1
|
Alhujaily M. Glyoxalase System in Breast and Ovarian Cancers: Role of MEK/ERK/SMAD1 Pathway. Biomolecules 2024; 14:584. [PMID: 38785990 PMCID: PMC11117840 DOI: 10.3390/biom14050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
2
|
Kim JY, Jung JH, Lee SJ, Han SS, Hong SH. Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells. Mol Cells 2022; 45:869-876. [PMID: 36172978 PMCID: PMC9794553 DOI: 10.14348/molcells.2022.0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- KW-Bio Co., Ltd., Wonju 26487, Korea
| |
Collapse
|
3
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
4
|
Rounds L, Nagle RB, Muranyi A, Jandova J, Gill S, Vela E, Wondrak GT. Glyoxalase 1 Expression as a Novel Diagnostic Marker of High-Grade Prostatic Intraepithelial Neoplasia in Prostate Cancer. Cancers (Basel) 2021; 13:3608. [PMID: 34298821 PMCID: PMC8304603 DOI: 10.3390/cancers13143608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Glyoxalase 1 (GLO1) is an enzyme involved in the detoxification of methylglyoxal (MG), a reactive oncometabolite formed in the context of energy metabolism as a result of high glycolytic flux. Prior clinical evidence has documented GLO1 upregulation in various tumor types including prostate cancer (PCa). However, GLO1 expression has not been explored in the context of PCa progression with a focus on high-grade prostatic intraepithelial neoplasia (HGPIN), a frequent precursor to invasive cancer. Here, we have evaluated GLO1 expression by immunohistochemistry in archival tumor samples from 187 PCa patients (stage 2 and 3). Immunohistochemical analysis revealed GLO1 upregulation during tumor progression, observable in HGPIN and PCa versus normal prostatic tissue. GLO1 upregulation was identified as a novel hallmark of HGPIN lesions, displaying the highest staining intensity in all clinical patient specimens. GLO1 expression correlated with intermediate-high risk Gleason grade but not with patient age, biochemical recurrence, or pathological stage. Our data identify upregulated GLO1 expression as a molecular hallmark of HGPIN lesions detectable by immunohistochemical analysis. Since current pathological assessment of HGPIN status solely depends on morphological features, GLO1 may serve as a novel diagnostic marker that identifies this precancerous lesion.
Collapse
Affiliation(s)
- Liliana Rounds
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.R.); (J.J.)
- Roche Diagnostics Solutions, Tucson, AZ 85755, USA; (A.M.); (S.G.); (E.V.)
| | - Ray B. Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA;
| | - Andrea Muranyi
- Roche Diagnostics Solutions, Tucson, AZ 85755, USA; (A.M.); (S.G.); (E.V.)
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.R.); (J.J.)
| | - Scott Gill
- Roche Diagnostics Solutions, Tucson, AZ 85755, USA; (A.M.); (S.G.); (E.V.)
| | - Elizabeth Vela
- Roche Diagnostics Solutions, Tucson, AZ 85755, USA; (A.M.); (S.G.); (E.V.)
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.R.); (J.J.)
| |
Collapse
|
5
|
Senavirathna L, Ma C, Chen R, Pan S. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells. Cells 2021; 10:cells10051005. [PMID: 33923186 PMCID: PMC8145644 DOI: 10.3390/cells10051005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-derived advanced glycation end products (AGEs) play an important role in the pathogenesis of many diseases including cancer. Accumulation of intracellular AGEs could stimulate cancer induction and facilitate cancer progression. We evaluated the toxic effect of glyceraldehyde-derived intracellular AGEs on normal and malignant pancreatic ductal cells by assessing the cell viability, toxicity, and oxidative stress, followed by proteomic analysis. Our functional studies showed that pancreatic cancer cells (PANC-1 and MIA PaCa-2) were more resistant to glyceraldehyde treatment compared to normal pancreatic ductal epithelial cells (HPDE), while cytotoxicity effects were observed in all cell types. Furthermore, using 13C isotopic labeled glyceraldehyde, the proteomic data revealed a dose-dependent increment of the number of glycation adducts in both these cell types. HPDE cells showed a higher number of intracellular AGEs compared to cancer cells. At a molecular level, the glycations in the lysine residues of proteins showed a concurrent increase with the concentration of the glyceraldehyde treatment, while the arginine glycations appeared to be less affected by the glyceraldehyde doses. Further pathway analysis of these glycated proteins suggested that the glycated proteins participate in important biological processes that are major hallmarks of cancer initiation and progression, including metabolic processes, immune response, oxidative stress, apoptosis, and S100 protein binding.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
6
|
Nolasco S, Bellido J, Serna M, Carmona B, Soares H, Zabala JC. Colchicine Blocks Tubulin Heterodimer Recycling by Tubulin Cofactors TBCA, TBCB, and TBCE. Front Cell Dev Biol 2021; 9:656273. [PMID: 33968934 PMCID: PMC8100514 DOI: 10.3389/fcell.2021.656273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. In vitro assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Marina Serna
- Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
7
|
Wu Z, Liu Y, Wei L, Han M. LncRNA OIP5-AS1 Promotes Breast Cancer Progression by Regulating miR-216a-5p/GLO1. J Surg Res 2021; 257:501-510. [PMID: 32916503 DOI: 10.1016/j.jss.2020.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Breast cancer is a familiar malignant tumor, which is a great threat to women's life. Long noncoding RNA Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) has been reported to be associated with numerous cancers. This study aimed to explore the role of OIP5-AS1 and the mechanism of its action in the progression of breast cancer. METHODS The expression of OIP5-AS1 and miR-216a-5p was detected by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, or invasion was assessed by 4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, flow cytometry, or transwell assay, respectively. The binding sites were predicted by bioinformatics tool starBase2.0 (http://starbase.sysu.edu.cn/starbase2/index.php). The interaction between miR-216a-5p and OIP5-AS1 or glyoxalase 1 (GLO1) was confirmed by dual-luciferase reporter assay. The expression of GLO1 was quantified by Western blot. Nude mouse tumorigenicity assays were conducted to verify the role of OIP5-AS1 in vivo. RESULTS OIP5-AS1 and GLO1 were highly expressed in both clinical tumor tissues and cell lines, whereas miR-216a-5p was downregulated. Knockdown of OIP5-AS1 suppressed proliferation, migration, and invasion but promoted apoptosis of breast cancer cells. MiR-216a-5p was a target of OIP5-AS1 and interacted with GLO1. MiR-216a-5p inhibition or GLO1 overexpression reversed the effects of OIP5-AS1 knockdown on the development of breast cancer cells. OIP5-AS1 knockdown depleted tumor growth in vivo. CONCLUSIONS OIP5-AS1 knockdown suppressed the progression of breast cancer by inducing GLO1 expression via competitively binding to miR-216a-5p, suggesting that OIP5-AS1 was a hopeful biomarker for the therapy of breast cancer.
