1
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
2
|
Westhoff CC, Müller SK, Jank P, Kalder M, Moll R. Nodal lymphangiogenesis and immunophenotypic variations of sinus endothelium in sentinel and non-sentinel lymph nodes of invasive breast carcinoma. PLoS One 2023; 18:e0280936. [PMID: 36693068 PMCID: PMC9873157 DOI: 10.1371/journal.pone.0280936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Several studies have demonstrated the de novo formation of lymphatic vessels or the reorganization of lymphatic sinus in tumor-draining lymph nodes, partly preceding the detection of lymphatic metastases. This "lymphovascular niche"is supposed to facilitate the survival of metastatic tumor cells. Few studies on nodal lymphangiogenesis in invasive breast cancer (BC) have been published, not considering tumor-free sentinel lymph nodes (SLN) and tumor types. Specimens of SLN and/ or non-SLN (NSLN) of 95 patients with BC were examined immunohistochemically for expression of the lymphatic endothelial marker D2-40 (podoplanin) on lymphatic vessels and the subcapsular sinus. The number of D2-40-positive lymph vessels in metastases was evaluated with two morphometric methods (Chalkley count and number per HPF). Data was explored with respect to TNM parameters, grading, tumor type, size of metastasis, lymph vessel number and hormone receptor/HER2 status with appropriate statistical tests. Lymphangiogenesis was detected exclusively in and around BC metastases with both methods for lymph vessel quantification being equivalent. Lymph vessel number correlated with the size of metastases, being significantly higher in larger metastases (p < 0.001). There was no significant statistical difference with respect to tumor types. Intranodal lymphangiogenesis could not be verified by D2-40 staining in any of the tumor-free lymph nodes examined. However, D2-40 was frequently detected in sinus endothelial/virgultar cells of the subcapsular sinus, partly with strong uniform positivity. Staining intensity and stained proportion of the subcapsular sinus were markedly heterogeneous, significantly correlating with each other both in SLN and NSLN (p < 0.001). A higher proportion of D2-40 stained subcapsular sinus in SLN was significantly associated with worse overall survival (p = 0.0036) and an independent prognostic parameter in multivariate analysis (p = 0.033, HR 2.87). Further studies are necessary to elucidate the biological and clinical significance of the observed immunophenotypic variations of nodal sinus endothelium.
Collapse
Affiliation(s)
- Christina C. Westhoff
- Institute of Pathology, Philipps University of Marburg and University Hospital Giessen and Marburg GmbH, Marburg, Germany
- * E-mail:
| | - Sabrina K. Müller
- Institute of Pathology, Philipps University of Marburg and University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Paul Jank
- Institute of Pathology, Philipps University of Marburg and University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Matthias Kalder
- Department of Gynecology and Obstetrics, Breast Center Regio, Philipps University of Marburg and University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Roland Moll
- Institute of Pathology, Philipps University of Marburg and University Hospital Giessen and Marburg GmbH, Marburg, Germany
| |
Collapse
|
3
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
5
|
Cerezo-Wallis D, Contreras-Alcalde M, Troulé K, Catena X, Mucientes C, Calvo TG, Cañón E, Tejedo C, Pennacchi PC, Hogan S, Kölblinger P, Tejero H, Chen AX, Ibarz N, Graña-Castro O, Martinez L, Muñoz J, Ortiz-Romero P, Rodriguez-Peralto JL, Gómez-López G, Al-Shahrour F, Rabadán R, Levesque MP, Olmeda D, Soengas MS. Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nat Med 2020; 26:1865-1877. [PMID: 33077955 DOI: 10.1038/s41591-020-1073-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways. The resulting MDK-modulated secretome educated macrophages towards tolerant phenotypes that promoted CD8+ T cell dysfunction. In contrast, genetic targeting of MDK sensitized melanoma cells to anti-PD-1/anti-PD-L1 treatment. Emphasizing the translational relevance of these findings, the expression profile of MDK-depleted tumors was enriched in key indicators of a good response to immune checkpoint blockers in independent patient cohorts. Together, these data reveal that MDK acts as an internal modulator of autocrine and paracrine signals that maintain immune suppression in aggressive melanomas.
