1
|
Tavakoli Pirzaman A, Alishah A, Babajani B, Ebrahimi P, Sheikhi SA, Moosaei F, Salarfar A, Doostmohamadian S, Kazemi S. The Role of microRNAs in Hepatocellular Cancer: A Narrative Review Focused on Tumor Microenvironment and Drug Resistance. Technol Cancer Res Treat 2024; 23:15330338241239188. [PMID: 38634139 PMCID: PMC11025440 DOI: 10.1177/15330338241239188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
| | - Ali Alishah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Ali Sheikhi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Moosaei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Park JM, Peng JM, Shen YS, Lin CY, Hsu TW, Su YH, Chen HA, Saengboonmee C, Chang JS, Chiu CF, Shan YS. Phosphomimetic Dicer S1016E triggers a switch to glutamine metabolism in gemcitabine-resistant pancreatic cancer. Mol Metab 2022; 65:101576. [PMID: 35995401 PMCID: PMC9460536 DOI: 10.1016/j.molmet.2022.101576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Dicer is an enzyme that processes microRNAs (miRNAs) precursors into mature miRNAs, which have been implicated in various aspects of cancer progressions, such as clinical aggressiveness, prognosis, and survival outcomes. We previously showed that high expression of Dicer is associated with gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC); thus, in this study, we aimed to focus on how Dicer is involved in GEM resistance in PDAC, including cancer prognosis, cell proliferation, and metabolic regulation. METHODS We generated stable shRNA knockdown of Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells and explored cell viability by MTT and clonogenicity assays. Metabolomic profiling was employed to investigate metabolic changes between parental cells, PANC-1, and PANC-1 GR cells, and further implied to compare their sensitivity to the glutaminase inhibitor, CB839, and GEM treatments. To identify putative phosphorylation site involves with Dicer and its effects on GEM resistance in PDAC cells, we further generated phosphomimetic or phosphomutant Dicer at S1016 site and examined the changes in drug sensitivity, metabolic alteration, and miRNA regulation. RESULTS We observed that high Dicer levels in pancreatic ductal adenocarcinoma cells were positively correlated with advanced pancreatic cancer and acquired resistance to GEM. Metabolomic analysis indicated that PANC-1 GR cells rapidly utilised glutamine as their major fuel and increased levels of glutaminase (GLS): glutamine synthetase (GLUL) ratio which is related to high Dicer expression. In addition, we found that phosphomimetic Dicer S1016E but not phosphomutant Dicer S1016A facilitated miRNA maturation, causing an imbalance in GLS and GLUL and resulting in an increased response to GLS inhibitors. CONCLUSION Our results suggest that phosphorylation of Dicer on site S1016 affects miRNA biogenesis and glutamine metabolism in GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shiuan Shen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ying Lin
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Hao Su
- Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jung-Su Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
de la Cruz-Ojeda P, Schmid T, Boix L, Moreno M, Sapena V, Praena-Fernández JM, Castell FJ, Falcón-Pérez JM, Reig M, Brüne B, Gómez-Bravo MA, Giráldez Á, Bruix J, Ferrer MT, Muntané J. miR-200c-3p, miR-222-5p, and miR-512-3p Constitute a Biomarker Signature of Sorafenib Effectiveness in Advanced Hepatocellular Carcinoma. Cells 2022; 11:cells11172673. [PMID: 36078082 PMCID: PMC9454520 DOI: 10.3390/cells11172673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sorafenib constitutes a suitable treatment alternative for patients with advanced hepatocellular carcinoma (HCC) in whom atezolizumab + bevacizumab therapy is contraindicated. The aim of the study was the identification of a miRNA signature in liquid biopsy related to sorafenib response. Methods: miRNAs were profiled in hepatoblastoma HepG2 cells and tested in animal models, extracellular vesicles (EVs), and plasma from HCC patients. Results: Sorafenib altered the expression of 11 miRNAs in HepG2 cells. miR-200c-3p and miR-27a-3p exerted an anti-tumoral activity by decreasing cell migration and invasion, whereas miR-122-5p, miR-148b-3p, miR-194-5p, miR-222-5p, and miR-512-3p exerted pro-tumoral properties by increasing cell proliferation, migration, or invasion, or decreasing apoptosis. Sorafenib induced a change in EVs population with an increased number of larger EVs, and promoted an accumulation of miR-27a-3p, miR-122-5p, miR-148b-3p, miR-193b-3p, miR-194-5p, miR-200c-3p, and miR-375 into exosomes. In HCC patients, circulating miR-200c-3p baseline levels were associated with increased survival, whereas high levels of miR-222-5p and miR-512-3p after 1 month of sorafenib treatment were related to poor prognosis. The RNA sequencing revealed that miR-200c-3p was related to the regulation of cell growth and death, whereas miR-222-5p and miR-512-3p were related to metabolic control. Conclusions: The study showed that Sorafenib regulates a specific miRNA signature in which miR-200c-3p, miR-222-5p, and miR-512-3p bear prognostic value and contribute to treatment response.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
| | - Loreto Boix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Manuela Moreno
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Víctor Sapena
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | | | - Francisco J. Castell
- Department of Radiology, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Juan Manuel Falcón-Pérez
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Exosomes Lab, CIC bioGUNE, 48160 Derio, Spain
| | - María Reig
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60528 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60528 Frankfurt, Germany
| | - Miguel A. Gómez-Bravo
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Álvaro Giráldez
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Bruix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - María T. Ferrer
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
- Correspondence: ; Tel.: +34-955-923-122; Fax: +34-955-923-002
| |
Collapse
|
4
|
Tseng CF, Chen LT, Wang HD, Liu YH, Shiah SG. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates Sorafenib resistance and cancer stemness. Cancer Sci 2022; 113:1601-1612. [PMID: 35253323 PMCID: PMC9128169 DOI: 10.1111/cas.15319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Sorafenib is multi-kinase inhibitor for the standard treatment of advanced liver cancer patients. However, acquired resistance to sorafenib is responsible for a poor prognosis. Therefore, uncovering the molecular mechanisms underlying sorafenib sensitization can provide biomarkers for sorafenib treatment and improve sorafenib activity in a precise medication. Here, we report that epigenetic suppression of Dicer by HOXB-AS3/EZH2 complex is responsible for sorafenib resistance. We observed that Dicer expression is inversely correlated with EZH2 levels, HOXB-AS3 expression, sorafenib resistance and cancer stem cell properties in liver cancer patients. Furthermore, ectopic expression of Dicer induced liver cancer cells re-sensitization to sorafenib. Mechanistically, we found HOXB-AS3 physically interacts with EZH2 and recruits EZH2 to the Dicer promoter, resulting in epigenetic suppression of Dicer expression. These findings reveal that HOXB-AS3/EZH2 complex-mediated Dicer suppression plays an important role in sorafenib resistance and cancer stemness and provide potential therapeutic strategies for diagnosing and treating liver cancer patients.