Collapse
Affiliation(s)
- Zizheng Wu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yinfeng Liu
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liguang Wei
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Meng Han
- Department of Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
| |
Collapse
|
8
|
Pagaza-Straffon C, Marchat LA, Herrera L, Díaz-Chávez J, Avante MG, Rodríguez YP, Arreola MC, López-Camarillo C. Evaluation of a panel of tumor-associated antigens in breast cancer. Cancer Biomark 2020; 27:207-211. [PMID: 31839604 DOI: 10.3233/cbm-190708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent studies indicate that serum from cancer patients contains auto-antibodies against oncoproteins so called tumor-associated antigens (TAAs), which represent promising diagnostic and prognostic biomarkers. OBJECTIVES In this study we searched for breast cancer-associated auto-antibodies against individual TAAs. Also we evaluated if a panel of multiple TTAs would improve the detection of auto-antibodies. We screened CEA, CCBN1, c-Myc, p53, Ki-67, Nm23, PRDX6, eIF5A, PARK7, GLIO-1, Hsp27 and Hsp70 proteins, previously detected as up-regulated in breast tumors of Mexican patients. METHODS Enzyme-linked immunosorbent assays (ELISA) were performed to detect auto-antibodies in sera from a cohort of 104 breast cancer patients and 50 sera from healthy individuals. RESULTS Our data showed that antibodies frequency to any individual TAA was low and ranged from 0.96% to 4.8%. However, the successive addition of multiple TAAs represented by panels of three-to-five TAAs resulted in increased ELISA positive reactions. The first panel of three combined TAAs (p53/PRDX6/CEA) had a sensitivity of 19%, while a second set of four TAAs (p53/PRDX6/c-Myc/Hsp70) reached 28% sensitivity. Likewise, a third panel of five antigens (p53/PRDX6/c-Myc/Hsp70/Nm23) showed 34% sensitivity. CONCLUSIONS Our data showed that detection of individual autoantibodies against TAAs in the cohort of patients analyzed here was low, which was enhanced by adding multiple TAAs. Data support the notion that frequencies of autoantibodies could be impacted by geographical and heterogeneous genetic factors of breast cancer patients.
Collapse
Affiliation(s)
| | - Laurence A Marchat
- Molecular Biomedicine Program, Biotechnology Network, Instituto Politécnico Nacional, CDMX, Mexico
| | - Luis Herrera
- Carcinogenesis Laboratory, National Institute of Cancerology, CDMX, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, CDMX, Mexico
| | | | | | | | | |
Collapse
|
9
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
10
|
Al-Shar’i NA, Al-Balas QA, Al-Waqfi RA, Hassan MA, Alkhalifa AE, Ayoub NM. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking. J Comput Aided Mol Des 2019; 33:799-815. [DOI: 10.1007/s10822-019-00226-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
|
11
|
Evans MF, Vacek PM, Sprague BL, Stein GS, Stein JL, Weaver DL. Microarray and RNA in situ hybridization assay for recurrence risk markers of breast carcinoma and ductal carcinoma in situ: Evidence supporting the use of diverse pathways panels. J Cell Biochem 2019; 121:1736-1746. [PMID: 31595577 DOI: 10.1002/jcb.29409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023]
Abstract
Breast tumor stratification by recurrence-risk is critical for deciding patient treatment. Here an approach combining cancer pathways microarray data complemented by RNA in situ hybridization (ISH) was investigated as a means for recurrence marker discovery and visualization in pathology specimens. LncRNA and mRNA expressions in breast carcinomas with low (n = 8) vs intermediate/high (n = 10) recurrence-scores as estimated by 21-gene assay and pathology review were compared by microarray assay. Tissue microarrays were prepared from breast carcinomas (n = 20) and ductal carcinoma in situ (DCIS) specimens (n = 84 patients) with known outcomes. Thirteen RNA ISH assays were performed: lncRNAs (BBC3-1, FER3, RAD21-AS1, ZEB1-2) and mRNAs (GLO1, GLTSCR2, TGFB1, TLR2) (implicated by the microarray data); MKI67; a pooled panel of recurrence-associated proliferation markers (BIRC5, Cyclin B1, MKI67, MYBL2, STK15); a pooled panel of non-proliferation recurrence-associated markers (CEACAM5, HTF9C, NDRG1, TP53, SLC7A5); and lncRNAs H19 and HOTAIR. Seven lncRNAs and 10 mRNAs showed significantly (P < .05) altered upregulation or downregulation by microarray assay: carcinoma RNA ISH staining did not mirror these patterns. HOTAIR staining was associated with a higher breast cancer recurrence score (P = .0152); qualitatively, H19 was massively expressed in a metaplastic triple negative breast carcinoma. Among the DCIS cohort, significant associations with multiple outcome variables were noted for TGFB1 and the non-proliferation panel (P-value range: .0001 to .047); proliferation panel staining showed an association with increasing DCIS grade (P = .0269) but not with outcomes. The findings support recurrence-risk estimation by the use of multi-marker panels that are representative of diverse cellular pathways rather than over-reliance on proliferation targets. H19, HOTAIR, and TGFB1 RNA ISH show potential for selective diagnostics.
Collapse
Affiliation(s)
- Mark Francis Evans
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Pamela Mary Vacek
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Brian Lee Sprague
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gary Stephen Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet Lee Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Donald Lee Weaver
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Pathology & Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| |
Collapse
|
12
|
Mendonca P, Taka E, Soliman KFA. Proteomic analysis of the effect of the polyphenol pentagalloyl glucose on proteins involved in neurodegenerative diseases in activated BV‑2 microglial cells. Mol Med Rep 2019; 20:1736-1746. [PMID: 31257500 PMCID: PMC6625426 DOI: 10.3892/mmr.2019.10400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Neuroinflammation and microglial activation are two important hallmarks of neurodegenerative diseases. Continuous microglial activation may cause the release of several cytotoxic molecules, including many cytokines that are involved in the inflammatory process. Therefore, attenuating inflammation caused by activated microglia may be an approach for the therapeutic management of neurodegenerative diseases. In addition, many studies have reported that polyphenol pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucose; PGG) is a molecule with potent anti-inflammatory effects, such as inhibiting the release of proinflammatory cytokines. Our previous studies revealed that PGG attenuated the expression of two inflammatory cytokines (murine monocyte chemoattractant protein-5 and pro-metalloproteinase-9) in lipopolysaccharide/interferon γ-activated BV-٢ microglial cells. Additionally, PGG modulated the NF-κB and MAPK signaling pathways by altering genes and proteins, which may affect the MAPK cascade and NF-κB activation. The aim of the present study was to investigate the ability of PGG to modulate the expression of proteins released in activated BV-2 microglial cells, which may be involved in the pathological process of inflammation and neurodegeneration. Proteomic analysis of activated BV-2 cells identified 17 proteins whose expression levels were significantly downregulated by PGG, including septin-7, ataxin-2, and adenylosuccinate synthetase isozyme 2 (ADSS). These proteins were previously described as being highly expressed in neurodegenerative diseases and/or involved in the signaling pathways associated with the formation and growth of neuronal connections and the control of Alzheimer's disease pathogenesis. The inhibitory effect of PGG on ataxin-2, septin-7 and ADSS was further confirmed at the protein and transcriptional levels. Therefore, the obtained results suggest that PGG, with its potent inhibitory effects on ataxin-2, septin-7 and ADSS, may have potential use in the therapeutic management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
13
|
