1
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
2
|
Zhang J, Wang R, Qin Y, Feng C. Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122115. [PMID: 36556480 PMCID: PMC9788221 DOI: 10.3390/life12122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Isoegomaketone is a water-soluble natural ketone compound that is commonly present in Rabdosia angustifolia and Perilla frutescens. At present, it is known that isoegomaketone has a wide range of pharmacological activity, but there has been no thorough investigation of its potential targets. As a result, we examined the potential targets of isoegomaketone using the network pharmacology approach. In our study, the TCM Database@Taiwan was utilized to search for the chemical formula. The pharmacological characteristics of isoegomaketone were then evaluated in silico using the Swiss Absorption, Distribution, Metabolism, and Excretion (Swiss ADME) and Deep Learning-Acute Oral Toxicity (DL-AOT) methods, and the potential isoegomaketone target genes were identified using a literature study. Additionally, using the clusterProfiler R package 3.8.1, the Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were performed. In order to obtain the protein interaction network, we simultaneously submitted the targets to the STRING database. After this, we performed molecular docking with respect to targets and isoegomaketone. Finally, we created visual networks of protein-protein interactions (PPI) and examined these networks. Our results showed that isoegomaketone had good drug-likeness, bioavailability, medicinal chemistry friendliness, and acceptable toxicity. Subsequently, through the literature analysis, 48 target genes were selected. The bioinformatics analysis and network analysis found that these target genes were closely related to the biological processes of isoegomaketone, such as atherosclerotic formation, inflammation, tumor formation, cytotoxicity, bacterial infection, virus infection, and parasite infection. These findings show that isoegomaketone may interact with a wide range of proteins and biochemical processes to form a systematic pharmacological network, which has good value for the creation and use of drugs.
Collapse
|
3
|
Wang R, Zhang Q, Feng C, Zhang J, Qin Y, Meng L. Advances in the Pharmacological Activities and Effects of Perilla Ketone and Isoegomaketone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8809792. [PMID: 36337585 PMCID: PMC9635969 DOI: 10.1155/2022/8809792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
As components of a traditional Chinese herbal medicine with many physiological activities, perilla ketone and isoegomaketone isolated from perilla essential oil are important active components of Perilla frutescens. Recent studies have shown that these two compounds have promising antitumor, antifungal, antirheumatoid arthritis, antiobesity, anti-inflammatory, healing-promoting, and other activities and can be used to combat toxicity from immunotherapy. Therefore, the multitude of pharmacological activities and effects demonstrate the broad research potential of perilla ketone and isoegomaketone. However, no reviews have been published related to the pharmacological activities or effects of perilla ketone and isoegomaketone. The purpose of this review is as follows: (1) outline the recent advances made in understanding the pharmacological activities of perilla ketone and isoegomaketone; (2) summarize their effects; and (3) discuss future research perspectives.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengling Feng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juzhao Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linghua Meng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Won YS, Seo KI. Sanggenol L promotes apoptotic cell death in melanoma skin cancer cells through activation of caspase cascades and apoptosis-inducing factor. Food Chem Toxicol 2020; 138:111221. [PMID: 32084496 DOI: 10.1016/j.fct.2020.111221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Sanggenol L is one component of root bark of Morus alba. The molecular and cellular mechanisms of sanggenol L effects on melanoma cells are not well known. Recently, melanoma is the most common skin cancer with a high mortality rate not only in United States, but also in East Asia. Therefore, safe and effective treatments for melanoma treatment are required. In this study, we investigated whether or not sanggenol L possesses anti-cancer activity in human and mouse melanoma skin cancer cells. Sanggenol L treatment exerted significant cell growth inhibitory effects and inhibited colony formation capacity against B16, SK-MEL-2, and SK-MEL-28 melanoma skin cancer cells, whereas HaCaT human epithelial keratinocyte cells was unaffected by sanggenol L treatment. Sanggenol L treatment resulted in apoptotic cell death in melanoma skin cancer cells, which was characterized by accumulation of apoptotic cells, nuclear condensation, and apoptotic bodies. We also showed that sanggenol L treatment induced caspase-dependent apoptosis (up-regulation of Bax and cleaved-PARP or down-regulation of Bid, Bcl-2, procaspse-3, -8, and -9), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol) in melanoma skin cancer cells. These results suggest that sanggenol L induces caspase-dependent and -independent apoptosis in melanoma skin cancer cells.