Collapse
Affiliation(s)
- Chi-Feng Tseng
- Graduate Program of Biotechnology in Medicine, NTHU & NHRI.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hong Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:3. [PMID: 34980204 PMCID: PMC8722264 DOI: 10.1186/s13046-021-02208-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. METHODS The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. RESULTS We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3'-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. CONCLUSION Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi-Chao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
9
|
Hydroxychloroquine (HCQ) Modulates Autophagy and Oxidative DNA Damage Stress in Hepatocellular Carcinoma to Overcome Sorafenib Resistance via TLR9/SOD1/hsa-miR-30a-5p/Beclin-1 Axis. Cancers (Basel) 2021; 13:cancers13133227. [PMID: 34203465 PMCID: PMC8267639 DOI: 10.3390/cancers13133227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is used for treating advanced hepatocellular carcinoma (HCC), but some patients acquire sorafenib resistance. We investigated the mechanisms underlying acquired sorafenib resistance in HCC cells and targeted them to re-sensitize them to sorafenib. In silico analysis indicated that toll-like receptor (TLR)-9 was significantly overexpressed, and that miRNA (hsa-miR-30a-5p) was downregulated in sorafenib-resistant HCC cells, which modulated HCC cell proliferation, oxidative stress, and apoptosis. TLR9 overexpression increased HCC cell proliferation, whereas TLR9 inhibition from hydroxychloroquine (HCQ) decreased HCC cell proliferation, tumor growth, oxidative stress marker (SOD1), and the formation of autophagosome bodies (reduced ATG5 and Beclin-1 expression). Moreover, HCQ treatment reduced epithelial-mesenchymal transition, leading to decreased clonogenicity, migratory ability, and invasiveness. HCQ targeted and reduced the self-renewal capacity phenotype by inhibiting tumorsphere generation. Both in vitro and in vivo results demonstrated the synergistic effect of the HCQ-sorafenib combination on sorafenib-resistant HCC (Huh7-SR) cells, increasing their sensitivity to treatment by modulating TLR9, autophagy (ATG5 and Beclin-1), oxidative stress (SOD1), and apoptosis (c-caspase3) expression and thus overcoming the drug resistance. This study's findings indicate that TLR9 overexpression occurs in sorafenib-resistant HCC cells and that its downregulation aids HCC suppression. Moreover, HCQ treatment significantly increases sorafenib's effect on sorafenib-resistant HCC cells.
Collapse
|
10
|
Su YH, Hsu TW, Chen HA, Su CM, Huang MT, Chuang TH, Leo Su J, Hsieh CL, Chiu CF. ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J Cell Physiol 2021; 236:4420-4434. [PMID: 33184874 DOI: 10.1002/jcp.30159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcriptional Activation
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - J Leo Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Ling Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Pan W, Yu S, Jia J, Hu J, Jie L, Zhang P, Wang Q, Yan X, Qiu Y. Deregulation of the cell cycle and related microRNA expression induced by vinyl chloride monomer in the hepatocytes of rats. Toxicol Ind Health 2021; 37:365-376. [PMID: 33973497 DOI: 10.1177/07482337211015591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vinyl chloride (VC) is a confirmed human carcinogen associated with hepatocellular carcinoma and angiosarcoma. However, the role of microRNAs (miRNAs) in liver cell cycle changes under VC exposure remains unclear, which prevents research on the mechanism of VC-induced carcinogenesis. In this study, male rats were injected intraperitoneally with VC (0, 5, 25, and 125 mg/kg body weight) for 6, 8, and 12 weeks. Cell cycle analysis of liver cells, miRNA-222, miRNA-199a, miRNA-195, and miRNA-125b expression in the liver and serum, and target protein expression were performed at different time points. The results showed a higher percentage of hepatocytes in the G1/G0 and S phases at the end of 6 and 12 weeks of VC exposure, respectively. MiRNA-222 expression decreased initially and then increased, whereas miRNA-199a, miRNA-195, and miRNA-125b expression increased initially and then decreased, which corresponded with changes in cell cycle distribution and related target proteins expression (p27, cyclinA, cyclinD1, and CDK6). The corresponding expression levels of miRNAs in serum did not change. Dynamic changes in miR-222, miR-199a, miR-195, and miR-125b induced by VC can lead to cell cycle deregulation by affecting cell cycle-related proteins, and these miRNAs can serve as early biomarkers for malignant transformation caused by VC.
