10.1038/s41467-021-22393-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development. However, it is still unclear how the Wnt ligand distribution is precisely controlled to fulfil these functions. Here, we show that the planar cell polarity protein Vangl2 regulates the distribution of Wnt by cytonemes. In zebrafish epiblast cells, mouse intestinal telocytes and human gastric cancer cells, Vangl2 activation generates extremely long cytonemes, which branch and deliver Wnt protein to multiple cells. The Vangl2-activated cytonemes increase Wnt/β-catenin signaling in the surrounding cells. Concordantly, Vangl2 inhibition causes fewer and shorter cytonemes to be formed and reduces paracrine Wnt/β-catenin signaling. A mathematical model simulating these Vangl2 functions on cytonemes in zebrafish gastrulation predicts a shift of the signaling gradient, altered tissue patterning, and a loss of tissue domain sharpness. We confirmed these predictions during anteroposterior patterning in the zebrafish neural plate. In summary, we demonstrate that Vangl2 is fundamental to paracrine Wnt/β-catenin signaling by controlling cytoneme behaviour.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Benjamin D Evans
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle C A Wedgwood
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
24
|
Li H, Tong F, Meng R, Peng L, Wang J, Zhang R, Dong X. E2F1-mediated repression of WNT5A expression promotes brain metastasis dependent on the ERK1/2 pathway in EGFR-mutant non-small cell lung cancer. Cell Mol Life Sci 2021; 78:2877-2891. [PMID: 33078208 PMCID: PMC11072416 DOI: 10.1007/s00018-020-03678-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutation reportedly enhances the development of BM. However, the exact mechanism of how EGFR-mutant NSCLC contributes to BM remains unknown. Herein, we found the protein WNT5A, was significantly downregulated in BM tissues and EGFR-mutant samples. In addition, the overexpression of WNT5A inhibited the growth, migration, and invasion of EGFR-mutant cells in vitro and retarded tumor growth and metastasis in vivo compared with the EGFR wide-type cells. We demonstrated a molecular mechanism whereby WNT5A be negatively regulated by transcription factor E2F1, and ERK1/2 inhibitor (U0126) suppressed E2F1's regulation of WNT5A expression in EGFR-mutant cells. Furthermore, WNT5A inhibited β-catenin activity and the transcriptional levels of its downstream genes in cancer progression. Our research revealed the role of WNT5A in NSCLC BM with EGFR mutation, and proved that E2F1-mediated repression of WNT5A was dependent on the ERK1/2 pathway, supporting the notion that targeting the ERK1/2-E2F1-WNT5A pathway could be an effective strategy for treating BM in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
25
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Hojjat-Farsangi M, Moshfegh A, Schultz J, Norin M, Olin T, Österborg A, Mellstedt H. Targeting the Receptor Tyrosine Kinase ROR1 by Small Molecules. Handb Exp Pharmacol 2021; 269:75-99. [PMID: 34490515 DOI: 10.1007/164_2021_535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Receptor tyrosine kinases (RTKs) are frequently dysregulated in malignancies and important for the malignant characteristics of tumor cells. RTKs are attractive structures for drug targeting of cancer. The RTK ROR1 is of significance during embryogenesis but downregulated in post-partum tissues. However, ROR1 is overexpressed in several hematological and solid tumors and important for tumor cell proliferation, survival, migration, and metastasis. WNT5a is a main ligand for ROR1. Several clinical trials are ongoing using anti-ROR1 antibody based drugs directed against the external domain (monoclonal antibodies, BiTE, CAR-T). We have produced small molecules (KAN834/1571c) fitting to the ATP pocket of the intracellular tyrosine kinase (TK) domain of ROR1 (TK inhibitor, TKI). These inhibitors of ROR1 prevented ROR1 phosphorylation and inactivated the WNT/β-catenin independent as well as WNT/β-catenin dependent pathways. ROR1-TKI induced apoptosis of ROR1 positive fresh patient derived tumor cells and appropriate cell lines and a dose and time dependent tumor reduction in animal models. In combination with other clinically relevant targeting drugs as venetoclax a synergistic apoptotic effect was seen. Two other small molecules (ARI-1 and strictinin) bound also to ROR1 and inhibited tumor growth. Development of small molecule ROR1 inhibitors is warranted to include this novel therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
| | - Ali Moshfegh