Collapse
Affiliation(s)
- Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Kevin Troulé
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paula C Pennacchi
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sabrina Hogan
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Peter Kölblinger
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrew X Chen
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nuria Ibarz
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martinez
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Javier Muñoz
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Madrid, Spain
| | - Pablo Ortiz-Romero
- Dermatology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - José L Rodriguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain.,Pathology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raúl Rabadán
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Lu Y, Ma T, Wang L, Xue T. [Advances in Lymph Node Metastasis and Lymph Node Dissection
in Early Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 22:520-525. [PMID: 31451143 PMCID: PMC6717872 DOI: 10.3779/j.issn.1009-3419.2019.08.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
肺癌是目前我国发病率和死亡率均居首位的恶性肿瘤,其中以非小细胞肺癌为主要病理类型。淋巴结转移是非小细胞肺癌最常见和最主要的转移途径,也是影响肺癌分期和预后最重要的因素。由于目前通过现有手段术前很难准确判断早期非小细胞肺癌患者的淋巴结受累情况。因此,在早期非小细胞肺癌中,尤其是在临床Ⅰ期非小细胞肺癌患者中,淋巴结清扫方式一直存在很大争议。本文就非小细胞肺癌淋巴结转移的规律及清扫方式进行综述。
Collapse
Affiliation(s)
- Yun Lu
- Department of Cardiothoracic Surgery, the Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - Teng Ma
- Department of Cardiothoracic Surgery, the Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, the Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - Tao Xue
- Department of Cardiothoracic Surgery, the Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| |
Collapse
|
7
|
Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour microenvironment. Int J Cancer 2019; 145:2611-2618. [PMID: 30989643 PMCID: PMC6766895 DOI: 10.1002/ijc.32343] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
In contrast to the once dominant tumour-centric view of cancer, increasing attention is now being paid to the tumour microenvironment (TME), generally understood as the elements spatially located in the vicinity of the tumour. Thinking in terms of TME has proven extremely useful, in particular because it has helped identify and comprehend the role of nongenetic and noncell-intrinsic factors in cancer development. Yet some current approaches have led to a TME-centric view, which is no less problematic than the former tumour-centric vision of cancer, insofar as it tends to overlook the role of components located beyond the TME, in the 'tumour organismal environment' (TOE). In this minireview, we highlight the explanatory and therapeutic shortcomings of the TME-centric view and insist on the crucial importance of the TOE in cancer progression.
Collapse
Affiliation(s)
- Lucie Laplane
- INSERM UMR 1170, Normal and Pathological Hematopoiesis, Gustave Roussy, Villejuif, France.,CNRS UMR8590, Institute for History and Philosophy of Science and Techniques, Paris, France.,Department of Philosophy, University Pantheon-Sorbonne, Paris, France
| | - Dorothée Duluc
- CNRS UMR5164, ImmunoConcEpT, Bordeaux, France.,Department of Life and Medical Sciences, University of Bordeaux, Bordeaux, France
| | - Andreas Bikfalvi
- CNRS UMR8590, Institute for History and Philosophy of Science and Techniques, Paris, France.,Department of Philosophy, University Pantheon-Sorbonne, Paris, France.,Department of Life and Medical Sciences, University of Bordeaux, Bordeaux, France.,INSERM U1029, Angiogenesis and Cancer Microenvironment Laboratory, Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Bordeaux, France.,Department of Life and Medical Sciences, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- CNRS UMR8590, Institute for History and Philosophy of Science and Techniques, Paris, France.,Department of Philosophy, University Pantheon-Sorbonne, Paris, France.,CNRS UMR5164, ImmunoConcEpT, Bordeaux, France.,Department of Life and Medical Sciences, University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
何 萍, 顾 霞, 曾 欣, 郑 咏, 林 晓. [Changes of lymphatic vessel density in lung adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma and the regulatory factors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1349-1353. [PMID: 30514684 PMCID: PMC6744127 DOI: 10.12122/j.issn.1673-4254.2018.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the changes in tumor lymphatic vessel density (LVD) in patients with lung adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA) and explore the regulatory factors of LVD. METHODS Complete clinicopathological data were collected form a total of 301 patients with lung adenocarcinoma, including 28 (9.3%) with AIS, 86 (28.6%) with MIA, and 187 (62.1%) with IA. The LVD of all the adenocarcinomas were calculated after D2-40 immunohistochemical staining, and MT1-MMP and VEGF-C expression levels were also evaluated. The differences in LVD among the groups and the correlations of tumor LVD with the expressions of MT1-MMP and VEGF-C and the clinicopathological factors were analyzed. RESULTS The LVD differed significantly among AIS, MIA, and IA groups (P= 0.000). The LVDs was significantly correlated with the level of VEGF-C protein expression (r=0.917, P=0.009), tumor size (r= 0.686, P=0.017), lymph node metastasis (r=0.739, P=0.000), and clinical stage (r=0.874, P=0.012) of the patients. CONCLUSIONS Tumor lymphangiogenesis plays an important role in lung adenocarcinoma progression, and VEGF-C may promote this process.