Collapse
Affiliation(s)
- Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jin Jia
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Junyang Hu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liang Jie
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Panhong Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
13
|
Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab Med 2020; 50:333-347. [PMID: 31049571 DOI: 10.1093/labmed/lmz002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short (~22 nucleotides [nt]), single-stranded RNA oligonucleotides that are regulatory in nature and are often dysregulated in various diseases, including cancer. miRNAs can act as oncomiRs (miRNAs associated with cancer) or tumor suppressor miRNAs and have the potential to be a diagnostic, prognostic, noninvasive biomarker for these diseases. MicroRNA-221 (miR-221) and microRNA-222 (miR-222) are homologous miRNAs, located on the human chromosome Xp11.3, which factored significantly in impairment in the regulation of a wide range of cancers. In this review, we have highlighted the most consistently reported dysregulated miRNAs that trigger human tissues to express cancerous features and surveyed the role of those miRNAs in metastasis, apoptosis, angiogenesis, and tumor prognosis. Also, we applied the causes of drug resistance and the role of coordinated actions of these miRNAs to epigenetic changes and selected miRNAs as a potential type of cancer treatment.
Collapse
Affiliation(s)
- Sima Amini
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Division of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Yu L, Zheng J, Li J, Wang Y, Lu X, Fan X. Integrating serum exosomal microRNA and liver microRNA profiles disclose the function role of autophagy and mechanisms of Fructus Meliae Toosendan-induced hepatotoxicity in mice. Biomed Pharmacother 2019; 123:109709. [PMID: 31855734 DOI: 10.1016/j.biopha.2019.109709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Herb-induced liver injury (HILI) is a growing clinical and economic problem worldwide. However, the underlying mechanism of HILI remains largely unknown, which hinders the prevention and treatment of this disease. Recently evidence supports that microRNAs (miRNAs) in circulating exosomes and cells play an important role in the pathology of liver diseases. Thus, using Fructus Meliae Toosendan (FMT) as an example of hepatoxic herbal medicine, the aim of this study was to reveal the mechanisms of FMT-induced liver injury (FILI) through integrated analysis of serum exosomal miRNAs and liver miRNAs profiles on FMT ethyl acetate extract (FMT for short)-exposed mice. Two dosages of FMT (20 and 40 g/kg) were involved in this study, while only high-dose exposure induced obvious liver injury in mice. Pathway analysis of 209 differentially expressed miRNAs (DEMs) in serum exosomes between high-dose FMT and control groups exhibited that FILI might be regulated by apoptosis-related pathways, such as p53 signaling, PI3K/Akt signaling, and PTEN signaling. Integrated analysis of the mRNA targets of serum exosomal DEMs and liver DEMs of high-dose FMT group showed that autophagy was significantly enriched as one of the top canonical pathways in FILI. Hepatocyte apoptosis was then proved by TUNEL assay in the liver tissue of high-dose FMT-treated mice. Moreover, in vivo validation studies suggested that the protein expression levels of PTEN, p-AKT, p53, and BAX were indeed regulated in the mouse liver after high-dose FMT administration, indicating hepatocyte apoptosis may be mediated by these three pathways mentioned above. Intriguingly, PINK1/Parkin-mediated mitophagy was activated in high-dose FMT-treated mouse liver and the protective effect of autophagy in FILI was validated in vitro with an autophagic flux inhibitor. In addition, serum exosomal miR-222, the most downregulated miRNAs between low- and high-dose FMT treatments, might be an important event in the hepatocyte apoptosis by regulating PTEN and PPP2R2A. In conclusion, integrated analysis of microRNA profiles in mouse serum exosomes and liver cells provides insights into the hepatotoxicity mechanisms of FMT and discloses the protective role of autophagy in FILI, suggesting this method could contribute to deeply understand the mechanism of HILI and activation of autophagy may be a potentially therapeutic strategy for FILI even HILI.
Collapse
Affiliation(s)
- Lingqi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junying Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuzhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
18
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
19
|
Pratama MY, Pascut D, Massi MN, Tiribelli C. The role of microRNA in the resistance to treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:577. [PMID: 31807558 DOI: 10.21037/atm.2019.09.142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death with a limited efficacy of treatment for intermediate and advanced stages of the disease. Several therapeutic approaches such as trans-arterial chemoembolization (TACE) with anthracyclines, cisplatin and multikinase inhibitor sorafenib have been appealing choices of treatments yet failed to reach a satisfactory outcome mainly due to the numerous mechanisms that influence patient's response. MicroRNAs (miRNAs) are key regulators of many intracellular processes related to drug resistance. This phenomenon has been linked to the modulation of several complex pathways, ranging from the loss of ability of drug accumulation, protective mechanism of autophagy, adaptive mechanism of cancer cells towards the drugs-induced environment, decrease DNA damage and suppression of downstream events that transduce its signal into apoptosis. We summarize the recent findings on the involvement of miRNAs in various drug resistance-related mechanisms in the development of resistance to anthracyclines, cisplatin and sorafenib therapies. Furthermore, we describe the possible application of miRNAs as circulating biomarkers predicting therapy response in HCC. Thus, the undeniable potential and paramount role of miRNA in drug resistance may eventually lead to improved clinical strategies and outcomes for HCC patients.