Shukla A, Tyagi R, Meena S, Datta D, Srivastava SK, Khan F. 2D- and 3D-QSAR modelling, molecular docking and in vitro evaluation studies on 18β-glycyrrhetinic acid derivatives against triple-negative breast cancer cell line. J Biomol Struct Dyn 2019; 38:168-185. [PMID: 30686140 DOI: 10.1080/07391102.2019.1570868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancers (TNBCs) are one of the most aggressive and complex forms of cancers in women. TNBCs are commonly known for their complex heterogeneity and poor prognosis. The present work aimed to develop a predictive 2D and 3D quantitative structure-activity relationship (QSAR) models against metastatic TNBC cell line. The 2D-QSAR was based on multiple linear regression analysis and validated by Leave-One-Out (LOO) and external test set prediction approach. QSAR model presented regression coefficient values for training set (r2), LOO-based internal regression (q2) and external test set regression (pred_r2) which are 0.84, 0.82 and 0.75, respectively. Five properties, Epsilon4 (electronegativity), ChiV3cluster (valence molecular connectivity index), chi3chain (retention index for three-membered ring), TNN5 (nitrogen atoms separated through 5 bond distance) and nitrogen counts, were identified as important structural features responsible for anticancer activity of MDA-MB-231 inhibitors. Five novel derivatives of glycyrrhetinic acid (GA) named GA-1, GA-2, GA-3, GA-4 and GA-5 were semi-synthesised and screened through the QSAR model. Further, in vitro activities of the derivatives were analysed against human TNBC cell line, MDA-MB-231. The result showed that GA-1 exhibits improved cytotoxic activity to that of parent compound (GA). Further, atomic property field (APF)-based 3D-QSAR and scoring recognise C-30 carboxylic group of GA-1 as major influential factor for its anticancer activity. The significance of C-30 carboxylic group in GA derivatives was also confirmed by molecular docking study against cancer target glyoxalase-I. Finally, the oral bioavailability and toxicity of GA-1 were assessed by computational ADMET studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aparna Shukla
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Rekha Tyagi
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Santosh Kumar Srivastava
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Feroz Khan
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Tamori S, Nozaki Y, Motomura H, Nakane H, Katayama R, Onaga C, Kikuchi E, Shimada N, Suzuki Y, Noike M, Hara Y, Sato K, Sato T, Yamamoto K, Hanawa T, Imai M, Abe R, Yoshimori A, Takasawa R, Tanuma SI, Akimoto K. Glyoxalase 1 gene is highly expressed in basal-like human breast cancers and contributes to survival of ALDH1-positive breast cancer stem cells. Oncotarget 2018; 9:36515-36529. [PMID: 30559934 PMCID: PMC6284866 DOI: 10.18632/oncotarget.26369] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis that induces apoptosis. In this study, we found that GLO1 gene expression correlates with neoplasm histologic grade (χ 2 test, p = 0.002) and is elevated in human basal-like breast cancer tissues. Approximately 90% of basal-like cancers were grade 3 tumors highly expressing both GLO1 and the cancer stem cell marker ALDH1A3. ALDH1high cells derived from the MDA-MB 157 and MDA-MB 468 human basal-like breast cancer cell lines showed elevated GLO1 activity. GLO1 inhibition using TLSC702 suppressed ALDH1high cell viability as well as the formation of tumor-spheres by ALDH1high cells. GLO1 knockdown using specific siRNAs also suppressed ALDH1high cell viability, and both TLSC702 and GLO1 siRNA induced apoptosis in ALDH1high cells. These results suggest GLO1 is essential for the survival of ALDH1-positive breast cancer stem cells. We therefore conclude that GLO1 is a potential therapeutic target for treatment of basal-like breast cancers.
Collapse
Affiliation(s)
- Shoma Tamori
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuka Nozaki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hiromi Nakane
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Reika Katayama
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chotaro Onaga
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eriko Kikuchi
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nami Shimada
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuhei Suzuki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mei Noike
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yasushi Hara
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keiko Sato
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Tsugumichi Sato
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University, School of Medicine, Yokohama, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Takehisa Hanawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Abe
- Research Institute for Biochemical Sciences, Tokyo University of Science, Chiba, Japan
- Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan
| | | | - Ryoko Takasawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sei-Ichi Tanuma
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Laboratory of Genomic Medicinal Science, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
15
|
Antognelli C, Cecchetti R, Riuzzi F, Peirce MJ, Talesa VN. Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via EMT control. J Cell Mol Med 2018; 22:2865-2883. [PMID: 29504694 PMCID: PMC5908125 DOI: 10.1111/jcmm.13581] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/23/2018] [Indexed: 01/07/2023] Open
Abstract
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (AP) are AGEs originating from MG-mediated post-translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR-101, MG-H1-AP and TGF-β1/Smad signalling. Moreover, circulating levels of Glo1, miR-101, MG-H1-AP and TGF-β1 in patients with metastatic compared with non-metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR-101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Rodolfo Cecchetti
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Francesca Riuzzi
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Matthew J. Peirce
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | | |
Collapse
|
16
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
17
|
Abdul-Maksoud RS, Elsayed WS, Elsayed RS. The influence of glyoxalase 1 gene polymorphism on its expression at different stages of breast cancer in Egyptian women. Genes Cancer 2017; 8:799-807. [PMID: 29321821 PMCID: PMC5755725 DOI: 10.18632/genesandcancer.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim To assess the association of GLO1 C332C gene polymorphism with breast cancer risk at different stages of the disease and to investigate the effect of this gene polymorphism on its mRNA expression and enzyme activity. Methods GLO1 C332C gene polymorphism was analyzed by PCR-RFLP in 100 healthy controls and 200 patients with breast cancer (100 patients with stage I & II and 100 patients with stage III & IV). GLO1 mRNA expression was measured by real time PCR. Serum GLO1 enzyme activity was measured colorimetrically. Results GLO1 A allele was associated with increased risk of breast cancer [OR (95%CI)= 2.8(1.9-4.1), P < 0.001]. Its frequency was significantly higher among advanced stages of breast cancer compared with localized tumors (OR (95%CI)= 1.9(1.3-2.9), p < 0.001). GLO1 mRNA expression and enzyme activity were significantly higher in breast cancer patients compared to controls and they were much higher in the advanced stages of the disease (P < 0.001). Carriers of AA genotype showed higher GLO1 expression and enzyme activity compared with carriers of CC genotype. Conclusion GLO1 C332C SNP was associated with overexpression of GLO1 mRNA and higher enzyme activity in breast cancer patients suggesting its role in the development of breast cancer and its progression from localized to advanced.
Collapse
Affiliation(s)
| | - Walid Sh Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
18
|
Burdelski C, Shihada R, Hinsch A, Angerer A, Göbel C, Friedrich E, Hube-Magg C, Burdak-Rothkamm S, Kluth M, Simon R, Möller-Koop C, Sauter G, Büscheck F, Wittmer C, Clauditz TS, Krech T, Tsourlakis MC, Minner S, Graefen M, Schlomm T, Wilczak W, Jacobsen F. High-Level Glyoxalase 1 (GLO1) expression is linked to poor prognosis in prostate cancer. Prostate 2017; 77:1528-1538. [PMID: 28929505 DOI: 10.1002/pros.23431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glyoxalase 1 (GLO1) is an enzyme involved in removal of toxic byproducts accumulating during glycolysis from the cell. GLO1 is up regulated in many cancer types but its role in prostate cancer is largely unknown. METHODS Here, we employed GLO1 immunohistochemistry on a tissue microarray including 11 152 tumors and an attached clinical and molecular database. RESULTS Normal prostate epithelium was negative for GLO1, whereas 2059 (27.3%) of 7552 interpretable cancers showed cytoplasmic GLO1 staining, which was considered weak in 8.8%, moderate in 12.5%, and strong in 6.1% of tumors. Up regulation of GLO1 was significantly linked to high original Gleason grade, advanced pathological tumor stage and positive lymph node status (P < 0.0001 each). Comparison of GLO1 staining with several common genomic alterations of prostate cancers revealed a strong link between GLO1 up regulation and TMPRSS2:ERG fusion (P < 0.0001) and an ERG-independent association with PTEN deletion (P < 0.0001). GLO1 up regulation was strongly linked to early biochemical recurrence in univariate analysis (P < 0.0001) and predicted poor prognosis independent from most (except from nodal stage) established prognostic parameters in multivariate analysis (P ≤ 0.03). CONCLUSIONS GLO1 upregulation is linked to aggressive prostate cancers characterized by ERG fusion and PTEN deletion. The strong and independent prognostic value makes it a promising candidate for routine diagnostic applications either alone or in combination with other markers.
