1
|
Li J, Sun Y, Zhi X, Sun Y, Abudousalamu Z, Lin Q, Li B, Yao L, Chen M. Unraveling the molecular mechanisms of lymph node metastasis in ovarian cancer: focus on MEOX1. J Ovarian Res 2024; 17:61. [PMID: 38486335 PMCID: PMC10938838 DOI: 10.1186/s13048-024-01384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is a major factor contributing to the high mortality rate of ovarian cancer, making the treatment of this disease challenging. However, the molecular mechanism underlying LNM in ovarian cancer is still not well understood, posing a significant obstacle to overcome. RESULTS Through data mining from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we have identified MEOX1 as a specific gene associated with LNM in ovarian cancer. The expression of MEOX1 was found to be relatively high in serous ovarian adenocarcinoma, and its higher expression were associated with increased tumor grade and poorer clinical prognosis for ovarian cancer patients. Bioinformatics analysis revealed that MEOX1 exhibited the highest mRNA levels among all cancer types in ovarian cancer tissues and cell lines. Furthermore, gene set enrichment analysis (GSEA) and pathway analysis demonstrated that MEOX1 was involved in various LNM-related biological activities, such as lymphangiogenesis, lymphatic vessel formation during metastasis, epithelial-mesenchymal transition (EMT), G2/M checkpoint, degradation of extracellular matrix, and collagen formation. Additionally, the expression of MEOX1 was positively correlated with the expression of numerous prolymphangiogenic factors in ovarian cancer. To validate our findings, we conducted experiments using clinical tissue specimens and cell lines, which confirmed that MEOX1 was highly expressed in high-grade serous ovarian cancer (HGSOC) tissues and various ovarian cancer cell lines (A2780, SKOV3, HO8910, and OVCAR5) compared to normal ovarian tissues and normal ovarian epithelial cell line IOSE-80, respectively. Notably, we observed a higher protein level of MEOX1 in tumor tissues of LNM-positive HGSOC compared to LNM-negative HGSOC. Moreover, our fundamental experiments demonstrated that suppression of MEOX1 led to inhibitory effects on ovarian cancer cell proliferation and EMT, while overexpression of MEOX1 enhanced the proliferation and EMT capacities of ovarian cancer cells. CONCLUSIONS The results of our study indicate that MEOX1 plays a role in the lymph node metastasis of ovarian cancer by regulating multiple biological activities, including the proliferation and EMT of ovarian cancer, lymphangiogenesis, and ECM remodeling. Our findings suggest that MEOX1 could serve as a potential biomarker for the diagnosis and treatment of ovarian cancer with LNM.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yihua Sun
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yating Sun
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zulimire Abudousalamu
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qianhan Lin
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Bin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liangqing Yao
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Mo Chen
- Department of Gynecology Oncology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Sasako T, Umehara T, Soeda K, Kaneko K, Suzuki M, Kobayashi N, Okazaki Y, Tamura-Nakano M, Chiba T, Accili D, Kahn CR, Noda T, Asahara H, Yamauchi T, Kadowaki T, Ueki K. Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice. Nat Commun 2022; 13:5655. [PMID: 36198696 PMCID: PMC9535008 DOI: 10.1038/s41467-022-33008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2022] [Indexed: 01/23/2023] Open
Abstract
Aging is considered to be accelerated by insulin signaling in lower organisms, but it remained unclear whether this could hold true for mammals. Here we show that mice with skeletal muscle-specific double knockout of Akt1/2, key downstream molecules of insulin signaling, serve as a model of premature sarcopenia with insulin resistance. The knockout mice exhibit a progressive reduction in skeletal muscle mass, impairment of motor function and systemic insulin sensitivity. They also show osteopenia, and reduced lifespan largely due to death from debilitation on normal chow and death from tumor on high-fat diet. These phenotypes are almost reversed by additional knocking out of Foxo1/4, but only partially by additional knocking out of Tsc2 to activate the mTOR pathway. Overall, our data suggest that, unlike in lower organisms, suppression of Akt activity in skeletal muscle of mammals associated with insulin resistance and aging could accelerate osteosarcopenia and consequently reduce lifespan.
Collapse
Affiliation(s)
- Takayoshi Sasako
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshihiro Umehara
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Soeda
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuma Kaneko
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miho Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Kobayashi
- grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Okazaki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwa Tamura-Nakano
- grid.45203.300000 0004 0489 0290Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoki Chiba
- grid.265073.50000 0001 1014 9130Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Domenico Accili
- grid.21729.3f0000000419368729Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY USA
| | - C. Ronald Kahn
- grid.38142.3c000000041936754XJoslin Diabetes Center, Harvard Medical School, Boston, MA USA
| | - Tetsuo Noda
- grid.410807.a0000 0001 0037 4131Department of Cell Biology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Hiroshi Asahara
- grid.265073.50000 0001 1014 9130Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshimasa Yamauchi
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410813.f0000 0004 1764 6940Toranomon Hospital, Tokyo, Japan
| | - Kohjiro Ueki
- grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Molecular Diabetetology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Inactivation of EMILIN-1 by Proteolysis and Secretion in Small Extracellular Vesicles Favors Melanoma Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22147406. [PMID: 34299025 PMCID: PMC8303474 DOI: 10.3390/ijms22147406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated that melanoma-derived extracellular vesicles (EVs) are involved in lymph node metastasis; however, the molecular mechanisms involved are not completely defined. Here, we found that EMILIN-1 is proteolyzed and secreted in small EVs (sEVs) as a novel mechanism to reduce its intracellular levels favoring metastasis in mouse melanoma lymph node metastatic cells. Interestingly, we observed that EMILIN-1 has intrinsic tumor and metastasis suppressive-like properties reducing effective migration, cell viability, primary tumor growth, and metastasis. Overall, our analysis suggests that the inactivation of EMILIN-1 by proteolysis and secretion in sEVs reduce its intrinsic tumor suppressive activities in melanoma favoring tumor progression and metastasis.