Collapse
Affiliation(s)
- Muhammad Yogi Pratama
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy.,Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| |
Collapse
|
20
|
Provvisiero DP, Negri M, de Angelis C, Di Gennaro G, Patalano R, Simeoli C, Papa F, Ferrigno R, Auriemma RS, De Martino MC, Colao A, Pivonello R, Pivonello C. Vitamin D reverts resistance to the mTOR inhibitor everolimus in hepatocellular carcinoma through the activation of a miR-375/oncogenes circuit. Sci Rep 2019; 9:11695. [PMID: 31406139 PMCID: PMC6690984 DOI: 10.1038/s41598-019-48081-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Primary or acquired resistant mechanisms prevent the employment of individualized therapy with target drugs like the mTOR inhibitor everolimus (EVE) in hepatocellular carcinoma (HCC). The current study evaluated the effect of 1,25(OH)2Vitamin D (VitD) treatment on EVE sensitivity in established models of HCC cell lines resistant to everolimus (EveR). DNA content and colony formation assays, which measure the proliferative index, revealed that VitD pre-treatment re-sensitizes EveR cells to EVE treatment. The evaluation of epithelial and mesenchymal markers by western blot and immunofluorescence showed that VitD restored an epithelial phenotype in EveR cells, in which prolonged EVE treatment induced transition to mesenchymal phenotype. Moreover, VitD treatment prompted hepatic miRNAs regulation, evaluated by liver miRNA finder qPCR array. In particular, miR-375 expression was up-regulated by VitD in EveR cells, in which miR-375 was down-regulated compared to parental cells, with consequent inhibition of oncogenes involved in drug resistance and epithelial-mesenchymal transition (EMT) such as MTDH, YAP-1 and c-MYC. In conclusion, the results of the current study demonstrated that VitD can re-sensitize HCC cells resistant to EVE treatment triggering miR-375 up-regulation and consequently down-regulating several oncogenes responsible of EMT and drug resistance.
Collapse
Affiliation(s)
- Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Dipartimento di Sanità Pubblica, Università Federico II di Napoli, Naples, Italy
| | - Gilda Di Gennaro
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Dipartimento di Sanità Pubblica, Università Federico II di Napoli, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Fortuna Papa
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Rosario Ferrigno
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.
| |
Collapse
|
21
|
Zhou C, Wang P, Tu M, Huang Y, Xiong F, Wu Y. DEPDC1 promotes cell proliferation and suppresses sensitivity to chemotherapy in human hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20190946. [PMID: 31189746 PMCID: PMC6620382 DOI: 10.1042/bsr20190946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the major causes of tumor-related morbidity and mortality worldwide. Accumulating evidence has revealed that aberrant expression of crucial cancer-related genes contributes to hepatocellular carcinogenesis. This study aimed to characterize the biological role of DEP domain containing 1 (DEPDC1), a novel cancer-related gene, in HCC and illuminate the potential molecular mechanisms involved. MATERIALS AND METHODS Quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemical (IHC) staining were used to characterize the expression patterns of DEPDC1 in tumorous tissues and adjacent normal tissues. Kaplan-Meier survival analysis was launched to evaluate the relationship between DEPDC1 expression and overall survival. CCK8 assay, colony formation and flow cytometry were performed to investigate the effects of DEPDC1 on HCC cell viability, clonogenic capability and cell apoptosis. Murine xenograft models were established to determine the effect of DEPDC1 on tumor growth in vivo SP600125, a JNK specific inhibitor, was applied to carriy out mechanistic studies. RESULTS DEPDC1 was significantly up-regulated in HCC tissues compared with para-cancerous tissues. Besides, patients with high DEPDC1 expression experienced a significantly shorter overall survival. Functional investigations demonstrated that DEPDC1 overexpression facilitated HCC cell proliferation and suppressed cell apoptosis, whereas DEPDC1 depletion inhibited cell proliferation and promoted cell apoptosis. Furthermore, DEPDC1 ablation suppressed tumorigenecity of HCC cells in murine xenograft models. Mechanistic studies uncovered that JNK signaling pathway mediated the promoting effects of DEPDC1 on HCC cell viability and chemotherapy resistance. CONCLUSION Collectively, our data may provide some evidence for DEPDC1 as a candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Pu Wang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Mengtian Tu
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yi Huang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yue Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
22
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
23
|
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, Shu Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:233-243. [PMID: 30317163 PMCID: PMC6190501 DOI: 10.1016/j.omtn.2018.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.
Collapse
Affiliation(s)
- Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
26
|
Changjun L, Feizhou H, Dezhen P, Zhao L, Xianhai M. MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed Pharmacother 2018; 108:347-354. [PMID: 30227328 DOI: 10.1016/j.biopha.2018.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Studies have shown that metallothionein 1 M (MT1M) is a tumor suppressor gene which is frequently down-regulated in human hepatocellular carcinoma (HCC). The methylation of MT1M promoter region is one of the important transcriptional regulation mechanisms that contribute to the loss of its expression. In our study, we found that there are still half of the 55 HCC tumor tissues in our cohort do not share the promoter methylation of MT1M. So, we speculated there maybe another mechanism participating in the downregulation of MT1M in HCC. Then, we provided evidences that miR-545-3p, which served as a tumor promoter, post-transcriptionally regulate MT1M in HCC through binding to its untranslated region (3'UTR). Taking together, we investigated the role of miR-545-3p in the process of HCC through regulating MT1M.
Collapse
Affiliation(s)
- Liu Changjun
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China; Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Huang Feizhou
- Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Peng Dezhen
- Department of Medicine-Neurology, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| | - Mao Xianhai
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| |
Collapse
|
27
|
Tian S, Zhang M, Chen X, Liu Y, Lou G. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget 2018; 7:87091-87099. [PMID: 27893429 PMCID: PMC5349973 DOI: 10.18632/oncotarget.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is among the leading cause of cancer-related deaths in females. In this study, we demonstrated that miR-595 expression was downregulated in the ovarian cancer tissues and cell lines. miR-595 expression was lower in the lymph node metastases tissues than in the primary ovarian cancer tissues and normal tissues. Furthermore, miR-595 overexpression suppressed the ovarian cancer cell proliferation, colony formation and invasion and promoted the sensitivity of ovarian cancer cell to cisplatin. We identified ABCB1 as a direct target gene of miR-595 in the ovarian cancer cell. ABCB1 expression was upregulated in the ovarian cancer tissues and cell lines. Morevoer, the expression level of ABCB1 was inversely correlated with miR-595 in the ovarian cancer tissues. In addition, overexpression of ABCB1 decreased the miR-595-overexpressing HO8910PM and SKOV-3 cell sensitivity to cisplatin. Ectopic expression of ABCB1 promoted the miR-595-overexpressing HO8910PM and SKOV-3 cell proliferation, colony formation and invasion. These data suggested that miR-595 acted a tumor suppressor role in ovarian cancer development and increased the sensitivity of ovarian cancer to cisplatin.