Collapse
Affiliation(s)
- Christoph Burdelski
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rami Shihada
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Angerer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Friedrich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franzika Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria C Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Tesarova P, Zima T, Kubena AA, Kalousova M. Polymorphisms of the receptor for advanced glycation end products and glyoxalase I and long-term outcome in patients with breast cancer. Tumour Biol 2017; 39:1010428317702902. [PMID: 28695773 DOI: 10.1177/1010428317702902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Receptor for advanced glycation end products and glyoxalase I metabolizing advanced glycation end product precursors may play important role in the pathogenesis and progression of cancer. Potential relation between soluble forms of receptor for advanced glycation end products (sRAGE), receptor for advanced glycation end products, glyoxalase I polymorphisms, and long-term outcome (median follow-up of 10.3 years) was studied in 116 patients with breast cancer. Gly82Ser and 2184 A/G RAGE polymorphisms were related to the mortality due to the breast cancer and -419 A/C glyoxalase I polymorphism was related to the overall mortality of the patients suggesting their role not only in the risk of breast cancer but also in the outcome of patients with breast cancer.
Collapse
Affiliation(s)
- Petra Tesarova
- 1 Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Zima
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ales A Kubena
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marta Kalousova
- 2 Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
20
|
Matou-Nasri S, Sharaf H, Wang Q, Almobadel N, Rabhan Z, Al-Eidi H, Yahya WB, Trivilegio T, Ali R, Al-Shanti N, Ahmed N. Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2808-2820. [PMID: 28712835 DOI: 10.1016/j.bbadis.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus potentiates the risk of breast cancer. We have previously described the pro-tumorigenic effects of advanced glycation endproducts (AGEs) on estrogen receptor (ER)-negative MDA-MB-231 breast cancer cell line mediated through the receptor for AGEs (RAGE). However, a predominant association between women with ER-positive breast cancer and type 2 diabetes mellitus has been reported. Therefore, we have investigated the biological impact of AGEs on ER-positive human breast cancer cell line MCF-7 using in vitro cell-based assays including cell count, migration, and invasion assays. Western blot, FACS analyses and quantitative real time-PCR were also performed. We found that AGEs at 50-100μg/mL increased MCF-7 cell proliferation and cell migration associated with an enhancement of pro-matrix metalloproteinase (MMP)-9 activity, without affecting their poor invasiveness. However, 200μg/mL AGEs inhibited MCF-7 cell proliferation through induction of apoptosis indicated by caspase-3 cleavage detected using Western blotting. A phospho-protein array analysis revealed that AGEs mainly induce the phosphorylation of extracellular-signal regulated kinase (ERK)1/2 and cAMP response element binding protein-1 (CREB1), both signaling molecules considered as key regulators of AGEs pro-tumorigenic effects. We also showed that AGEs up-regulate RAGE and ER expression at the protein and transcript levels in MCF-7 cells, in a RAGE-dependent manner after blockade of AGEs/RAGE interaction using neutralizing anti-RAGE antibody. Throughout the study, BSA had no effect on cellular processes. These findings pave the way for future studies investigating whether the exposure of AGEs-treated ER-positive breast cancer cells to estrogen could lead to a potentiation of breast cancer development and progression.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Hana Sharaf
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Qiuyu Wang
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nasser Almobadel
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Zaki Rabhan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Thadeo Trivilegio
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Nasser Al-Shanti
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nessar Ahmed
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom..
| |
Collapse
|
21
|
Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci (Lond) 2017; 130:1677-96. [PMID: 27555612 DOI: 10.1042/cs20160025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in aging and disease. It is produced by increased formation and/or decreased metabolism of dicarbonyl metabolites. MG (methylglyoxal) is a dicarbonyl metabolite of relatively high flux of formation and precursor of the most quantitatively and functionally important spontaneous modifications of protein and DNA clinically. Major MG-derived adducts are arginine-derived hydroimidazolones of protein and deoxyguanosine-derived imidazopurinones of DNA. These are formed non-oxidatively. The glyoxalase system provides an efficient and essential basal and stress-response-inducible enzymatic defence against dicarbonyl stress by the reduced glutathione-dependent metabolism of methylglyoxal by glyoxalase 1. The GLO1 gene encoding glyoxalase 1 has low prevalence duplication and high prevalence amplification in some tumours. Dicarbonyl stress contributes to aging, disease and activity of cytotoxic chemotherapeutic agents. It is found at a low, moderate and severe level in obesity, diabetes and renal failure respectively, where it contributes to the development of metabolic and vascular complications. Increased glyoxalase 1 expression confers multidrug resistance to cancer chemotherapy and has relatively high prevalence in liver, lung and breast cancers. Studies of dicarbonyl stress are providing improved understanding of aging and disease and the basis for rational design of novel pharmaceuticals: glyoxalase 1 inducers for obesity, diabetes and cardiovascular disease and glyoxalase 1 inhibitors for multidrug-resistant tumours. The first clinical trial of a glyoxalase 1 inducer in overweight and obese subjects showed improved glycaemic control, insulin resistance and vascular function.