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Martin Norin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Chen Q, Jiao J, Wang Y, Mai Z, Ren J, He S, Li X, Chen Z. Egr-1 mediates low-dose arecoline induced human oral mucosa fibroblast proliferation via transactivation of Wnt5a expression. BMC Mol Cell Biol 2020; 21:80. [PMID: 33167868 PMCID: PMC7653895 DOI: 10.1186/s12860-020-00325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Background Arecoline is an alkaloid natural product found in the areca nut that can induce oral submucous fibrosis and subsequent development of cancer. However, numerous studies have shown that arecoline may inhibit fibroblast proliferation and prevent collagen synthesis. Results High doses of arecoline (> 32 μg/ml) could inhibit human oral fibroblast proliferation, while low doses of arecoline (< 16 μg/ml) could promote the proliferation of human oral fibroblasts. Wnt5a was found to be both sufficient and necessary for the promotion of fibroblast proliferation. Egr-1 could mediate the expression of Wnt5a in fibroblasts, while NF-κB, FOXO1, Smad2, and Smad3 did not. Treatment with siRNAs specific to Egr-1, Egr inhibitors, or Wnt5a antibody treatment could all inhibit arecoline-induced Wnt5a upregulation and fibroblast proliferation. Conclusions Egr-1 mediates the effect of low dose arecoline treatment on human oral mucosa fibroblast proliferation by transactivating the expression of Wnt5a. Therefore, Egr inhibitors and Wnt5a antibodies are potential therapies for treatment of oral submucosal fibrosis and oral cancer.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Jiuyang Jiao
- Department of Oral & Maxillofacial Surgery & Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youyuan Wang
- Department of Oral & Maxillofacial Surgery & Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Jing Ren
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Sijie He
- The fourth people's hospital of Nanhai district of Foshan city, Foshan, China.
| | - Xiaolan Li
- Guanghua School of stomatology & hospital of stomatology, Guangdong province key laboratory of stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China.
| |
Collapse
|
28
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
29
|
Yin P, Bai Y, Wang Z, Sun Y, Gao J, Na L, Zhang Z, Wang W, Zhao C. Non-canonical Fzd7 signaling contributes to breast cancer mesenchymal-like stemness involving Col6a1. Cell Commun Signal 2020; 18:143. [PMID: 32894152 PMCID: PMC7487719 DOI: 10.1186/s12964-020-00646-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal-like stemness is characterized by epithelial-mesenchymal transition (EMT). Breast cancer (BC) cell mesenchymal-like stemness is responsible for distal lung metastasis. Interrogation of databases showed that Fzd7 was closely associated with a panel of mesenchymal-related genes and a panel of stemness-related genes. Fzd7 knockdown in mesenchymal-like MDA-MB-231 and Hs578T cells reduced expression of Vimentin, Slug and Zeb1, induced an epithelial-like morphology, inhibited cell motility, impaired mammosphere formation and decreased Lgr5+ subpopulation. In contrast, Fzd7 overexpression in MCF7 cells resulted in opposite changes. Fzd7 knockdown delayed xenograft tumor formation, suppressed tumor growth, and impaired lung metastasis. Mechanistically, Fzd7 combined with Wnt5a/b and modulated expression of phosphorylated Stat3 (p-STAT3), Smad3 and Yes-associated protein 1 (Yap1). Moreover, Fzd7-Wnt5b modulated expression of collagen, type VI, alpha 1 (Col6a1). Both Wnt5b knockdown and Col6a1 knockdown disrupted BC cell mesenchymal phenotype and stemness. Taken together, Fzd7 contributes to BC cell EMT and stemness, inducing tumorigenesis and metastasis, mainly through a non-canonical Wnt5b pathway. Col6a1 is implicated in Fzd7-Wnt5b signaling, and mediates Fzd7-Wnt5b -induced mesenchymal-like stemness. Video Abstract
Collapse
Affiliation(s)
- Ping Yin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhuo Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lei Na