Collapse
Affiliation(s)
- 萍 何
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 霞 顾
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 欣 曾
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 咏玫 郑
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 晓东 林
- />广州医科大学附属第一医院病理科,广东 广州 510120Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
9
|
Ma Q, Dieterich LC, Ikenberg K, Bachmann SB, Mangana J, Proulx ST, Amann VC, Levesque MP, Dummer R, Baluk P, McDonald DM, Detmar M. Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. SCIENCE ADVANCES 2018; 4:eaat4758. [PMID: 30101193 PMCID: PMC6082649 DOI: 10.1126/sciadv.aat4758] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Tumor lymphangiogenesis is accompanied by a higher incidence of sentinel lymph node metastasis and shorter overall survival in several types of cancer. We asked whether tumor lymphangiogenesis might also occur in distant organs with established metastases and whether it might promote further metastatic spread of those metastases to other organs. Using mouse metastasis models, we found that lymphangiogenesis occurred in distant lung metastases and that some metastatic tumor cells were located in lymphatic vessels and draining lymph nodes. In metastasis-bearing lungs of melanoma patients, a higher lymphatic density within and around metastases and lymphatic invasion correlated with poor outcome. Using a transgenic mouse model with inducible expression of vascular endothelial growth factor C (VEGF-C) in the lung, we found greater growth of lung metastases, with more abundant dissemination to other organs. Our findings reveal unexpected contributions of lymphatics in distant organs to the promotion of growth of metastases and their further spread to other organs, with potential clinical implications for adjuvant therapies in patients with metastatic cancer.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Kristian Ikenberg
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Samia B. Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Johanna Mangana
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Valerie C. Amann
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - Peter Baluk
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donald M. McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Multipotent Adult Progenitor Cells Support Lymphatic Regeneration at Multiple Anatomical Levels during Wound Healing and Lymphedema. Sci Rep 2018; 8:3852. [PMID: 29497054 PMCID: PMC5832783 DOI: 10.1038/s41598-018-21610-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lymphatic capillary growth is an integral part of wound healing, yet, the combined effectiveness of stem/progenitor cells on lymphatic and blood vascular regeneration in wounds needs further exploration. Stem/progenitor cell transplantation also emerged as an approach to cure lymphedema, a condition caused by lymphatic system deficiency. While lymphedema treatment requires lymphatic system restoration from the capillary to the collector level, it remains undetermined whether stem/progenitor cells support a complex regenerative response across the entire anatomical spectrum of the system. Here, we demonstrate that, although multipotent adult progenitor cells (MAPCs) showed potential to differentiate down the lymphatic endothelial lineage, they mainly trophically supported lymphatic endothelial cell behaviour in vitro. In vivo, MAPC transplantation supported blood vessel and lymphatic capillary growth in wounds and restored lymph drainage across skin flaps by stimulating capillary and pre-collector vessel regeneration. Finally, human MAPCs mediated survival and functional reconnection of transplanted lymph nodes to the host lymphatic network by improving their (lymph)vascular supply and restoring collector vessels. Thus, MAPC transplantation represents a promising remedy for lymphatic system restoration at different anatomical levels and hence an appealing treatment for lymphedema. Furthermore, its combined efficacy on lymphatic and blood vascular growth is an important asset for wound healing.
Collapse
|
11
|
Defining minimal clearances for adequate lymphatic resection relevant to right colectomy for cancer: a post-mortem study. Surg Endosc 2018; 32:3806-3812. [DOI: 10.1007/s00464-018-6106-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
|
12
|
Martínez-Iglesias O, Olmeda D, Alonso-Merino E, Gómez-Rey S, González-López AM, Luengo E, Soengas MS, Palacios J, Regadera J, Aranda A. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis. Oncotarget 2018; 7:78971-78984. [PMID: 27806339 PMCID: PMC5346691 DOI: 10.18632/oncotarget.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - David Olmeda
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Universidad Autónoma de Madrid, Spain
| | - Elvira Alonso-Merino
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Sara Gómez-Rey
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Ana M González-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Enrique Luengo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - María S Soengas
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Universidad Autónoma de Madrid, Spain
| | - José Palacios
- Departamento de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Universidad de Alcalá, Spain
| | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| |
Collapse
|
13
|
Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer. Cancers (Basel) 2017; 9:cancers9080101. [PMID: 28771186 PMCID: PMC5575604 DOI: 10.3390/cancers9080101] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Despite major advances, non-small cell lung cancer (NSCLC) remains the major cause of cancer-related death in developed countries. Metastasis and drug resistance are the main factors contributing to relapse and death. Epithelial-to-mesenchymal transition (EMT) is a complex molecular and cellular process involved in tissue remodelling that was extensively studied as an actor of tumour progression, metastasis and drug resistance in many cancer types and in lung cancers. Here we described with an emphasis on NSCLC how the changes in signalling pathways, transcription factors expression or microRNAs that occur in cancer promote EMT. Understanding the biology of EMT will help to define reversing process and treatment strategies. We will see that this complex mechanism is related to inflammation, cell mobility and stem cell features and that it is a dynamic process. The existence of intermediate phenotypes and tumour heterogeneity may be debated in the literature concerning EMT markers, EMT signatures and clinical consequences in NSCLC. However, given the role of EMT in metastasis and in drug resistance the development of EMT inhibitors is an interesting approach to counteract tumour progression and drug resistance. This review describes EMT involvement in cancer with an emphasis on NSCLC and microRNA regulation.