Collapse
|
22
|
Kreycy N, Gotzian C, Fleming T, Flechtenmacher C, Grabe N, Plinkert P, Hess J, Zaoui K. Glyoxalase 1 expression is associated with an unfavorable prognosis of oropharyngeal squamous cell carcinoma. BMC Cancer 2017; 17:382. [PMID: 28549423 PMCID: PMC5446730 DOI: 10.1186/s12885-017-3367-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
Background Glyoxalase 1 is a key enzyme in the detoxification of reactive metabolites such as methylglyoxal and induced Glyoxalase 1 expression has been demonstrated for several human malignancies. However, the regulation and clinical relevance of Glyoxalase 1 in the context of head and neck squamous cell carcinoma has not been addressed so far. Methods Argpyrimidine modification as a surrogate for methylglyoxal accumulation and Glyoxalase 1 expression in tumor cells was assessed by immunohistochemical staining of tissue microarrays with specimens from oropharyngeal squamous cell carcinoma patients (n = 154). Prognostic values of distinct Glyoxalase 1 staining patterns were demonstrated by Kaplan-Meier, univariate and multivariate Cox proportional hazard model analysis. The impact of exogenous methylglyoxal or a Glyoxalase 1 inhibitor on the viability of two established tumor cell lines was monitored by a colony-forming assay in vitro. Results Glyoxalase 1 expression in tumor cells of oropharyngeal squamous cell carcinoma patients was positively correlated with the presence of Argpyrimidine modification and administration of exogenous methylglyoxal induced Glyoxalase 1 protein levels in FaDu and Cal27 cells in vitro. Cal27 cells with lower basal and methylglyoxal-induced Glyoxalase 1 expression were more sensitive to the cytotoxic effect at high methylgyoxal concentrations and both cell lines showed a decrease in colony formation with increasing amounts of a Glyoxalase 1 inhibitor. A high and nuclear Glyoxalase 1 staining was significantly correlated with shorter progression-free and disease-specific survival, and served as an independent risk factor for an unfavorable prognosis of oropharyngeal squamous cell carcinoma patients. Conclusions Induced Glyoxalase 1 expression is a common feature in the pathogenesis of oropharyngeal squamous cell carcinoma and most likely represents an adaptive response to the accumulation of cytotoxic metabolites. Oropharyngeal squamous cell carcinoma patients with a high and nuclear Glyoxalase 1 staining pattern have a high risk for treatment failure, but might benefit from pharmacological targeting Glyoxalase 1 activity. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3367-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nele Kreycy
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
| | - Christiane Gotzian
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Niels Grabe
- Medical Oncology, National Center for Tumor Diseases (NCT) and Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany
| | - Peter Plinkert
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
| | - Jochen Hess
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg and Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karim Zaoui
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Rabbani N, Xue M, Weickert MO, Thornalley PJ. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy. Semin Cancer Biol 2017; 49:83-93. [PMID: 28506645 DOI: 10.1016/j.semcancer.2017.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
Glyoxalase 1 (Glo1) is part of the glyoxalase system in the cytoplasm of all human cells. It catalyses the glutathione-dependent removal of the endogenous reactive dicarbonyl metabolite, methylglyoxal (MG). MG is formed mainly as a side product of anaerobic glycolysis. It modifies protein and DNA to form mainly hydroimidazolone MG-H1 and imidazopurinone MGdG adducts, respectively. Abnormal accumulation of MG, dicarbonyl stress, increases adduct levels which may induce apoptosis and replication catastrophe. In the non-malignant state, Glo1 is a tumour suppressor protein and small molecule inducers of Glo1 expression may find use in cancer prevention. Increased Glo1 expression is permissive for growth of tumours with high glycolytic activity and is thereby a biomarker of tumour growth. High Glo1 expression is a cause of multi-drug resistance. It is produced by over-activation of the Nrf2 pathway and GLO1 amplification. Glo1 inhibitors are antitumour agents, inducing apoptosis and necrosis, and anoikis. Tumour stem cells and tumours with high flux of MG formation and Glo1 expression are sensitive to Glo1 inhibitor therapy. It is likely that MG-induced cell death contributes to the mechanism of action of current antitumour agents. Common refractory tumours have high prevalence of Glo1 overexpression for which Glo1 inhibitors may improve therapy.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
| | - Mingzhan Xue
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK
| | - Martin O Weickert
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; The ARDEN NET Centre, ENETS Centre of Excellence, University Hospitals Coventry & Warwickshire NHS Trust CV2 2DX, UK
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
24
|
Chiavarina B, Nokin MJ, Bellier J, Durieux F, Bletard N, Sherer F, Lovinfosse P, Peulen O, Verset L, Dehon R, Demetter P, Turtoi A, Uchida K, Goldman S, Hustinx R, Delvenne P, Castronovo V, Bellahcène A. Methylglyoxal-Mediated Stress Correlates with High Metabolic Activity and Promotes Tumor Growth in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18010213. [PMID: 28117708 PMCID: PMC5297842 DOI: 10.3390/ijms18010213] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression.
Collapse
Affiliation(s)
- Barbara Chiavarina
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Florence Durieux
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Noëlla Bletard
- Department of Pathology, Liège University Hospital, 4000 Liège, Belgium.
| | - Félicie Sherer
- Department of Nuclear Medicine, Erasme University Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Pierre Lovinfosse
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, 4000 Liège, Belgium.
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Romain Dehon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Koji Uchida
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 13-8654, Japan.
| | - Serge Goldman
- Department of Nuclear Medicine, Erasme University Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Roland Hustinx
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, 4000 Liège, Belgium.
| | - Philippe Delvenne
- Department of Pathology, Liège University Hospital, 4000 Liège, Belgium.
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
25
|
Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 2017; 1647:19-45. [PMID: 28808993 DOI: 10.1007/978-1-4939-7201-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g., Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays.
Collapse
|
26
|
Modulation of GLO1 Expression Affects Malignant Properties of Cells. Int J Mol Sci 2016; 17:ijms17122133. [PMID: 27999356 PMCID: PMC5187933 DOI: 10.3390/ijms17122133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.
Collapse
|
27
|
Nokin MJ, Durieux F, Peixoto P, Chiavarina B, Peulen O, Blomme A, Turtoi A, Costanza B, Smargiasso N, Baiwir D, Scheijen JL, Schalkwijk CG, Leenders J, De Tullio P, Bianchi E, Thiry M, Uchida K, Spiegel DA, Cochrane JR, Hutton CA, De Pauw E, Delvenne P, Belpomme D, Castronovo V, Bellahcène A. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife 2016; 5:e19375. [PMID: 27759563 PMCID: PMC5081250 DOI: 10.7554/elife.19375] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Florence Durieux
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Paul Peixoto
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Barbara Chiavarina
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Systems Biology and Chemical Biology, University of Liège, Liège, Belgium
| | | | - Jean L Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Justine Leenders
- Laboratory of Medicinal Chemistry - CIRM, University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Laboratory of Medicinal Chemistry - CIRM, University of Liège, Liège, Belgium
| | - Elettra Bianchi
- Department of Pathology, CHU, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, University of Nagoya, Nagoya, Japan
| | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, United States
| | - James R Cochrane
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Systems Biology and Chemical Biology, University of Liège, Liège, Belgium
| | | | | | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer - markers, mediators and putative therapeutic targets. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:1-10. [DOI: 10.5507/bp.2016.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
|
29
|
Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res 2016; 60:1850-64. [DOI: 10.1002/mnfr.201500759] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Chi-Hao Wu
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
30
|
Guo Y, Zhang Y, Yang X, Lu P, Yan X, Xiao F, Zhou H, Wen C, Shi M, Lu J, Meng QH. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol Ther 2015; 17:169-80. [PMID: 26618552 DOI: 10.1080/15384047.2015.1121346] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence indicates that methylglyoxal (MG) can inhibit tumorigenesis. Glyoxalase I (GLOI), a MG degradation enzyme, is implicated in the progression of human malignancies. However, little is known about the roles of MG and GLOI in breast cancer. Our purpose was to investigate the anticancer effects of MG and inhibition of GLOI on breast cancer cells and the underlying mechanisms of these effects. Our findings demonstrate that cell viability, migration, invasion, colony formation, and tubule formation were significantly restrained by addition of MG or inhibition of GLOI, while apoptosis was significantly increased. Furthermore, the expression of p-JNK, p-ERK, and p-p38 was markedly upregulated by addition of MG or inhibition of GLOI, whereas MMP-9 and Bcl-2 expression levels were dramatically decreased. These effects were augmented by combined treatment with MG and inhibition of GLOI. Collectively, these data indicate that MG or inhibition of GLOI induces anticancer effects in breast cancer cells and that these effects are potentiated by combination of the 2. These effects were modulated by activation of the MAPK family and downregulation of Bcl-2 and MMP-9. These findings may provide a new approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yi Guo
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Yuning Zhang
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Xunjun Yang
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Panpan Lu
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Xijuan Yan
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Fanglan Xiao
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Huaibin Zhou
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Chaowei Wen
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Mengru Shi
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Jianxin Lu
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou , China
| | - Qing H Meng
- b Department of Laboratory Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
31
|
Chiavarina B, Nokin MJ, Durieux F, Bianchi E, Turtoi A, Peulen O, Peixoto P, Irigaray P, Uchida K, Belpomme D, Delvenne P, Castronovo V, Bellahcène A. Triple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes. Oncotarget 2015; 5:5472-82. [PMID: 24978626 PMCID: PMC4170620 DOI: 10.18632/oncotarget.2121] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by-product, is generated through a non-enzymatic reaction from triose-phosphate intermediates. This dicarbonyl compound is highly reactive and contributes to the accumulation of advanced glycation end products. In this study, we analyzed the accumulation of Arg-pyrimidine, a MG-arginine adduct, in human breast adenocarcinoma and we observed a consistent increase of Arg-pyrimidine in cancer cells when compared with the non-tumoral counterpart. Further immunohistochemical comparative analysis of breast cancer subtypes revealed that triple negative lesions exhibited low accumulation of Arg-pyrimidine compared with other subtypes. Interestingly, the activity of glyoxalase 1 (Glo-1), an enzyme that detoxifies MG, was significantly higher in triple negative than in other subtype lesions, suggesting that these aggressive tumors are able to develop an efficient response against dicarbonyl stress. Using breast cancer cell lines, we substantiated these clinical observations by showing that, in contrast to triple positive, triple negative cells induced Glo-1 expression and activity in response to MG treatment. This is the first report that Arg-pyrimidine adduct accumulation is a consistent event in human breast cancer with a differential detection between triple negative and other breast cancer subtypes.