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhongbo Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Gupta G, Singh Y, Tiwari J, Raizaday A, Alharbi KS, Al-Abbasi FA, Kazmi I, Satija S, Tambuwala MM, Devkota HP, Krishnan A, Chellappan DK, Dua K. Beta-catenin non-canonical pathway: A potential target for inflammatory and hyperproliferative state via expression of transglutaminase 2 in psoriatic skin keratinocyte. Dermatol Ther 2020; 33:e14209. [PMID: 32816372 DOI: 10.1111/dth.14209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Psoriasis is a chronic, local as well as a systemic, inflammatory skin condition. Psoriasis influences the quality of life up to 3.8% of the population and occurs often between 15 and 30 years of age. Specific causes are linked to psoriasis, including the interleukin IL-23/IL-17 Axis, human antigen leucocyte (HLA), and tumor necrosis factor-α (TNF-α). Secukinumab is a monoclonal antibody that specifically binds and neutralizes IL-17A required in the treatment of Psoriasis. The signaling pathways of Wnt govern multiple functions of cell-like fate specification, proliferation, polarity, migration, differentiation with their signaling controlled rigorously, given that dysregulation caused by various stimuli, can lead to alterations in cell proliferation, apoptosis, and human inflammatory disease. Current data has supported non-canonical Wnt signaling pathways in psoriasis development, particularly Wnt5a activated signaling cascades. These interconnected factors are significant in interactions between immune cells, keratinocytes, and inflammatory factors due to a higher degree of transglutaminase 2, mediated by activation of the keratinocyte hyperproliferation of the psoriatic patient's epidermis. This study discusses the pathology of Wnt5a signaling and its involvement in the epidermal inflammatory effects of psoriasis with other related pathways.
Collapse
Affiliation(s)
- Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Yogendra Singh
- Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur, India
| | | | - Abhay Raizaday
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, COLERAINE, Northern Ireland, United Kingdom
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
31
|
Vageli DP, Kasle D, Doukas SG, Doukas PG, Sasaki CT. The temporal effects of topical NF- κB inhibition, in the in vivo prevention of bile-related oncogenic mRNA and miRNA phenotypes in murine hypopharyngeal mucosa: a preclinical model. Oncotarget 2020; 11:3303-3314. [PMID: 32934775 PMCID: PMC7476734 DOI: 10.18632/oncotarget.27706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Supraesophageal bile reflux at strongly acidic pH can cause hypopharyngeal squamous cell cancer, through activation of the oncogenic NF-κB-related pathway. We hypothesize that topical pre- or post-application of pharmacologic NF-κB inhibitor, BAY 11-7082 (0.25 μmol), on murine (C57BL/6J) HM (twice a day for 10 days) can effectively inhibit acidic bile (10 mmol/l; pH 3.0) induced oncogenic molecular events, similar to prior in vitro findings. We demonstrate that the administration of BAY 11-7082, either before or after acidic bile, eliminates NF-κB activation, prevents overexpression of Bcl2, Rela, Stat3, Egfr, Tnf, Wnt5a, and deregulations of miR-192, miR-504, linked to bile reflux-related hypopharyngeal cancer. Pre- but not post-application of NF-κB inhibitor, significantly blocks overexpression of Il6 and prostaglandin H synthases 2 (Ptgs2), and reverses miR-21, miR-155, miR-99a phenotypes, supporting its early bile-induced pro-inflammatory effect. We thus provide novel evidence that topical administration of a pharmacological NF-κB inhibitor, either before or after acidic bile exposure can successfully prevent its oncogenic mRNA and miRNA phenotypes in HM, supporting the observation that co-administration of NF-κB inhibitor may not be essential in preventing early bile-related oncogenic events and encouraging a capacity for further translational exploration.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - David Kasle
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Clarence T Sasaki
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Sucre JMS, Vickers KC, Benjamin JT, Plosa EJ, Jetter CS, Cutrone A, Ransom M, Anderson Z, Sheng Q, Fensterheim BA, Ambalavanan N, Millis B, Lee E, Zijlstra A, Königshoff M, Blackwell TS, Guttentag SH. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. Am J Respir Crit Care Med 2020; 201:1249-1262. [PMID: 32023086 DOI: 10.1164/rccm.201908-1513oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics.,Department of Cell and Developmental Biology, and
| | | | - John T Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Erin J Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | | | - Alissa Cutrone
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Benjamin A Fensterheim
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan Millis
- Department of Cell and Developmental Biology, and.,Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Ethan Lee
- Department of Cell and Developmental Biology, and
| | | | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado; and
| | - Timothy S Blackwell
- Department of Cell and Developmental Biology, and.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | |
Collapse
|
33
|