Collapse
Affiliation(s)
- Songyu Tian
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Mingyue Zhang
- Department of Anaesthesiology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Xiuwei Chen
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Yunduo Liu
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| |
Collapse
|
28
|
Ren FH, Yang H, He RQ, Lu JN, Lin XG, Liang HW, Dang YW, Feng ZB, Chen G, Luo DZ. Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer 2018; 18:12. [PMID: 29298665 PMCID: PMC5753510 DOI: 10.1186/s12885-017-3941-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC. METHODS Gene expression omnibus (GEO) datasets were conducted to identify the difference of miR-34a expression between HCC and corresponding normal tissues and to explore its relationship with HCC clinicopathologic features. The natural language processing (NLP), gene ontology (GO), pathway and network analyses were performed to analyze the genes associated with the carcinogenesis and progression of HCC and the targets of miR-34a predicted in silico. In addition, the integrative analysis was performed to explore the targets of miR-34a which were also relevant to HCC. RESULTS The analysis of GEO datasets demonstrated that miR-34a was downregulated in HCC tissues, and no heterogeneity was observed (Std. Mean Difference(SMD) = 0.63, 95% confidence intervals(95%CI):[0.38, 0.88], P < 0.00001; Pheterogeneity = 0.08 I2 = 41%). However, no association was found between the expression value of miR-34a and any clinicopathologic characteristics. In the NLP analysis of HCC, we obtained 25 significant HCC-associated signaling pathways. Besides, we explored 1000 miR-34a-related genes and 5 significant signaling pathways in which CCND1 and Bcl-2 served as necessary hub genes. In the integrative analysis, we found 61 hub genes and 5 significant pathways, including cell cycle, cytokine-cytokine receptor interaction, notching pathway, p53 pathway and focal adhesion, which proposed the relevant functions of miR-34a in HCC. CONCLUSION Our results may lead researchers to understand the molecular mechanism of miR-34a in the diagnosis, prognosis and therapy of HCC. Therefore, the interaction between miR-34a and its targets may promise better prediction and treatment for HCC. And the experiments in vivo and vitro will be conducted by our group to identify the specific mechanism of miR-34a in the progress and deterioration of HCC.
Collapse
Affiliation(s)
- Fang-Hui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jing-Ning Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xing-Gu Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hai-Wei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
29
|
Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 2017; 1868:564-570. [PMID: 29054475 DOI: 10.1016/j.bbcan.2017.10.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
Abstract
It is disappointing that only a few patients with hepatocellular carcinoma (HCC) obtain a significant survival benefit from the sorafenib treatment, which is currently regarded as a first-line chemotherapeutic therapy in patients with advanced HCC. Most patients are highly refractory to this therapy. Therefore, it is necessary to identify resistant factors and explore potential protocols that can be used to overcome the resistance or substitute sorafenib once the resistance is formed. In fact, a growing body of studies has been focusing on the resistance mechanisms or the method to overcome it. The limitation of sorafenib efficacy has been partially but not fully elucidated. Moreover, some protocols have shown encouraging outcomes but still need to be further verified in clinical trials. In this review, we summarize the recent findings on the potential mechanisms that contribute to sorafenib resistance and discuss strategies that can be used to improve the treatment outcome.
Collapse
Affiliation(s)
- Leilei Niu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianwei Ren
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China.
| | - George G Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
Montagnana M, Benati M, Danese E, Giudici S, Perfranceschi M, Ruzzenenete O, Salvagno GL, Bassi A, Gelati M, Paviati E, Guidi GC, Franchi M, Lippi G. Aberrant MicroRNA Expression in Patients With Endometrial Cancer. Int J Gynecol Cancer 2017; 27:459-466. [PMID: 28129244 DOI: 10.1097/igc.0000000000000913] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Current evidence suggests that no single serum biomarker displays satisfactory diagnostic performance in patients with endometrial carcinoma (EC), the most frequent gynecological cancer in developed countries. However, aberrant tissue microRNA (miRNA) expression has been recently described in EC. Therefore, this study aimed to investigate the differential expression of 4 serum miRNAs and their association with CA125 (cancer antigen 125) and HE4 (human epididymis protein 4) in EC patients and in a control population. METHODS Forty-six consecutive women with EC and 28 matched control subjects without a history of cancer or other diseases were enrolled. Total serum RNA was extracted using mirVana PARIS Kit. TaqMan MicroRNA Assay was used for quantitative real-time reverse transcriptase-polymerase chain reaction on ABI 7500 Sequence Detection System to assess differential miRNAs expression. The relative expression levels of 4 miRNAs (miR-222, miR-223, miR-186, and miR-204) were normalized to miR-16 and calculated using the 2-△Ct approach. RESULTS Serum levels of miR-186, miR-222, and miR-223 appeared to be significantly higher in patients compared with control subjects (P = 0.004, P = 0.002, and P < 0.0001). Contrarily, serum miR-204 was found to be significantly lower in EC patients (P < 0.0001). The diagnostic performance of miRNAs was found to be significantly better than that of CA125. Among the various biomarker tested, serum miR-204 and HE4 exhibited the best diagnostic performance for discriminating EC patients from control subjects. CONCLUSIONS These results underpin that the 4 miRNAs that we have investigated are implicated in development and progression of EC, thus opening new avenues in EC diagnostics.