Collapse
Affiliation(s)
- Barbara Chiavarina
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Florence Durieux
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Elettra Bianchi
- Department of Anatomy and Pathology, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Paul Peixoto
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Philippe Irigaray
- Association for Research and Treatments Against Cancer (ARTAC), Paris, France
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Dominique Belpomme
- Association for Research and Treatments Against Cancer (ARTAC), Paris, France
| | - Philippe Delvenne
- Department of Anatomy and Pathology, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
32
|
Glyoxalase I is differentially expressed in cutaneous neoplasms and contributes to the progression of squamous cell carcinoma. J Invest Dermatol 2014; 135:589-598. [PMID: 25184957 DOI: 10.1038/jid.2014.377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/18/2023]
Abstract
Glyoxalase I (GLO1) is a methylglyoxal detoxification enzyme being implicated in the progression of multiple malignancies. However, currently, the role of GLO1 in human nonmelanoma skin tumors remains unclear. To explore the expression of GLO1 in cutaneous neoplasms and its role in the pathogenesis of skin cancers, we determined the GLO1 expression in multiple subtypes of cutaneous neoplasms and cell lines harboring different tumorigenicity. Also, the GLO1 siRNA transfection was performed in squamous cell carcinoma (SCC)-13 cells or SCC in the xenograft model. The results show that GLO1 was overexpressed by SCC, basal cell carcinoma, and verrucous carcinoma but weakly expressed by several benign neoplasms. Human papilloma virus 16 E6/E7-transfected keratinocytes expressed more GLO1 than did normal keratinocytes, although both of them had lower levels of GLO1 than SCC-13 cells. Moreover, the knockdown of GLO1 by siRNA was related to enhanced apoptosis of SCC-13 cells in the presence of tumor necrosis factor-related apoptosis-inducing ligand and inhibited cell invasion and migration, which was mirrored by the suppressed growth of SCC xenografts in mice. Finally, the GLO1 regulation of SCC-13 cells might be relevant to methylglyoxal-induced p53 translocation. Therefore, GLO1 is prevailingly expressed in cutaneous neoplasms of higher malignancy and contributes to the progression of SCC.
Collapse
|
33
|
López-Rosas I, Marchat LA, Olvera BG, Guillen N, Weber C, Hernández de la Cruz O, Ruíz-García E, Astudillo-de la Vega H, López-Camarillo C. Proteomic analysis identifies endoribouclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. J Proteomics 2014; 111:59-73. [PMID: 24998979 DOI: 10.1016/j.jprot.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/31/2014] [Accepted: 06/20/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED In higher eukaryotic cells mRNA degradation initiates by poly(A) tail shortening catalyzed by deadenylases CAF1 and CCR4. In spite of the key role of mRNA turnover in gene expression regulation, the underlying mechanisms remain poorly understood in parasites. Here, we aimed to study the function of EhCAF1 and identify associated proteins in Entamoeba histolytica. By biochemical assays, we evidenced that EhCAF1 has both RNA binding and deadenylase activities in vitro. EhCAF1 was located in cytoplasmic P-bodies that increased in number and size after cellular stress induced by DNA damage, heat shock, and nitric oxide. Using pull-down assays and ESI-MS/MS mass spectrometry, we identified 15 potential EhCAF1-interacting proteins, including the endoribonuclease EhL-PSP. Remarkably, EhCAF1 colocalized with EhL-PSP in cytoplasmic P-bodies in trophozoites. Bioinformatic analysis of EhL-PSP network proteins predicts a potential interaction with EhRRP41 exosome protein. Consistently, we evidenced that EhL-PSP colocalizes and physically interacts with EhRRP41. Strikingly, EhRRP41 did not coimmunoprecipitate EhCAF1, suggesting the existence of two EhL-PSP-containing complexes. In conclusion, our results showed novel interactions between mRNA degradation proteins and evidenced for the first time that EhCAF1 is a functional deadenylase that interacts with EhL-PSP endoribonuclease in P-bodies, while EhL-PSP interacts with EhRRP41 exosome protein in this early-branched eukaryote. BIOLOGICAL SIGNIFICANCE This study provides evidences for the functional deadenylase activity of EhCAF1 and shows a link between different mRNA degradation proteins in E. histolytica. By proteomic tools and pull down assays, we evidenced that EhCAF1 interacts with the putative endoribonuclease EhL-PSP, which in turn interacts with exosome EhRRP41 protein. Our data suggest for the first time the presence of two complexes, one containing the endoribonuclease EhL-PSP and the deadenylase EhCAF1 in P-bodies; and another containing the endoribonuclease EhL-PSP and the exosome EhRRP41 exoribonuclease. Overall, these results provide novel data that may help to understand mRNA decay mechanisms in this parasite.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico; Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Laurence A Marchat
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Beatriz Gallo Olvera
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Nancy Guillen
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | - Christian Weber
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | | | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico.
| |
Collapse
|
34
|
Nass N, Brömme HJ, Hartig R, Korkmaz S, Sel S, Hirche F, Ward A, Simm A, Wiemann S, Lykkesfeldt AE, Roessner A, Kalinski T. Differential response to α-oxoaldehydes in tamoxifen resistant MCF-7 breast cancer cells. PLoS One 2014; 9:e101473. [PMID: 24983248 PMCID: PMC4077828 DOI: 10.1371/journal.pone.0101473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 06/06/2014] [Indexed: 01/09/2023] Open
Abstract
Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers.