Collapse
|
14
|
Waddington DEJ, Sarracanie M, Zhang H, Salameh N, Glenn DR, Rej E, Gaebel T, Boele T, Walsworth RL, Reilly DJ, Rosen MS. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat Commun 2017; 8:15118. [PMID: 28443626 PMCID: PMC5414045 DOI: 10.1038/ncomms15118] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/01/2017] [Indexed: 11/05/2022] Open
Abstract
Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton–electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time. Hyperpolarized magnetic resonance imaging can enhance imaging contrast by orders of magnitude, but applications are limited by the thermal relaxation of hyperpolarized states. Here, Waddington et al. demonstrate the on-demand hyperpolarization of hydrogen spins through the Overhauser effect with nanodiamonds.
Collapse
Affiliation(s)
- David E J Waddington
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Mathieu Sarracanie
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Huiliang Zhang
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Najat Salameh
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - David R Glenn
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Boele
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald L Walsworth
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Balsat C, Blacher S, Herfs M, Van de Velde M, Signolle N, Sauthier P, Pottier C, Gofflot S, De Cuypere M, Delvenne P, Goffin F, Noel A, Kridelka F. A specific immune and lymphatic profile characterizes the pre-metastatic state of the sentinel lymph node in patients with early cervical cancer. Oncoimmunology 2017; 6:e1265718. [PMID: 28344873 DOI: 10.1080/2162402x.2016.1265718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022] Open
Abstract
The lymph node (LN) pre-metastatic niche is faintly characterized in lymphophilic human neoplasia, although LN metastasis is considered as the strongest prognostic marker of patient survival. Due to its specific dissemination through a complex bilateral pelvic lymphatic system, early cervical cancer is a relevant candidate for investigating the early nodal metastatic process. In the present study, we analyzed in-depth both the lymphatic vasculature and the immune climate of pre-metastatic sentinel LN (SLN), in 48 cases of FIGO stage IB1 cervical neoplasms. An original digital image analysis methodology was used to objectively determine whole slide densities and spatial distributions of immunostained structures. We observed a marked increase in lymphatic vessel density (LVD) and a specific capsular and subcapsular distribution in pre-metastatic SLN when compared with non-sentinel counterparts. Such features persisted in the presence of nodal metastatic colonization. The inflammatory profile attested by CD8+, Foxp3, CD20 and PD-1expression was also significantly increased in pre-metastatic SLN. Remarkably, the densities of CD20+ B cells and PD-1 expressing germinal centers were positively correlated with LVD. All together, these data strongly support the existence of a pre-metastatic dialog between the primary tumor and the first nodal relay. Both lymphatic and immune responses contribute to the elaboration of a specific pre-metastatic microenvironment in human SLN. Moreover, this work provides evidence that, in the context of early cervical cancer, a pre-metastatic lymphangiogenesis occurs within the SLN (pre-metastatic niche) and is associated with a specific humoral immune response.
Collapse
Affiliation(s)
- Cédric Balsat
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Michael Herfs
- Department of Pathology, Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Maureen Van de Velde
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Nicolas Signolle
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Philippe Sauthier
- Department of Gynecologic Oncology, CHU of Montreal , Montreal, Canada
| | - Charles Pottier
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Stéphanie Gofflot
- Biothèque Hospitalo Universitaire de Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | | | - Philippe Delvenne
- Department of Pathology, Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Frédéric Goffin
- Department of Obstetrics and Gynecology, Hospital of la Citadelle , Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège , CHU-Sart Tilman (B23) , Liège, Belgium
| | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU of Liège , Liège, Belgium
| |
Collapse
|
16
|
García-Caballero M, Van de Velde M, Blacher S, Lambert V, Balsat C, Erpicum C, Durré T, Kridelka F, Noel A. Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay. Sci Rep 2017; 7:41494. [PMID: 28128294 PMCID: PMC5270255 DOI: 10.1038/srep41494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Lymphangiogenesis, the formation of new lymphatic vessels, occurs in primary tumors and in draining lymph nodes leading to pre-metastatic niche formation. Reliable in vivo models are becoming instrumental for investigating alterations occurring in lymph nodes before tumor cell arrival. In this study, we demonstrate that B16F10 melanoma cell encapsulation in a biomaterial, and implantation in the mouse ear, prevents their rapid lymphatic spread observed when cells are directly injected in the ear. Vascular remodeling in lymph nodes was detected two weeks after sponge implantation, while their colonization by tumor cells occurred two weeks later. In this model, a huge lymphangiogenic response was induced in primary tumors and in pre-metastatic and metastatic lymph nodes. In control lymph nodes, lymphatic vessels were confined to the cortex. In contrast, an enlargement and expansion of lymphatic vessels towards paracortical and medullar areas occurred in pre-metastatic lymph nodes. We designed an original computerized-assisted quantification method to examine the lymphatic vessel structure and the spatial distribution. This new reliable and accurate model is suitable for in vivo studies of lymphangiogenesis, holds promise for unraveling the mechanisms underlying lymphatic metastases and pre-metastatic niche formation in lymph nodes, and will provide new tools for drug testing.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Cédric Balsat