Collapse
Affiliation(s)
- Martina Montagnana
- Sections of *Clinical Biochemistry and †Obstetrics and Gynaecology, University of Verona; and ‡Laboratory of Clinical Chemistry and Hematology, University Hospital of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dirksen K, Verzijl T, Grinwis GC, Favier RP, Penning LC, Burgener IA, van der Laan LJ, Fieten H, Spee B. Use of Serum MicroRNAs as Biomarker for Hepatobiliary Diseases in Dogs. J Vet Intern Med 2016; 30:1816-1823. [PMID: 27859748 PMCID: PMC5115189 DOI: 10.1111/jvim.14602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Background Current biochemical indicators cannot discriminate between parenchymal, biliary, vascular, and neoplastic hepatobiliary diseases. MicroRNAs are promising new biomarkers for hepatobiliary disease in humans and dogs. Objective To measure serum concentrations of an established group of microRNAs in dogs and to investigate their concentrations in various types of hepatobiliary diseases. Animals Forty‐six client‐owned dogs with an established diagnosis of hepatobiliary disease and stored serum samples and eleven client‐owned healthy control Labrador Retrievers. Methods Retrospective study. Medical records of dogs with parenchymal, biliary, vascular, or neoplastic hepatobiliary diseases and control dogs were reviewed. Concentrations of miR‐21, miR‐122, miR‐126, miR‐148a, miR‐200c, and miR‐222 were quantified in serum by real‐time polymerase chain reaction. Results No different microRNA concentrations were found in the adenoma and congenital portosystemic shunt groups. In all other diseases, miR‐122 concentrations were elevated with the highest concentration in the mucocele group (267‐fold, CI: 40–1,768, P < .001). In dogs with biliary diseases, miR‐21 and miR‐222 were only increased in dogs with mucoceles (26‐fold, CI: 5–141, P = .005 and 13‐fold, CI: 2–70, P = .025, respectively). Uniquely increased microRNAs were found in the hepatocellular carcinoma group (miR‐200c, 35‐fold increase, CI: 3–382, P = .035) and the chronic hepatitis group (miR‐126, 22‐fold increase, CI: 5–91, P = .002). Conclusions and Clinical Importance A microRNA panel consisting of miR‐21, miR‐122, miR‐126, miR‐200c, and miR‐222 can distinguish between parenchymal, biliary, and neoplastic hepatobiliary diseases. Serum microRNA profiling is a promising new tool that might be a valuable addition to conventional diagnostics to help diagnose various hepatobiliary diseases in dogs.
Collapse
Affiliation(s)
- K Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Verzijl
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - G C Grinwis
- Department of Pathobiology, Utrecht University, Utrecht, The Netherlands
| | - R P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - I A Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L J van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - H Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - B Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Tang S, Tan G, Jiang X, Han P, Zhai B, Dong X, Qiao H, Jiang H, Sun X. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 2016; 7:73257-73269. [PMID: 27689326 PMCID: PMC5341977 DOI: 10.18632/oncotarget.12304] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
Sorafenib resistance remains a major obstacle for the effective treatment of hepatocellular carcinoma (HCC), and a number of miRNAs contribute to this resistance. However, the regulatory networks of miRNAs are very complex, thus inhibiting a single miRNA may sequentially activate other compensatory pathways. In the present study, we generated an artificial long non-coding RNA (AlncRNA), which simultaneously targets multiple miRNAs including miR-21, miR-153, miR-216a, miR-217, miR-494 and miR-10a-5p. These miRNAs have been shown to be upregulated in sorafenib-resistant cells and participate in the mechanisms underlying sorafenib resistance. The AlncRNA contains tandem sequences of 6 copies of the complementary binding sequences to the target miRNAs and is expressed by an adenoviral vector (Ad5-AlncRNA). Infection of Ad5-AlncRNA into sorafenib-resistant HCC cells blocked the function of miRNAs, and sequentially inhibited the downregulation of PTEN and activation of AKT. Ad5-AlncRNA significantly inhibited proliferation and induced apoptosis of sorafenib-resistant cells and enhanced the effects of sorafenib in vitro and in animal models. Inhibition of autophagy decreased the sensitivity of sorafenib-resistant cells to Ad5-AlncRNA, while its induction had the opposite effect. These results indicate that targeting multiple miRNAs by the artificial lncRNA could be a potential promising strategy for overcoming sorafenib resistance in the treatment of HCC.
Collapse
Affiliation(s)
- Shuyao Tang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Tan
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Han
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhai
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiquan Qiao
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Azumi J, Tsubota T, Sakabe T, Shiota G. miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression. Cancer Sci 2016; 107:1256-62. [PMID: 27384977 PMCID: PMC5021022 DOI: 10.1111/cas.13006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor, is the only standard clinical drug for patients with advanced hepatocellular carcinoma (HCC); however, development of sorafenib resistance in HCC often prevents its long-term efficacy. Therefore, novel targets and strategies are urgently needed to improve the antitumor effect of sorafenib. In the present study, we examined the novel mechanisms of sorafenib resistance of HCC cells by investigating the difference in sorafenib sensitivity between two HCC cell lines. Sorafenib induced more apoptosis of HepG2 cells compared to Hep3B cells. Sorafenib exposure to HepG2 cells but not Hep3B cells increased the expression of proapoptotic factor PUMA, and activated PARP and caspase-3. Notably, microRNA-181a (miR-181a) expression levels were lower in HepG2 cells than in Hep3B cells. Exogenous miR-181a expression in HepG2 cells reduced apoptosis, whereas inhibition of miR-181a in Hpe3B cells increased apoptosis. In addition, we demonstrated that miR-181a directly targets RASSF1, a MAPK signaling factor, and knockdown of RASSF1 increased sorafenib resistance. Taken together, these results suggest that miR-181a provokes sorafenib resistance through suppression of RASSF1. Our data provide important insight into the novel therapeutic strategy against sorafenib resistance of HCC cells by targeting of miR-181a pathway.