Collapse
Affiliation(s)
- Norbert Nass
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Hans-Jürgen Brömme
- Martin-Luther-University Halle-Wittenberg, Centre for Basic Medical Research (ZMG), Halle, Germany
| | - Roland Hartig
- Otto-von-Guericke-University Medical Faculty, Multidimensional Microscopy and Cellular Diagnostics, Magdeburg, Germany
| | - Sevil Korkmaz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Saadettin Sel
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Frank Hirche
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle/Saale, Germany
| | - Aoife Ward
- German Cancer Research Center DKFZ, Division of Molecular Genome Analysis, Heidelberg, Germany
| | - Andreas Simm
- Martin-Luther-University Halle-Wittenberg, Centre for Basic Medical Research (ZMG), Halle, Germany
| | - Stefan Wiemann
- German Cancer Research Center DKFZ, Division of Molecular Genome Analysis, Heidelberg, Germany
| | - Anne E. Lykkesfeldt
- Danish Cancer Society Research Center, Breast Cancer Group, Cell Death and Metabolism, Copenhagen, Denmark
| | - Albert Roessner
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
35
|
Inhibition by active site directed covalent modification of human glyoxalase I. Bioorg Med Chem 2014; 22:3301-8. [DOI: 10.1016/j.bmc.2014.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022]
|
36
|
Flores-Pérez A, Rafaelli LE, Ramírez-Torres N, Aréchaga-Ocampo E, Frías S, Sánchez S, Marchat LA, Hidalgo-Miranda A, Quintanar-Jurado V, Rodríguez-Cuevas S, Bautista-Piña V, Carlos-Reyes Á, López-Camarillo C. RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer Biol Ther 2014; 15:777-88. [PMID: 24642965 PMCID: PMC4049793 DOI: 10.4161/cbt.28551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 02/06/2023] Open
Abstract
In tumor cells the effectiveness of anti-neoplastic agents that cause cell death by induction of DNA damage is influenced by DNA repair activity. RAD50 protein plays key roles in DNA double strand breaks repair (DSBs), which is crucial to safeguard genome integrity and sustain tumor suppression. However, its role as a potential therapeutic target has not been addressed in breast cancer. Our aim in the present study was to analyze the expression of RAD50 protein in breast tumors, and evaluate the effects of RAD50-targeted inhibition on the cytotoxicity exerted by cisplatin and anthracycline and taxane-based therapies in breast cancer cells. Immunohistochemistry assays on tissue microarrays indicate that the strong staining intensity of RAD50 was reduced in 14% of breast carcinomas in comparison with normal tissues. Remarkably, RAD50 silencing by RNA interference significantly enhanced the cytotoxicity of cisplatin. Combinations of cisplatin with doxorubicin and paclitaxel drugs induced synergistic effects in early cell death of RAD50-deficient MCF-7, SKBR3, and T47D breast cancer cells. Furthermore, we found an increase in the number of DSBs, and delayed phosphorylation of histone H2AX after cisplatin treatment in RAD50-silenced cells. These cellular events were associated to a dramatical increase in the frequency of chromosomal aberrations and a decrease of cell number in metaphase. In conclusion, our data showed that RAD50 abrogation impairs DNA damage response and sensitizes breast cancer cells to cisplatin-combined therapies. We propose that the development and use of inhibitors to manipulate RAD50 levels might represent a promising strategy to sensitize breast cancer cells to DNA damaging agents.
Collapse
Affiliation(s)
- Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Lourdes E Rafaelli
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Nayeli Ramírez-Torres
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | | | - Sara Frías
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Silvia Sánchez
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network; National School of Medicine and Homeopathy; National Polytechnic Institute; Mexico DF, Mexico
| | | | | | | | | | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory; National Institute of Respiratory Diseases; Mexico DF, Mexico
| | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| |
Collapse
|
37
|
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, González-Santiago AE, Flores-Pérez A, Díaz-Chávez J, Carlos-Reyes Á, Álvarez-Sánchez E, López-Camarillo C. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 2014; 111:198-211. [PMID: 24768906 DOI: 10.1016/j.jprot.2014.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED There are no targeted therapeutic modalities for triple-negative breast cancer (TNBC), thus it is associated with poor prognosis and worst clinical outcome. Here, our aim was to identify deregulated proteins in TNBC with potential therapeutic applications. Proteomics profiling of TNBC and normal breast tissues through two-dimensional electrophoresis and ESI-MS/MS mass spectrometry revealed the existence of 16 proteins (RhoGDI-2, HSP27, SOD1, DJ1, UBE2N, PSME1, FTL, SH3BGRL, and eIF5A-1) with increased abundance in carcinomas. We also evidenced for the first time the deregulation of COX5, MTPN and DB1 proteins in TNBC that may represent novel tumor markers. Particularly, we confirmed the overexpression of the Rho-GDP dissociation inhibitor 2 (RhoGDI-2) in distinct breast cancer subtypes, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Remarkably, targeted disruption of RhoGDI-2 by RNA interference induced mitochondrial dysfunction, and facilitated caspase-3 and -9 activation in two breast cancer cell lines. Moreover, suppression of RhoGDI-2 resulted in a robust sensitization of breast cancer cells to cisplatin therapy. In conclusion, we identified novel proteins deregulated in TNBC, and confirmed the overexpression of RhoGDI-2. We propose that RhoGDI-2 inhibition may be exploited as a potential therapeutic strategy along cisplatin-based chemotherapy in breast cancer. BIOLOGICAL SIGNIFICANCE There are no useful biomarkers neither targeted therapeutic modalities for triple-negative breast cancer, which highly contributes to the poor prognosis of this breast cancer subtype. In this work, we used two-dimensional electrophoresis and ESI-MS/MS spectrometry to identify novel deregulated proteins in breast cancer tissues. Particularly, our results showed that RhoGDI-2, a protein that has been associated to metastasis and poor survival in human cancers, is overexpressed in different subtypes of breast tumors, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Our data also provided novel insights about the role of RhoGDI-2 in apoptosis through intrinsic pathway inhibition. Importantly, they suggested that targeted modulation of RhoGDI-2 levels might be a useful strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Marcos A Muñiz Lino
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | | | | | | | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | | | - Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico.
| |
Collapse
|
38
|
Gromov P, Moreira JMA, Gromova I. Proteomic analysis of tissue samples in translational breast cancer research. Expert Rev Proteomics 2014; 11:285-302. [DOI: 10.1586/14789450.2014.899469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Baunacke M, Horn LC, Trettner S, Engel KMY, Hemdan NYA, Wiechmann V, Stolzenburg JU, Bigl M, Birkenmeier G. Exploring glyoxalase 1 expression in prostate cancer tissues: targeting the enzyme by ethyl pyruvate defangs some malignancy-associated properties. Prostate 2014; 74:48-60. [PMID: 24105621 DOI: 10.1002/pros.22728] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND The glyoxalase (GLO)1 is part of a ubiquitous detoxification system in the glycolytic pathway of normal and tumor cells. It protects against cellular damage caused by cytotoxic metabolites. METHODS Aiming at exploring the role of GLO1 in prostate cancer, we evaluated and targeted the expression of GLO1 in prostate cancer tissues and cell lines and analyzed its correlation with grading systems and tumor growth indices. RESULTS Immunohistochemical studies on 37 prostate cancer specimens revealed a positive correlation between Helpap-grading and the cytoplasmic (P = 0.002)/nuclear (P = 0.006) GLO1 level. A positive correlation between Ki-67 proliferation marker and the cytoplasmic GLO1 (P = 0.006) was evident. Furthermore, the highest GLO1 level was detected in the androgen-sensitive LNCaP compared to the androgen-independent Du-145 and PC-3 prostate cell lines and the breast cancer cell MCF-7, both at protein and mRNA level. Treating cancer cells with ethyl pyruvate was found to defang some malignancy-associated properties of cancer cells including proliferation, invasion and anchorage-independent growth. In vitro results revealed that the potency of ethyl pyruvate is increased when cells are metabolically activated by growth stimulators, for example, by fetal calf serum, dihydrotestosterone, tumor growth factor-β1 and leptin. CONCLUSIONS The positive correlation of GLO1 expression level in prostate cancer tissues with the pathological grade and proliferation rate may assign GLO1 as a risk factor for prostate cancer development and progression. Furthermore, our data indicate that inhibitors of GLO1 might be useful to decelerate the cancer cell growth by a novel therapeutic approach that we may call "induced metabolic catastrophe."