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Tania Durré
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Frédéric Kridelka
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium.,Department of Obstetrics and Gynecology, CHU Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| |
Collapse
|
17
|
Ji RC. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 2016; 18:ijms18010051. [PMID: 28036019 PMCID: PMC5297686 DOI: 10.3390/ijms18010051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
18
|
Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res 2016; 366:667-677. [PMID: 27599481 PMCID: PMC5121175 DOI: 10.1007/s00441-016-2493-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Histological studies of the lymphatic vascular system in adult mice are hampered because bones cannot be sectioned properly. Here, we decalcified the heads of 14-day-old mice, embedded them in paraffin and stained resultant serial sections with the lymphendothelial-specific antibodies Lyve-1 and Podoplanin. We show that the tissues with the highest lymphatic vascular density are the dermis and the oral mucous membranes. In contrast, the nasal mucous membrane is devoid of lymphatics, except for its most basal parts below the vomeronasal organ. The inferior nasal turbinate contains numerous lymphatics and is connected to the nasolacrimal duct (NLD), which is ensheathed by a dense network of lymphatics. The lymphatics of the eye lids and conjunctiva are connected to those of the inferior nasal turbinate. We suggest that cerebro-spinal fluid (CSF) can drain via the optic nerve and NLD lymphatics, whereas CSF drained via the Fila olfactoria into the nasal mucous membrane is used for moisturization of the respiratory air. Tongue, palatine and buccal mucous membranes possess numerous lymphatics, whereas the dental pulp has none. Lymphatics are present in the maxillary gland and close to the temporomandibular joint, suggesting the augmentation of lymph flow by chewing and yawning. Lymphatics can also be found in the dura mater and in the dural septae entering into deeper parts of the brain. Our findings are discussed with regard to CSF drainage and potential routes for ocular tumor dissemination.
Collapse
Affiliation(s)
- Melanie Lohrberg
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Krasnick B, Nathanson S, Arbabi C, Chitale D, Peterson E. The predictive value of increased sentinel lymph node volume in breast cancer. Surg Oncol 2016; 25:321-5. [DOI: 10.1016/j.suronc.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022]
|
20
|
Sleeman JP. The lymph node pre-metastatic niche. J Mol Med (Berl) 2016; 93:1173-84. [PMID: 26489604 DOI: 10.1007/s00109-015-1351-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Lymph node metastases occur frequently during the progression of many types of cancer, and their presence often reflects poor prognosis. The drainage of tumor-derived factors such as antigens, growth factors, cytokines, and exosomes through the lymphatic system to the regional lymph nodes plays an important role in the pre-metastatic conditioning of the microenvironment in lymph nodes, making them receptive and supportive metastatic niches for disseminating tumor cells. Modified immunological responses and remodeling of the vasculature are the most studied tumor-induced pre-metastatic changes in the lymph node microenvironment that promote metastasis, although other metastasis-relevant alterations are also starting to be studied. Here, I review our current understanding of the lymph node pre-metastatic niche, how tumors condition this niche, and the relevance of this conditioning for our understanding of the process of metastasis.
Collapse
|
21
|
Dieterich LC, Detmar M. Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 2016; 99:148-160. [PMID: 26705849 DOI: 10.1016/j.addr.2015.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/12/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Traditionally, tumor-associated lymphatic vessels have been regarded as passive by-standers, serving simply as a drainage system for interstitial fluid generated within the tumor. However, with growing evidence that tumors actively induce lymphangiogenesis, and that the number of lymphatic vessels closely correlates with metastasis and clinical outcome in various types of cancer, this picture has changed dramatically in recent years. Tumor-associated lymphatic vessels have now emerged as a valid therapeutic target to control metastatic disease, and the first specific anti-lymphangiogenic drugs have recently entered clinical testing. Furthermore, we are just beginning to understand the whole functional spectrum of tumor-associated lymphatic vessels, which not only concerns transport of fluid and metastatic cells, but also includes the regulation of cancer stemness and specific inhibition of immune responses, opening new venues for therapeutic applications. Therefore, we predict that specific targeting of lymphatic vessels and their function will become an important tool for future cancer treatment.