Collapse
Affiliation(s)
- Junya Azumi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Toshiaki Tsubota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.
| |
Collapse
|
34
|
Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, Isenalumhe LL, Greco SJ, Ayer S, Bryan M, Kumar R, Ponzio NM, Rameshwar P. Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow. Cancer Res 2016; 76:5832-5844. [PMID: 27569215 DOI: 10.1158/0008-5472.can-16-1092] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Dormant breast cancers resurge as metastatic disease after a long dormancy period in the bone marrow, where cancer cells interact with mesenchymal stem cells (MSC). However, the nature of early interactions between breast cancer cells and MSCs in the bone marrow microenvironment that facilitate adaptation to a quiescent state remains poorly understood. Here, we report that breast cancer cells prime MSC to release exosomes containing distinct miRNA contents, such as miR-222/223, which in turn promotes quiescence in a subset of cancer cells and confers drug resistance. Building on these results, we developed a novel, nontoxic therapeutic strategy to target dormant breast cancer cells based on systemic administration of MSC loaded with antagomiR-222/223. In an immunodeficient mouse model of dormant breast cancer, this therapy sensitized breast cancer cells to carboplatin-based therapy and increased host survival. Overall, our findings illuminate the nature of the regulatory interactions between breast cancer cells and MSCs in the evolution of tumor dormancy and resurgence in the micrometastatic microenvironment of the bone marrow. Cancer Res; 76(19); 5832-44. ©2016 AACR.
Collapse
Affiliation(s)
- Sarah A Bliss
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey. Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Garima Sinha
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey. Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Oleta A Sandiford
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Lisa M Williams
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey. Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Daniel J Engelberth
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey. Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Khadidiatou Guiro
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | | | - Steven J Greco
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Seda Ayer
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Margarette Bryan
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Nicholas M Ponzio
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey. Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, New Jersey.
| |
Collapse
|
35
|
Venkova L, Aliper A, Suntsova M, Kholodenko R, Shepelin D, Borisov N, Malakhova G, Vasilov R, Roumiantsev S, Zhavoronkov A, Buzdin A. Combinatorial high-throughput experimental and bioinformatic approach identifies molecular pathways linked with the sensitivity to anticancer target drugs. Oncotarget 2016; 6:27227-38. [PMID: 26317900 PMCID: PMC4694985 DOI: 10.18632/oncotarget.4507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023] Open
Abstract
Effective choice of anticancer drugs is important problem of modern medicine. We developed a method termed OncoFinder for the analysis of new type of biomarkers reflecting activation of intracellular signaling and metabolic molecular pathways. These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, we compared the experimental data obtained in our laboratory and in the Genomics of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs and transcriptomes of various human cell lines. The microarray-based profiling of transcriptomes was performed for the cell lines before the addition of drugs to the medium, and experimental growth inhibition curves were built for each drug, featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed transcriptomic data on ∼600 molecular pathways, we identified pathways showing significant correlation between pathway activation strength (PAS) and IC50 values for these drugs. Correlations reflect relationships between response to drug and pathway activation features. We intersected the results and found molecular pathways significantly correlated in both our assay and GDS project. For most of these pathways, we generated molecular models of their interaction with known molecular target(s) of the respective drugs. For the first time, our study uncovered mechanisms underlying cancer cell response to drugs at the high-throughput molecular interactomic level.
Collapse
Affiliation(s)
- Larisa Venkova
- Drug Research and Design Department, Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Department of Personalized Medicine, First Oncology Research and Advisory Center, Moscow, Russia
| | - Alexander Aliper
- Drug Research and Design Department, Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Suntsova
- Drug Research and Design Department, Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Department of Personalized Medicine, First Oncology Research and Advisory Center, Moscow, Russia.,Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Roman Kholodenko
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Denis Shepelin
- Drug Research and Design Department, Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Nicolas Borisov
- Drug Research and Design Department, Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Department of Personalized Medicine, First Oncology Research and Advisory Center, Moscow, Russia
| | - Galina Malakhova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Raif Vasilov
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Sergey Roumiantsev
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Pirogov Russian National Research Medical University, Department of Oncology, Hematology and Radiotherapy, Moscow, Russia.,Moscow Institute of Physics and Technology, Department of Translational and Regenerative Medicine, Dolgoprudny, Moscow Region, Russia
| | - Alex Zhavoronkov
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Buzdin
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
36
|
Pang X, Huang K, Zhang Q, Zhang Y, Niu J. miR-154 targeting ZEB2 in hepatocellular carcinoma functions as a potential tumor suppressor. Oncol Rep 2016; 34:3272-9. [PMID: 26503460 DOI: 10.3892/or.2015.4321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-154 (miR-154) has been identified as a tumor suppressor in several types of human cancers; however, its clinical significance and function in human hepatocellular carcinoma (HCC) remain unclear. The aim of the present study was to analyze the clinical significance and cellular function of miR-154 in HCC patients. The data showed that miR-154 expression was consistently lower in HCC tissues and cell lines compared to that in matched tumor-adjacent tissues and a normal hepatic cell line, and its expression was negatively correlated with tumor differentiation (P<0.01), TNM stage (P<0.01) and lymph node metastasis (P<0.01). Restoration of miR-154 expression in HepG2 cells inhibited cell proliferation, migration and invasion, and induced apoptosis and cell arrest at the G1 phase in vitro, as well as suppressed tumor growth in a nude mouse model. Using a luciferase assay, we identified that miR-154 was able to target the 3'-untranslated region (3'UTR) of ZEB2 mRNA. Then, we revealed that miR-154 was able to reduce ZEB2 expression at the levels of mRNA and protein using qRT-PCR and western blot analysis. Notably, restoration of expression of ZEB2 weakened miR-154-mediated suppression of tumor progression. In conclusion, these results indicate that miR-154 functions as a tumor suppressor in HCC by suppressing ZEB2, suggesting that miR-154 may serve as a potential target for HCC.