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6:25. [PMID: 32922954 PMCID: PMC7398200 DOI: 10.1186/s41016-020-00207-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common form of primary brain tumor. Glioblastoma stem cells play an important role in tumor formation by activation of several signaling pathways. Wnt signaling pathway is one such important pathway which helps cellular differentiation to promote tumor formation in the brain. Glioblastoma remains to be a highly destructive type of tumor despite availability of treatment strategies like surgery, chemotherapy, and radiation. Advances in the field of cancer biology have revolutionized therapy by allowing targeting of tumor-specific molecular deregulation. In this review, we discuss about the significance of glioblastoma stem cells in cancer progression through Wnt signaling pathway and highlight the clinical targets being potentially considered for therapy in glioblastoma.
Collapse
Affiliation(s)
- Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| | - Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
34
|
Lingappan K, Savani RC. The Wnt Signaling Pathway and the Development of Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2020; 201:1174-1176. [PMID: 32101467 PMCID: PMC7233338 DOI: 10.1164/rccm.202002-0277ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Krithika Lingappan
- Division of Neonatal-Perinatal MedicineBaylor College of MedicineHouston, Texasand
| | - Rashmin C Savani
- Division of Neonatal-Perinatal MedicineUniversity of Texas Southwestern Medical CenterDallas, Texas
| |
Collapse
|
35
|
Chen J, Tan W. Platelet activation and immune response in diabetic microangiopathy. Clin Chim Acta 2020; 507:242-247. [DOI: 10.1016/j.cca.2020.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
|
36
|
Xu Z, He W, Ke T, Zhang Y, Zhang G. DHRS12 inhibits the proliferation and metastasis of osteosarcoma via Wnt3a/β-catenin pathway. Future Oncol 2020; 16:665-674. [PMID: 32250163 DOI: 10.2217/fon-2019-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This experimental design was based on DHRS12 to explore its biological effects on osteosarcoma (OS). Materials & methods: The expression level of endogenous DHRS12 was analyzed by immunohistochemical analysis. DHRS12 was overexpressed in MG-63 and HOS cells by plasmid transfection. Cell proliferation, invasion, migration, apoptosis and western blot were used in the experiment. Results: The expression of DHRS12 was significantly reduced in OS. Overexpression of DHRS12 inhibited the proliferation, migration and invasion of MG-63 and HOS cells and induced apoptosis of OS cells. Overexpression of DHRS12 upregulated Bax, Caspase 9 and Caspase 3. Overexpression of DHRS12 resulted in inactivation of the Wnt3a/β-catenin signaling pathway. Conclusion: Overexpression of DHRS12 inhibited the progression of OS via the Wnt3a/β-catenin pathway.
Collapse
Affiliation(s)
- Zhixian Xu
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Wubing He
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Tie Ke
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Yongfa Zhang
- Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| | - Guifeng Zhang
- Department of Medical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China
| |
Collapse
|
37
|
Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, Mani V, Zeng Y, Ozen MO, Wang L, Demirci U, Tian W, Nicolls MR, de Jesus Perez VA. Loss of Endothelium-Derived Wnt5a Is Associated With Reduced Pericyte Recruitment and Small Vessel Loss in Pulmonary Arterial Hypertension. Circulation 2020; 139:1710-1724. [PMID: 30586764 DOI: 10.1161/circulationaha.118.037642] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Abinaya Nathan
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Sushma Reddy
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Division of Pediatric Cardiology (S.R.), Stanford University, Palo Alto, CA
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Japan (H.H.)
| | - Vigneshwaran Mani
- Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Yitian Zeng
- Department of Materials Science and Engineering (Y.Z.), Stanford University, Palo Alto, CA
| | - Mehmet O Ozen
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Lingli Wang
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Pediatrics (L.W.), Stanford University, Palo Alto, CA
| | - Utkan Demirci
- Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Wen Tian
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Medicine, VA Palo Alto Health Care System/Stanford University, CA (W.T., M.R.N.)
| | - Mark R Nicolls
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Medicine, VA Palo Alto Health Care System/Stanford University, CA (W.T., M.R.N.)