Collapse
|
22
|
Kilvaer TK, Paulsen EE, Hald SM, Wilsgaard T, Bremnes RM, Busund LT, Donnem T. Lymphangiogenic Markers and Their Impact on Nodal Metastasis and Survival in Non-Small Cell Lung Cancer--A Structured Review with Meta-Analysis. PLoS One 2015; 10:e0132481. [PMID: 26305218 PMCID: PMC4549062 DOI: 10.1371/journal.pone.0132481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background In non-small cell lung cancer (NSCLC), nodal metastasis is an adverse prognostic factor. Several mediating factors have been implied in the development of nodal metastases and investigated for predictive and prognostic properties in NSCLC. However, study results differ. In this structured review and meta-analysis we explore the published literature on commonly recognized pathways for molecular regulation of lymphatic metastasis in NSCLC. Methods A structured PubMed search was conducted for papers reporting on the expression of known markers of lymhangiogenesis in NSCLC patients. Papers of sufficient quality, presenting survival and/or correlation data were included. Results High levels of vascular endothelial growth factor C (VEGF-C, HR 1.57 95% CI 1.34–1.84) and high lymphatic vascular density (LVD, HR 1.84 95% CI 1.18–2.87) were significant prognostic markers of poor survival and high expression of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR3) and LVD was associated with lymph node metastasis in NSCLC. Conclusion Lymphangiogenic markers are prognosticators of survival and correlate with lymph node metastasis in NSCLC. Their exact role and clinical implications should be further elucidated.
Collapse
Affiliation(s)
- Thomas K. Kilvaer
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail:
| | - Erna-Elise Paulsen
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Sigurd M. Hald
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Roy M. Bremnes
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Lill-Tove Busund
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Tom Donnem
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
23
|
The cooperative role of S1P3 with LYVE-1 in LMW-HA-induced lymphangiogenesis. Exp Cell Res 2015; 336:150-7. [PMID: 26116468 DOI: 10.1016/j.yexcr.2015.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022]
Abstract
Lymphangiogenesis, the formation of new lymph vessels, plays a significant role in the development and metastasis of various cancers. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA) promotes lymphangiogenesis. However, the underlying mechanisms are poorly defined. In this study, using immunofluorescence and co-immunoprecipitation, we found that LMW-HA increased the colocalization of lymphatic vessel endothelial HA receptor (LYVE-1) and sphingosine 1-phosphate receptor (S1P3) at the cell surface. Silencing of either LYVE-1 or S1P3 decreased LMW-HA-mediated tube formation in lymphatic endothelial cells (LECs). Furthermore, silencing of either LYVE-1 or S1P3 significantly inhibited LMW-HA-induced tyrosine phosphorylation of Src kinase and extracellular signal-regulated kinase (ERK1/2). In summary, these results suggest that S1P3 and LYVE-1 may cooperate to play a role in LMW-HA-mediated lymphangiogenesis. This interaction may provide a useful target for the intervention of lymphangiogenesis-associated tumor progression.
Collapse
|
24
|
Tacconi C, Correale C, Gandelli A, Spinelli A, Dejana E, D'Alessio S, Danese S. Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion. Gastroenterology 2015; 148:1438-51.e8. [PMID: 25754161 DOI: 10.1053/j.gastro.2015.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is highly metastatic. Metastases spread directly into local tissue or invade distant organs via blood and lymphatic vessels, but the role of lymphangiogenesis in CRC progression has not been determined. Lymphangiogenesis is induced via vascular endothelial growth factor C (VEGFC) activation of its receptor, VEGFR3; high levels of VEGFC have been measured in colorectal tumors undergoing lymphangiogenesis and correlated with metastasis. We investigated VEGFC signaling and lymphatic barriers in human tumor tissues and mice with orthotopic colorectal tumors. METHODS We performed immunohistochemical, immunoblot, and real-time polymerase chain reaction analyses of colorectal tumor specimens collected from patients; healthy intestinal tissues collected during operations of patients without CRC were used as controls. CT26 CRC cells were injected into the distal posterior rectum of BALB/c-nude mice. Mice were given injections of an antibody against VEGFR3 or an adenovirus encoding human VEGFC before orthotopic tumors and metastases formed. Lymph node, lung, and liver tissues were collected and evaluated by flow cytometry. We measured expression of vascular endothelial cadherin (CDH5) on lymphatic vessels in mice and in human intestinal lymphatic endothelial cells. RESULTS Levels of podoplanin (a marker of lymphatic vessels), VEGFC, and VEGFR3 were increased in colorectal tumor tissues, compared with controls. Mice that expressed VEGFC from the adenoviral vector had increased lymphatic vessel density and more metastases in lymph nodes, lungs, and livers, compared with control mice. Anti-VEGFR3 antibody reduced numbers of lymphatic vessels in colons and prevented metastasis. Expression of VEGFC compromised the lymphatic endothelial barrier in mice and endothelial cells, reducing expression of CDH5, increasing permeability, and increasing trans-endothelial migration by CRC cells. Opposite effects were observed in mice and cells when VEGFR3 was blocked. CONCLUSIONS VEGFC signaling via VEGFR3 promotes lymphangiogenesis and metastasis by orthotopic colorectal tumors in mice and reduces lymphatic endothelial barrier integrity. Levels of VEGFC and markers of lymphatic vessels are increased in CRC tissues from patients, compared with healthy intestine. Strategies to block VEGFR3 might be developed to prevent CRC metastasis in patients.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy
| | - Carmen Correale
- Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy
| | | | | | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), Milan, Italy; Department of Biosciences, School of Sciences, University of Milan, Milan, Italy
| | - Silvia D'Alessio
- Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.
| | - Silvio Danese
- Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy.
| |
Collapse
|
25
|
(Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia. Exp Mol Med 2014; 46:e122. [PMID: 25412683 PMCID: PMC4262793 DOI: 10.1038/emm.2014.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/26/2014] [Accepted: 09/21/2014] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.