Collapse
Affiliation(s)
- Martin Baunacke
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Velázquez-Domínguez J, Marchat LA, López-Camarillo C, Mendoza-Hernández G, Sánchez-Espíndola E, Calzada F, Ortega-Hernández A, Sánchez-Monroy V, Ramírez-Moreno E. Effect of the sesquiterpene lactone incomptine A in the energy metabolism of Entamoeba histolytica. Exp Parasitol 2013; 135:503-10. [PMID: 23994114 DOI: 10.1016/j.exppara.2013.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Entamoeba histolytica is the causative agent of human amoebiasis, which mainly affects developing countries. Although several drugs are effective against E. histolytica trophozoites, the control of amoebiasis requires the development of new and better alternative therapies. Medicinal plants have been the source of new molecules with remarkable antiprotozoal activity. Incomptine A isolated from Decachaeta incompta leaves, is a sesquiterpene lactone of the heliangolide type which has the major in vitro activity against E. histolytica trophozoites. However the molecular mechanisms involved in its antiprotozoal activity are still unknown. Using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry (ESI-MS/MS) analysis, we evidenced that 21 E. histolytica proteins were differentially expressed in response to incomptine A treatment. Notably, three glycolytic enzymes, namely enolase, pyruvate:ferredoxin oxidoreductase and fructose-1,6-biphosphate aldolase, were down-regulated. Moreover, ultrastructural analysis of trophozoites through electronic microscopy showed an increased number of glycogen granules. Taken together, our data suggested that incomptine A could affect E. histolytica growth through alteration of its energy metabolism.
Collapse
Affiliation(s)
- José Velázquez-Domínguez
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tanaka T, Kuramitsu Y, Wang Y, Baron B, Kitagawa T, Tokuda K, Hirakawa K, Yashiro M, Naito S, Nakamura K. Glyoxalase 1 as a candidate for indicating the metastatic potential of SN12C human renal cell carcinoma cell clones. Oncol Rep 2013; 30:2365-70. [PMID: 23982595 DOI: 10.3892/or.2013.2699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/16/2013] [Indexed: 11/06/2022] Open
Abstract
Three clones with differential metastatic potential were established from the parental SN12C human renal cell carcinoma (HRCC). We previously reported that in the two high metastatic SN12C clones, two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH‑L1) showed decreased expression by using two-dimensional electrophoresis (2‑DE) covering a pH range (pH 3.0‑10.0) followed by liquid chromatography‑tandem mass spectrometry. However, in the case of the low metastatic clone, the spot volume for UCH‑L1 was almost the same as for the parental SN12C. In the present study, we found one protein spot which was correlated with the metastatic potential of SN12C clones by using 2‑DE over a narrow pH range (pH 4.0‑7.0). The protein glyoxalase 1 (GLO1) appeared to be directly proportional to the metastatic potential of the SN12C clones. GLO1 was the only protein which consistently varied according to the metastatic potentials of SN12C clones. GLO1 was increased in high metastatic cell lines by western blot analysis. These findings suggest that GLO1 is associated with the metastatic potential of SN12C HRCC clones. We expanded our experimental range to include clones of scirrhous gastric cancer cell lines (OCUM‑2M, OCUM‑2D and OCUM‑2MLN) and similar results were obtained, thereby further strengthening our original findings.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pezet-Valdez M, Fernández-Retana J, Ospina-Villa JD, Ramírez-Moreno ME, Orozco E, Charcas-López S, Soto-Sánchez J, Mendoza-Hernández G, López-Casamicha M, López-Camarillo C, Marchat LA. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS One 2013; 8:e67977. [PMID: 23840799 PMCID: PMC3695940 DOI: 10.1371/journal.pone.0067977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/23/2013] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, polyadenylation of pre-mRNA 3´ end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25) from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X) domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25) was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A) polymerase (EhPAP) that is responsible for the synthesis of the poly(A) tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A) polymerase, another member of the pre-mRNA 3´ end processing machinery in this protozoan parasite.
Collapse
Affiliation(s)
- Marisol Pezet-Valdez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jorge Fernández-Retana
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Juan David Ospina-Villa
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - María Esther Ramírez-Moreno
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México D.F., Mexico
| | - Socorro Charcas-López
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Jacqueline Soto-Sánchez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Mavil López-Casamicha
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México D.F., Mexico
| | - Laurence A. Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- Doctorado en Biotecnología en Red, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, México D.F., Mexico
- * E-mail:
| |
Collapse
|
43
|
Mayer-Sonnenfeld T, Har-Noy M, Lillehei KO, Graner MW. Proteomic analyses of different human tumour-derived chaperone-rich cell lysate (CRCL) anti-cancer vaccines reveal antigen content and strong similarities amongst the vaccines along with a basis for CRCL's unique structure: CRCL vaccine proteome leads to unique structure. Int J Hyperthermia 2013; 29:520-7. [PMID: 23734882 DOI: 10.3109/02656736.2013.796529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim of this paper was to compare protein content of chaperone-rich cell lysate (CRCL) anti-cancer vaccines prepared from human tumours of different histological origins to evaluate the uniformity of their protein content. MATERIALS AND METHODS Clinical grade CRCL was prepared under Good Manufacturing Practice (GMP) conditions from surgically resected human tumours (colorectal cancer, glioblastoma, non-small cell lung cancer, ovarian cancer). Protein samples were separated by SDS-PAGE and slices cut from gels for protease digestion followed by mass spectrometry analysis. Proteins were identified, and the content assessed by gene ontogeny/networking programmatic computation. CRCL preparations were also analysed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). RESULTS We identified between 200 and 550 proteins in the various CRCL preparations. Gene ontogeny analysis indicated that the vaccines showed clear relationships, despite different tumour origins. A total of 95 proteins were common to all the CRCLs. Networking analyses implicated heat shock proteins in antigen processing pathways, and showed connections to the cytoskeletal network. We found that CRCL vaccines showed a particulate structure by NTA, and TEM revealed an extended fence-like structural network in CRCL, with regions that were microns in size. CONCLUSIONS We conclude that it is feasible to prepare and characterise CRCL from a variety of different tissue sources; a substantial portion of the protein content is identical among the different CRCLs, while the overall compositions also suggest high overlaps in functional categories. The protein content indicates the presence of antigens and implies a potential structure, which we believe may play a role in CRCL's ability to stimulate innate antigen presenting cell activation.
Collapse
|