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| |
Collapse
|
38
|
Shen G, Ren H, Shang Q, Zhao W, Zhang Z, Yu X, Tang K, Tang J, Yang Z, Liang D, Jiang X. Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss. EBioMedicine 2020; 52:102626. [PMID: 31981979 PMCID: PMC6992955 DOI: 10.1016/j.ebiom.2020.102626] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Forkhead box protein f1 (Foxf1) is associated with cell differentiation, and may be a key player in bone homoeostasis. However, the effect of Foxf1 on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) and ovariectomy-induced bone loss, as well as its clinical implications, is unknown. METHODS By quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, we assayed Foxf1 expression in bone tissue, BMSCs, and bone marrow-derived macrophages (BMMs), derived from ovariectomised (OVX) mice, and during osteogenic differentiation and osteoclast differentiation. Using a loss-of-function approach (small interfering RNA [siRNA]-mediated knockdown) in vitro, we examined whether Foxf1 regulates osteoblast differentiation of BMSCs via the Wnt/β-catenin signalling pathway. Furthermore, we assessed the anabolic effect of Foxf1 knockdown (siFoxf1) in OVX mice in vivo. We also assayed the expression of Foxf1 in bone tissue derived from postmenopausal osteoporosis (PMOP) patients and its link with bone mineral density (BMD). Finally, we examined the effect of Foxf1 knockdown on the osteoblastic differentiation of human BMSCs. FINDINGS Foxf1 expression was significantly increased in bone extract and BMSCs from OVX mice and gradually decreased during osteoblastic differentiation of BMSCs but did not differ significantly in OVX mouse-derived BMMs or during osteoclast differentiation. In vitro, Foxf1 knockdown markedly increased the expression of osteoblast specific genes, alkaline phosphatase (ALP) activity, and mineralisation. Moreover, siFoxf1 activated the Wnt/β-catenin signalling pathway. The siFoxf1-induced increase in osteogenic differentiation was partly rescued by inhibitor of Wnt signalling (DKK1). In OVX mice, Foxf1 siRNA significantly reduced bone loss by enhancing bone formation. Foxf1 expression levels negatively correlated with reduced bone mass and bone formation in bone tissue from PMOP patients. Finally, Foxf1 knockdown significantly promoted osteogenesis by human BMSCs. INTERPRETATION Our findings indicate that Foxf1 knockdown promotes BMSC osteogenesis and prevents OVX-induced bone loss. Therefore, Foxf1 has potential as a biomarker of osteogenesis and may be a therapeutic target for PMOP.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
39
|
Xu W, Jones PM, Geng H, Li R, Liu X, Li Y, Lv Q, Liu Y, Wang J, Wang X, Sun Z, Liang J. Islet Stellate Cells Regulate Insulin Secretion via Wnt5a in Min6 Cells. Int J Endocrinol 2020; 2020:4708132. [PMID: 32184820 PMCID: PMC7060442 DOI: 10.1155/2020/4708132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a serious public health problem worldwide. Accumulating evidence has shown that β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. METHODS Glucose-stimulated insulin secretion (GSIS) from Min6 cells was examined by estimating the insulin levels in response to high glucose challenge after culture with ISC supernatant or exogenous Wnt5a. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to observe changes in the β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. RESULTS We observed a significant increase in insulin secretion from Min6 cells cocultured in vitro with supernatant from db/m mouse ISCs compared to that from Min6 cells cocultured with supernatant from db/db mouse ISCs; The intracellular Ca2+ concentration in Min6 cells increased in cultured in vitro with supernatant from db/m mouse ISCs and exogenous Wnt5a compared to that from control Min6 cells. Culture of Min6 cells with exogenous Wnt5a caused a significant increase in pCamKII, pFoxO1, PDX-1, and Glut2 levels compared to those in Min6 cells cultured alone; this treatment further decreased Ror2 and Cask expression but did not affect β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. CONCLUSION ISCs regulate insulin secretion from Min6 cells through the Wnt5a protein-induced Wnt-calcium and FoxO1-PDX1-GLUT2-insulin signalling cascades.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Peter M. Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Rui Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Yinxia Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Qian Lv