Collapse
|
26
|
Schindewolffs L, Breves G, Buettner M, Hadamitzky C, Pabst R. VEGF-C improves regeneration and lymphatic reconnection of transplanted autologous lymph node fragments: An animal model for secondary lymphedema treatment. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:152-61. [PMID: 25505549 PMCID: PMC4257760 DOI: 10.1002/iid3.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Secondary lymphedema occurs after for example breast cancer surgery and radiation in 20–50% of the patients. Due to the poor outcomes of surgical treatments in the past, the therapy often remains symptomatic. However, avascular transplantation of autologous lymph node fragments (LN-Tx) combined with postoperative injections of vascular endothelial growth factor-C (VEGF-C) emerges as a potential surgical therapy. In this study, adult rats underwent LN-Tx to investigate the following parameters of VEGF-C application: time point, location and dosage. Furthermore, the influences of VEGF-C on lymphatic reconnection and transplant regeneration were analyzed. The reconnection was investigated using intradermally injected blue dye and the regeneration was evaluated histologically using hematoxylin-eosin (H&E) staining and immunohistochemistry. The higher dosage enhanced the reconnection rates significantly and showed a statistical tendency of improving regeneration. An application on early postoperative days and the injection into the medial thigh improved the reconnection significantly. However, these variables did not affect the regeneration statistically. This study confirms that LN-Tx combined with lymphatic growth factor VEGF-C is a possible approach in the therapy of secondary lymphedema and shows the important role of VEGF-C application parameters.
Collapse
Affiliation(s)
- Lia Schindewolffs
- Institute of Immunomorphology, Hannover Medical School Hannover, Niedersachsen, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine, Foundation Hannover Hannover, Niedersachsen, Germany
| | - Manuela Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School Hannover, Niedersachsen, Germany
| | - Catarina Hadamitzky
- Clinic of Plastic, Hand and Reconstructive Surgery, Hannover Medical School Hannover, Niedersachsen, Germany
| | - Reinhard Pabst
- Institute of Immunomorphology, Hannover Medical School Hannover, Niedersachsen, Germany
| |
Collapse
|
27
|
Abstract
Lymphatic vessels constitute a ubiquitous countercurrent system to the blood vasculature that returns interstitial fluid, salts, small molecules, resorbed fat, and cells to the bloodstream. They serve as conduits to lymph nodes and are essential for multiple physiologic activities. However, they are also hijacked by cancer cells to establish initial lymph node metastases, as well as by infectious agents and parasites. Despite these obvious important functions in human pathologies, a more detailed understanding of the molecular mechanisms involved in the regulation of the lymphatic vasculature has trailed that of the blood vasculature for many years, mainly because critical specific characteristics of lymphatic endothelial cells were discovered only recently. In this Review series, several major aspects of the active and passive involvement of the lymphatic vasculature in human disease and physiology are presented, with a focus on translational findings.
Collapse
|
28
|
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14:159-72. [PMID: 24561443 DOI: 10.1038/nrc3677] [Citation(s) in RCA: 565] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.
Collapse
Affiliation(s)
- Steven A Stacker
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Steven P Williams
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Tara Karnezis
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Ramin Shayan
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia. [3] Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. [4] O'Brien Institute, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Stephen B Fox
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [2] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Marc G Achen
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
29
|
Decio A, Taraboletti G, Patton V, Alzani R, Perego P, Fruscio R, Jürgensmeier JM, Giavazzi R, Belotti D. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1050-1061. [PMID: 24508126 DOI: 10.1016/j.ajpath.2013.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor C (VEGFC) has been reported to promote tumor progression in several tumor types, mainly through the stimulation of lymphangiogenesis and lymphatic metastasis. However, the expression and biological significance of the VEGFC/VEGF receptor (VEGFR)-3 pathway in ovarian cancer growth and dissemination are unclear, and have been investigated in this study. Soluble VEGFC was detected in the plasma and ascites of patients with ovarian carcinoma, and VEGFR3 expression was found in their tumor tissues. In human ovarian carcinoma xenograft models, high levels of soluble VEGFC in ascites and serum were detected, in association with disease progression, tumor burden, and volume of ascites. Peak VEGFC expression preceded para-aortic lymph node infiltration by HOC8 neoplastic cells. Histological detection of tumor cells in blood and lymphatic vessels indicated both hematogenous and lymphatic dissemination. Overexpression of VEGFC in the VEGFR3-positive and luciferase-expressing IGROV1 cells promoted carcinoma dissemination after orthotopic transplantation in the ovary of immunodeficient mice. In vitro, VEGFC released by the tumor cells stimulated tumor cell migration in an autocrine manner. Cediranib, an inhibitor of VEGFR1-3 and c-kit, inhibited in vivo metastasis of VEGFC-overexpressing IGROV1 and in vitro autocrine effects. These findings suggest that the VEGFC/VEGFR3 pathway acts as an enhancer of ovarian cancer progression through autocrine and paracrine mechanisms, hence offering a potential target for therapy.