Collapse
|
37
|
Liu Y, Li Y, Wang R, Qin S, Liu J, Su F, Yang Y, Zhao F, Wang Z, Wu Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:19. [PMID: 26817584 PMCID: PMC4729098 DOI: 10.1186/s13046-016-0296-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Background Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells. Methods The real-time RT-PCR was used to measure the miR-130a-3p expression in GR HCC cells compared with their parental cells. The wound healing assay was conducted to determine the cell migratory activity in GR HCC cells treated with miR-130a-3p mimics. The migration and invasion assays were also performed to explore the role of miR-130a-3p in GR HCC cells. Western blotting analysis was used to measure the expression of Smad4, E-cadherin, Vimentin, and MMP-2 in GR HCC cells after depletion of Smad4. The luciferase assay was conducted to validate whether Smad4 is a target of miR-130a-3p. The student t-test was used to analyze our data. Results We found the down-regulation of miR-130a-3p in GR HCC cells. Moreover, we validate the Smad4 as a potential target of miR-130a-3p. Furthermore, overexpression of miR-130a-3p suppressed Smad4 expression, whereas inhibition of miR-130a-3p increased Smad4 expression. Consistently, overexpression of miR-130a-3p or down-regulation of Smad4 suppressed the cell detachment, attachment, migration, and invasion in GR HCC cells. Conclusions Our findings provide a molecular insight on understanding drug resistance in HCC cells. Therefore, activation of miR-130a-3p or inactivation of Smad4 could be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yumei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fuyou Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
38
|
Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, Liu L, Luo Y, Yao C, Qian C. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett 2015; 371:171-81. [PMID: 26655273 DOI: 10.1016/j.canlet.2015.11.034] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance.
Collapse
Affiliation(s)
- Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ji Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Leina Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongli Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
39
|
Chen L, Tian H, Li M, Ge C, Zhao F, Zhang L, Li H, Liu J, Wang T, Yao M, Li J. Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis. Tumour Biol 2015; 37:5951-61. [PMID: 26596832 DOI: 10.1007/s13277-015-4362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein β (C/EBPβ) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPβ was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPβ-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Chen
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Meng Li
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tingpu Wang
- College of Life Sciences and Chemistry, Tianshui Normal University, Tianshui, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Abstract
Hepatocellular carcinoma (HCC) is a major health problem. In human hepatocarcinogenesis, the balance between cell death and proliferation is deregulated, tipping the scales for a situation where antiapoptotic signals are overpowering the death-triggering stimuli. HCC cells harbor a wide variety of mutations that alter the regulation of apoptosis and hence the response to chemotherapeutical drugs, making them resistant to the proapoptotic signals. Considering all these modifications found in HCC cells, therapeutic approaches need to be carefully studied in order to specifically target the antiapoptotic signals. This review deals with the recent relevant contributions reporting molecular alterations for HCC that lead to a deregulation of apoptosis, as well as the challenge of death-inducing chemotherapeutics in current HCC treatment.
Collapse
Affiliation(s)
- Joaquim Moreno-Càceres
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain
| |
Collapse
|
41
|
miR-132 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting PIK3R3. Int J Oncol 2015; 47:1585-93. [DOI: 10.3892/ijo.2015.3112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/15/2015] [Indexed: 11/05/2022] Open
|
42
|
Liu K, Liu S, Zhang W, Jia B, Tan L, Jin Z, Liu Y. miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncol Rep 2015; 34:1003-1010. [PMID: 26045065 DOI: 10.3892/or.2015.4030] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-494 (miR-494) acts as an oncomiR and is involved in tumor development, progression and metastasis, and confers resistance to chemotherapeutic drugs by targeting a number of molecules in several human cancers. However, the function and underlying molecular mechanism of miR-494 in hepatocellular carcinoma (HCC) has not been totally elucidated. In the present study, we determined the role played by miR-494 in HCC tissues and HCC cell lines using quantitative RT-PCR (RT-qPCR). The results showed that, miR-494 was significantly upregulated in HCC tissues and HCC cell lines. Additionally, a high miR-494 expression positively correlated with tumor differentiation (P<0.01), TNM stage (P<0.01) and lymph node metastasis (P<0.01). Luciferase reporter assays confirmed that miR-494 binds to the 3'-untranslated region (3'-UTR) of the phosphatase and tensin homolog (PTEN) mRNA and represses its translation. Functional analyses indicated that the upregulation of miR-494 promoted cell viability, migration and invasion, decreased cell apoptosis and cell cycle arrest at G1 stage, and conferred sorafenib resistance to HCC cell lines. Underexpression of PTEN by siRNA significantly attenuated the inhibitory effects of anti-miR-494 on the proliferation, migration and invasion of liver cancer cells. Mechanistic investigations revealed that miR-494 suppressed the expression of PTEN but increased the expression of PI3K and p-Akt, which contribute to the promotion of proliferation, migration and invasion, and increased sorafenib resistance to HCC cell lines. These findings suggested that miR-494 is a potential candidate for HCC therapeutics.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Songyang Liu
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Zhang
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Baoxing Jia
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Ludong Tan
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Zhe Jin
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Yahui Liu
- Department of Hepatopancreatobiliary Surgery, The First Hospital, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|