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xiuli Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
40
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
41
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
42
|
Shalash MAM, Rohoma KH, Kandil NS, Abdel Mohsen MA, Taha AAF. Serum sclerostin level and its relation to subclinical atherosclerosis in subjects with type 2 diabetes. J Diabetes Complications 2019; 33:592-597. [PMID: 31129005 DOI: 10.1016/j.jdiacomp.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Sclerostin, a Wnt-signalling inhibitor, is an established negative regulator of bone formation. However, data regarding its potential importance in vascular disease are less clear. Common carotid artery media thickness (CIMT) assessment and plaque identification using ultrasound imaging are well-recognized tools for identifying and monitoring atherosclerosis. The aim of the present study is to examine the relationship between serum sclerostin and subclinical atherosclerosis (as evidenced by CIMT). METHODS This cross-sectional study included 50 subjects with T2DM and 20 subjects as a control group. Multivariable linear regression models were used to assess the association of sclerostin with subclinical atherosclerosis. RESULTS Serum sclerostin levels in T2DM patients were significantly higher compared to the control group (167.16 ± 63.60 versus 85.98 ± 23.74 pg/ml, P < 0.0001). A concentration of ≥162.5 pg/ml showed a sensitivity of 90% and a specificity of 86.67% to detect an increased risk of subclinical atherosclerosis. Univariate analysis revealed a significant positive correlation between serum sclerostin and CIMT (r = 0.635, P < 0.001). Sclerostin concentrations remained independently associated with CIMT (β = 63.188 [6.919-119.456], P = 0.017) after adjusting for age and gender. CONCLUSION Our data suggest a positive correlation between serum sclerostin level and subclinical atherosclerosis in subjects with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Magui Abdel Moneim Shalash
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kamel Hemida Rohoma
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Noha Said Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Aya Abdul Fattah Taha
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Fujiwara-Tani R, Sasaki T, Ohmori H, Luo Y, Goto K, Nishiguchi Y, Mori S, Nakashima C, Mori T, Miyagawa Y, Kawahara I, Fujii K, Kishi S, Tatsumoto N, Kuniyasu H. Concurrent Expression of CD47 and CD44 in Colorectal Cancer Promotes Malignancy. Pathobiology 2019; 86:182-189. [PMID: 31132784 DOI: 10.1159/000496027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
CD47 activates signal regulatory protein alpha expressed on macrophages and suppresses its phagocytic ability; therefore, CD47 is drawing attention as an immune checkpoint in the innate immune system. Expression of CD47 in cancer is thought to allow cancer cells to escape antitumor immunity of the innate immune system. In this study, expression of CD47 was examined by immunostaining in colorectal cancer (CRC) and compared with the expression of CD44, which is a marker for cancer stem cells. In 95 cases of stage II-IV CRC, CD47 and CD44 showed overexpression in 82 and 80 cases, respectively. Both expression levels correlated with distant metastasis. Moreover, the expression of CD47 and CD44 in each case showed a significant correlation. In stage III cases, disease-free survival of cases showing high expression of CD47 and CD44 was worse than that of the cases with low expression. Furthermore, 3 of the stage IV cases were administered nivolumab, a checkpoint inhibitor of the acquired immune system, and 2 patients showed recurrence thereafter. All recurrent tumors highly expressed CD47 and CD44 and showed the epithelial-mesenchymal transition (EMT) phenotype. Our results suggest that CD47 promotes the malignancy of CRC in association with EMT and enhances the stemness of cancer cells. Moreover, our study suggests that CD47 and CD44 are involved in imparting resistance to programmed cell death (PD)-1/PD-ligand 1 inhibitors.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan,