Collapse
|
5
|
Cerezo-Wallis D, Contreras-Alcalde M, Troulé K, Catena X, Mucientes C, Calvo TG, Cañón E, Tejedo C, Pennacchi PC, Hogan S, Kölblinger P, Tejero H, Chen AX, Ibarz N, Graña-Castro O, Martinez L, Muñoz J, Ortiz-Romero P, Rodriguez-Peralto JL, Gómez-López G, Al-Shahrour F, Rabadán R, Levesque MP, Olmeda D, Soengas MS. Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nat Med 2020; 26:1865-1877. [PMID: 33077955 DOI: 10.1038/s41591-020-1073-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways. The resulting MDK-modulated secretome educated macrophages towards tolerant phenotypes that promoted CD8+ T cell dysfunction. In contrast, genetic targeting of MDK sensitized melanoma cells to anti-PD-1/anti-PD-L1 treatment. Emphasizing the translational relevance of these findings, the expression profile of MDK-depleted tumors was enriched in key indicators of a good response to immune checkpoint blockers in independent patient cohorts. Together, these data reveal that MDK acts as an internal modulator of autocrine and paracrine signals that maintain immune suppression in aggressive melanomas.
Collapse
Affiliation(s)
- Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Kevin Troulé
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paula C Pennacchi
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sabrina Hogan
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Peter Kölblinger
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrew X Chen
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nuria Ibarz
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martinez
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Javier Muñoz
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Madrid, Spain
| | - Pablo Ortiz-Romero
- Dermatology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - José L Rodriguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain.,Pathology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raúl Rabadán
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Multipotent Adult Progenitor Cells Support Lymphatic Regeneration at Multiple Anatomical Levels during Wound Healing and Lymphedema. Sci Rep 2018; 8:3852. [PMID: 29497054 PMCID: PMC5832783 DOI: 10.1038/s41598-018-21610-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lymphatic capillary growth is an integral part of wound healing, yet, the combined effectiveness of stem/progenitor cells on lymphatic and blood vascular regeneration in wounds needs further exploration. Stem/progenitor cell transplantation also emerged as an approach to cure lymphedema, a condition caused by lymphatic system deficiency. While lymphedema treatment requires lymphatic system restoration from the capillary to the collector level, it remains undetermined whether stem/progenitor cells support a complex regenerative response across the entire anatomical spectrum of the system. Here, we demonstrate that, although multipotent adult progenitor cells (MAPCs) showed potential to differentiate down the lymphatic endothelial lineage, they mainly trophically supported lymphatic endothelial cell behaviour in vitro. In vivo, MAPC transplantation supported blood vessel and lymphatic capillary growth in wounds and restored lymph drainage across skin flaps by stimulating capillary and pre-collector vessel regeneration. Finally, human MAPCs mediated survival and functional reconnection of transplanted lymph nodes to the host lymphatic network by improving their (lymph)vascular supply and restoring collector vessels. Thus, MAPC transplantation represents a promising remedy for lymphatic system restoration at different anatomical levels and hence an appealing treatment for lymphedema. Furthermore, its combined efficacy on lymphatic and blood vascular growth is an important asset for wound healing.
Collapse
|
7
|
Frenay ARS, Yazdani S, Boersema M, van der Graaf AM, Waanders F, van den Born J, Navis GJ, van Goor H. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS One 2015; 10:e0129732. [PMID: 26061812 PMCID: PMC4464893 DOI: 10.1371/journal.pone.0129732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/12/2015] [Indexed: 01/13/2023] Open
Abstract
Some diseases associated with a temporary deterioration in kidney function and/or development of proteinuria show an apparently complete functional remission once the initiating trigger is removed. While it was earlier thought that a transient impairment of kidney function is harmless, accumulating evidence now suggests that these patients are more prone to developing renal failure later in life. We therefore sought to investigate to what extent renal functional changes, inflammation and collagen deposition are reversible after cessation of disease induction, potentially explaining residual sensitivity to damage. Using a rat model of Angiotensin II (Ang II)-induced hypertensive renal disease we show the development of severe hypertension (212 ± 10.43 vs. 146 ± 1.4 mmHg, p<0.001) and proteinuria (51.4 ± 6.3 vs. 14.7 ± 2.0 mg/24h, p<0.01) with declined creatinine clearance (2.0 ± 0.5 vs. 4.9 ± 0.6 mL/min, p<0.001) to occur after 3 weeks of Ang II infusion. At the structural level, Ang II infusion resulted in interstitial inflammation (18.8 ± 4.8 vs. 3.6 ± 0.5 number of macrophages, p<0.001), renal interstitial collagen deposition and lymphangiogenesis (4.1 ± 0.4 vs. 2.2 ± 0.4 number of lymph vessels, p<0.01). Eight weeks after cessation of Ang II, all clinical parameters, pre-fibrotic changes such as myofibroblast transformation and increase in lymph vessel number (lymphangiogenesis) returned to control values. However, glomerular desmin expression, glomerular and periglomerular macrophages and interstitial collagens remained elevated. These dormant abnormalities indicate that after transient renal function decline, inflammation and collagen deposition may persist despite normalization of the initiating pathophysiological stimulus perhaps rendering the kidney more vulnerable to further damage.