Collapse
Affiliation(s)
- Alessandra Decio
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS; the Foundation of the Carlo Besta Neurological Institute), Bergamo and Milan, Italy
| | - Giulia Taraboletti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS; the Foundation of the Carlo Besta Neurological Institute), Bergamo and Milan, Italy
| | | | | | | | - Robert Fruscio
- Department of Obstetric and Gynecology, San Gerardo Hospital, Monza, Italy
| | - Juliane M Jürgensmeier
- Department of Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Raffaella Giavazzi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS; the Foundation of the Carlo Besta Neurological Institute), Bergamo and Milan, Italy.
| | - Dorina Belotti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS; the Foundation of the Carlo Besta Neurological Institute), Bergamo and Milan, Italy
| |
Collapse
|
30
|
Quagliata L, Klusmeier S, Cremers N, Pytowski B, Harvey A, Pettis RJ, Thiele W, Sleeman JP. Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Clin Exp Metastasis 2013; 31:351-65. [PMID: 24379135 DOI: 10.1007/s10585-013-9633-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/12/2013] [Indexed: 01/11/2023]
Abstract
For many types of human cancer, the expression of vascular endothelial growth factor-C (VEGF-C) correlates with enhanced tumor-associated lymphatic vessel density, metastasis formation and poor prognosis. In experimental animals, VEGF-C produced by primary tumors can induce lymphangiogenesis within and/or at the periphery of the tumor, and promotes metastasis formation. Tumor-induced lymphangiogenesis is therefore thought to expedite entry of tumor cells into the lymphatic vasculature and their trafficking to regional lymph nodes, thereby fostering metastatic dissemination. Tumour-produced VEGF-C can also drain to the regional lymph nodes and induce lymphangiogenesis there. Whether this activity promotes metastasis formation remains unclear. To address this issue we manipulated VEGF-C activity and VEGFR-3 activation in the lymph nodes draining syngeneic rat breast cancers using intra-dermal delivery of either recombinant VEGF-C or VEGFR-3 blocking antibodies to induce or suppress lymph node lymphangiogenesis, respectively. Recombinant VEGF-C induced lymph node lymphangiogenesis, but was not sufficient to promote metastasis formation by poorly metastatic NM-081 breast tumours. Conversely, inhibition of lymph node lymphangiogeneis induced by highly metastatic MT-450 breast tumours suppressed the outgrowth of lymph node metastases, but not the initial colonization of the lymph nodes. Lung metastasis was also not affected. We conclude that tumor-derived VEGF-C draining to regional lymph nodes promotes the outgrowth of lymph node metastases. VEGF-C may induce lung metastasis independently of its effects on lymph node metastasis.
Collapse
Affiliation(s)
- Luca Quagliata
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medizinische Fakultät Mannheim, Universitätsmedizin Mannheim, Universität Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta Rev Cancer 2013; 1836:273-86. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
32
|
The miR-290-295 cluster suppresses autophagic cell death of melanoma cells. Sci Rep 2012; 2:808. [PMID: 23150779 PMCID: PMC3496171 DOI: 10.1038/srep00808] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/17/2012] [Indexed: 12/04/2022] Open
Abstract
We compared the expression levels of 307 miRNAs in six different B16F1 melanoma cell lines of differing malignant properties and found that the miR-290–295 cluster showed a strong upregulation in the more malignant B16F1 daughter cell lines. Its overexpression in B16F1 cells had no major effects on cell proliferation, migration or anchorage-independent growth, but conferred resistance to glucose starvation. This was mediated by miR-290-295-induced downregulation of several essential autophagy genes, including Atg7 and ULK1, which resulted in inhibition of autophagic cell death induced by glucose starvation. Similar effects were observed after knockdown of Atg7 or ULK1 in B16F1 melanoma cells, and after treatment with two chemical inhibitors of autophagy. Together, these results indicate that autophagy mediates cell death of melanoma cells under chronic nutrient deprivation, and they reveal an unanticipated role of the miR-290-295 cluster in conferring a survival advantage to melanoma cells by inhibiting autophagic cell death.
Collapse
|