| |
Collapse
|
44
|
Temporal characteristics of NF-κB inhibition in blocking bile-induced oncogenic molecular events in hypopharyngeal cells. Oncotarget 2019; 10:3339-3351. [PMID: 31164956 PMCID: PMC6534360 DOI: 10.18632/oncotarget.26917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022] Open
Abstract
Biliary esophageal reflux at acidic pH is considered a risk factor in laryngopharyngeal cancer. We previously showed the key role NF-κB in mediating acidic bile-induced pre-neoplastic events in hypopharyngeal cells, and that co-administration of specific NF-κB inhibitor, BAY 11-7082, together with acidic bile, can effectively prevent its related oncogenic molecular effects. We hypothesize that the addition of BAY 11-7082 (10μM) either before or after application of acidic bile (400μM conjugated bile acids; pH 4.0), is capable of comparably blocking acidic bile-induced oncogenic molecular phenotypes in murine hypopharyngeal primary cells. We performed immunofluorescence, luciferase assay, western blot and qPCR analysis, demonstrating that 15-min of pre- or post-application of BAY 11-7082 effectively inhibits acidic bile-induced NF-κB activation, transcriptional activation of RELA(p65), STAT3, EGFR, IL-6, bcl-2, WNT5A, "upregulation" of "oncomirs" miR-21, miR-155, miR-192 and "downregulation" of "tumor suppressor" miR-34a, miR-375, miR-451a. Our observations support the understanding that acidic bile-induced deregulation of anti-apoptotic or oncogenic factors, bcl-2, STAT3, EGFR, IL-6, WNT5A, miR-21, miR-155, miR-375, is highly NF-κB-dependent, showing that even post-application of inhibitor can suppress their deregulation. In conclusion, application of specific NF-κB inhibitor, has the capability of adequately blocking the early oncogenic molecular events produced by acidic bile whether it is applied pre or post exposure. In addition to therapeutic implications these findings provide a window of observation into the complex kinetics characterizing the mechanistic link between acidic bile and early neoplasia. Although BAY 11-7082 itself may not be suitable for clinical use, the application of other NF-κB inhibitors merits exploration.
Collapse
|
45
|
Noto JM, Rose KL, Hachey AJ, Delgado AG, Romero-Gallo J, Wroblewski LE, Schneider BG, Shah SC, Cover TL, Wilson KT, Israel DA, Roa JC, Schey KL, Zavros Y, Piazuelo MB, Peek RM. Carcinogenic Helicobacter pylori Strains Selectively Dysregulate the In Vivo Gastric Proteome, Which May Be Associated with Stomach Cancer Progression. Mol Cell Proteomics 2019; 18:352-371. [PMID: 30455363 PMCID: PMC6356085 DOI: 10.1074/mcp.ra118.001181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag+H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda J Hachey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy L Cover
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawn A Israel
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yana Zavros
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, Ohio
| | - M Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;.
| |
Collapse
|
46
|
Veskimäe K, Scaravilli M, Niininen W, Karvonen H, Jaatinen S, Nykter M, Visakorpi T, Mäenpää J, Ungureanu D, Staff S. Expression Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals New Candidates for Targeted Therapies. Transl Oncol 2018; 11:1160-1170. [PMID: 30056367 PMCID: PMC6079561 DOI: 10.1016/j.tranon.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.