Collapse
Affiliation(s)
- Anne-Roos S. Frenay
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Miriam Boersema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Anne Marijn van der Graaf
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Femke Waanders
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Gerjan J. Navis
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
8
|
(Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia. Exp Mol Med 2014; 46:e122. [PMID: 25412683 PMCID: PMC4262793 DOI: 10.1038/emm.2014.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/26/2014] [Accepted: 09/21/2014] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.
Collapse
|
9
|
Abstract
Breast cancer is now the most frequently diagnosed cancer and leading cause of cancer death in women worldwide. Strategies targeting the primary tumour have markedly improved, but systemic treatments to prevent metastasis are less effective; metastatic disease remains the underlying cause of death in the majority of patients with breast cancer who succumb to their disease. The long latency period between initial treatment and eventual recurrence in some patients suggests that a tumour may both alter and respond to the host systemic environment to facilitate and sustain disease progression. Results from studies in animal models suggest that specific subtypes of breast cancer may direct metastasis through recruitment and activation of haematopoietic cells. In this review, we focus on data implicating breast cancer as a systemic disease.
Collapse
Affiliation(s)
- A J Redig
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Yazdani S, Poosti F, Kramer AB, Mirković K, Kwakernaak AJ, Hovingh M, Slagman MCJ, Sjollema KA, de Borst MH, Navis G, van Goor H, van den Born J. Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis. PLoS One 2012. [PMID: 23189189 PMCID: PMC3506584 DOI: 10.1371/journal.pone.0050209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proteinuria is an important cause of progressive tubulo-interstitial damage. Whether proteinuria could trigger a renal lymphangiogenic response has not been established. Moreover, the temporal relationship between development of fibrosis, inflammation and lymphangiogenesis in chronic progressive kidney disease is not clear yet. Therefore, we evaluated the time course of lymph vessel (LV) formation in relation to proteinuria and interstitial damage in a rat model of chronic unilateral adriamycin nephrosis. Proteinuria and kidneys were evaluated up to 30 weeks after induction of nephrosis. LVs were identified by podoplanin/VEGFR3 double staining. After 6 weeks proteinuria was well-established, without influx of interstitial macrophages and myofibroblasts, collagen deposition, osteopontin expression (tubular activation) or LV formation. At 12 weeks, a ∼3-fold increase in cortical LV density was found (p<0.001), gradually increasing over time. This corresponded with a significant increase in tubular osteopontin expression (p<0.01) and interstitial myofibroblast numbers (p<0.05), whereas collagen deposition and macrophage numbers were not yet increased. VEGF-C was mostly expressed by tubular cells rather than interstitial cells. Cultured tubular cells stimulated with FCS showed a dose-dependent increase in mRNA and protein expression of VEGF-C which was not observed by human albumin stimulation. We conclude that chronic proteinuria provoked lymphangiogenesis in temporal conjunction with tubular osteopontin expression and influx of myofibroblasts, that preceded interstitial fibrosis.
Collapse
Affiliation(s)
- Saleh Yazdani
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The miR-290-295 cluster suppresses autophagic cell death of melanoma cells. Sci Rep 2012; 2:808. [PMID: 23150779 PMCID: PMC3496171 DOI: 10.1038/srep00808] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/17/2012] [Indexed: 12/04/2022] Open
Abstract
We compared the expression levels of 307 miRNAs in six different B16F1 melanoma cell lines of differing malignant properties and found that the miR-290–295 cluster showed a strong upregulation in the more malignant B16F1 daughter cell lines. Its overexpression in B16F1 cells had no major effects on cell proliferation, migration or anchorage-independent growth, but conferred resistance to glucose starvation. This was mediated by miR-290-295-induced downregulation of several essential autophagy genes, including Atg7 and ULK1, which resulted in inhibition of autophagic cell death induced by glucose starvation. Similar effects were observed after knockdown of Atg7 or ULK1 in B16F1 melanoma cells, and after treatment with two chemical inhibitors of autophagy. Together, these results indicate that autophagy mediates cell death of melanoma cells under chronic nutrient deprivation, and they reveal an unanticipated role of the miR-290-295 cluster in conferring a survival advantage to melanoma cells by inhibiting autophagic cell death.
Collapse
|