Collapse
Affiliation(s)
- K Veskimäe
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland.
| | - M Scaravilli
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - W Niininen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - H Karvonen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - S Jaatinen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - M Nykter
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - T Visakorpi
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - J Mäenpää
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - D Ungureanu
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - S Staff
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland; BioMediTech Institute, University of Tampere, Tampere, Finland
| |
Collapse
|
47
|
Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC. Prohibitin 1 Acts As a Negative Regulator of Wingless/Integrated-Beta-Catenin Signaling in Murine Liver and Human Liver Cancer Cells. Hepatol Commun 2018; 2:1583-1600. [PMID: 30556043 PMCID: PMC6287485 DOI: 10.1002/hep4.1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Prohibitin1 (PHB1) is a mitochondrial chaperone with diverse functions that include cell proliferation, apoptosis, and mitochondrial homoeostasis. Liver‐specific Phb1 knockout (KO) mice develop spontaneous injury and hepatocellular carcinoma (HCC). Our previous work demonstrated that PHB1 negatively regulates the H19‐insulin‐like growth factor 2 (IGF2)‐H19‐IGF2 axis signaling pathway and E‐box activity in hepatocytes and HCC cells. Phb1 KO livers exhibited increased expression of multiple wingless/integrated (WNT) target genes compared to control littermates. Therefore, we hypothesized that PHB1 is a negative regulator of WNT‐beta‐catenin signaling in the liver. Analysis of livers from Phb1 KO mice demonstrated an activation of the WNT‐beta‐catenin pathway as determined by phosphorylation of glycogen synthase kinase 3 (GSK3)betaserine [Ser]9 and protein kinase B (AKT)Ser473. Phb1 KO livers showed increased messenger RNA (mRNA) levels of multiple WNT ligands, with Wnt7a (79‐fold), Wnt10a (12‐fold), and Wnt16 (48‐fold) being most highly overexpressed compared to control littermates. Subcellular fractionation of liver cells from Phb1 KO mice indicated that hepatocytes are the main source of WNT ligands. Immunostaining and cellular colocalization analysis of Phb1 KO livers demonstrated expression of WNT7a, WNT10a, and WNT16 in hepatocytes. Chromatin immunoprecipitation revealed increased binding of transcription factor E2F1 (E2F1) to the Wnt10a promoter in Phb1 KO livers and WNT9A in HepG2 cells. PHB1 silencing in HepG2 cells activated WNT signaling, whereas its overexpression caused inactivation of this pathway. PHB1 silencing in HepG2 cells induced the expression of multiple WNT ligands of which WNT9A induction was partly regulated through E2F1. Conclusion: PHB1 acts as a negative regulator of WNT signaling, and its down‐regulation causes the induction of multiple WNT ligands and downstream activation of canonical WNT‐beta‐catenin signaling in murine liver and human HCC cells, in part through E2F1.
Collapse
Affiliation(s)
- Nirmala Mavila
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Yuanyuan Tang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Department of Oncology The Second Xiangya Hospital, Central South University Changsha China
| | - Joshua Berlind
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - Komal Ramani
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Jiaohong Wang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Technology Park of Bizkaia Derio Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| |
Collapse
|
48
|
Karvonen H, Perttilä R, Niininen W, Barker H, Ungureanu D. Targeting Wnt signaling pseudokinases in hematological cancers. Eur J Haematol 2018; 101:457-465. [DOI: 10.1111/ejh.13137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hanna Karvonen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Robert Perttilä
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Wilhelmiina Niininen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Harlan Barker
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Daniela Ungureanu
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| |
Collapse
|
49
|
Tian B, Widen SG, Yang J, Wood TG, Kudlicki A, Zhao Y, Brasier AR. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. J Biol Chem 2018; 293:16528-16545. [PMID: 30166344 DOI: 10.1074/jbc.ra118.003662] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NF-κB in EMT of primary human small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor β (TGFβ) activated NF-κB/RELA proto-oncogene, NF-κB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFβ-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFβ stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified WNT, cadherin, and NF-κB signaling as the most prominent TGFβ-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to WNT, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: 1) the WNT/β-catenin morphogen pathway, 2) the JUN transcription factor, and 3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating WNT dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFβ-induced WNT5B expression and downstream activation of the WNT target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of WNT morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops.
Collapse
Affiliation(s)
- Bing Tian
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Steven G Widen
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Jun Yang
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Thomas G Wood
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Andrzej Kudlicki
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Yingxin Zhao
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| |
Collapse
|
50
|
Expression Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals New Candidates for Targeted Therapies. Transl Oncol 2018. [PMID: 30056367 DOI: 10.1016/j.tranon.2018.07.010] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.
Collapse
|