Collapse
Affiliation(s)
- Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
5
|
Yao J, Xu M, Liu Z. Rapamycin inhibits proliferation and apoptosis of retinoblastoma cells through PI3K/AKT signaling pathway. Oncol Lett 2020; 19:2950-2956. [PMID: 32218850 PMCID: PMC7068238 DOI: 10.3892/ol.2020.11363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
Effects of Rapamycin on the proliferation and apoptosis of retinoblastoma cells through the phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (AKT) signaling pathway were studied. The retinoblastoma Y79 cells were selected and divided into negative control group (NC group), 0.2 µM Rapamycin group and 0.4 µM Rapamycin group. Then the proliferative activity of Y79 cells was detected using Cell Counting Kit-8 (CCK8) assay, the content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) in cells in each group was detected using enzyme-linked immunosorbent assay (ELISA), and the apoptosis of Y79 cells was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Moreover, the changes in Y79 cell cycle and apoptosis were determined through flow cytometry, and apoptosis and PI3K/AKT pathway were detected using reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. It was found that the number of cells and the proliferative activity were significantly reduced in 0.2 µM Rapamycin group and 0.4 µM Rapamycin group. In 0.2 µM Rapamycin group and 0.4 µM Rapamycin group, the content of ROS and MDA was significantly decreased, while that of SOD was notably increased. TUNEL assay and flow cytometry showed that in 0.2 µM Rapamycin group and 0.4 µM Rapamycin group, the number of apoptotic cells was obviously increased, and the cell cycle was basically arrested in S phase. The expression levels of Bcl-2, PI3K and AKT declined in 0.2 µM Rapamycin group and 0.4 µM Rapamycin group, whereas the expression of Caspase 8 increased. Similar results were also obtained in the protein assay. The above results were significantly superior in 0.4 µM Rapamycin group to those in 0.2 µM Rapamycin group. Rapamycin inhibits proliferation and promotes apoptosis of retinoblastoma cells through inhibiting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jun Yao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Min Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xian, Shaanxi 710004, P.R. China
| | - Ziyao Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Xian Jiaotong University, Xian, Shaanxi 710004, P.R. China
| |
Collapse
|
6
|
Won YS, Seo KI. Lupiwighteone induces caspase-dependent and -independent apoptosis on human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. Food Chem Toxicol 2019; 135:110863. [PMID: 31604113 DOI: 10.1016/j.fct.2019.110863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is one of the most common causes of mortality in women. Lupiwighteone has anticancer effects in prostate cancer cells and neuroblastoma cells. However, the molecular and cellular mechanisms of lupiwighteone effects on human breast cancer cells are not as well known. In the present study, we investigated the effects of lupiwighteone on the proliferation and apoptosis of two different human cancer cells; MCF-7, an estrogen receptor (ER)-positive human breast cancer cell, and MDA-MB-231, a triple negative human breast cancer cell. Lupiwighteone treatment decreased the viability of MCF-7 and MDA-MB-231 cells. Lupiwighteone treatment resulted in apoptotic cell death in breast cancer cells, which was characterized by DNA fragmentation, accumulation of apoptotic cells, and nuclear condensation. We also showed that treatment with lupiwighteone induced caspase-dependent apoptosis (up-regulation of caspase-3, -7, -8, -9, PARP, and Bax or down-regulation of Bid, Bcl-2), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol), and inhibition of the PI3K/Akt/mTOR signaling pathway (down-regulation of PI3K, p-Akt, and p-mTOR) in both MCF-7 and MDA-MB-231 cells. These results suggest that lupiwighteone induces caspase-dependent and -independent apoptosis in both breast cancer cell lines via inhibiting PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
7
|
Li J, Wang G, Hou C, Li J, Luo Y, Li B. Punicalagin and ellagic acid from pomegranate peel induce apoptosis and inhibits proliferation in human HepG2 hepatoma cells through targeting mitochondria. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1642857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jia Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, PR People’s Republic of China
- College of Bioscience and Food Engineering, Shaanxi Xue Qian Normal University, Xi’an, PR People’s Republic of China
| | - Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, PR People’s Republic of China
| | - Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, PR People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, PR People’s Republic of China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, PR People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, PR People’s Republic of China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Xi’an, PR People’s Republic of China
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, PR People’s Republic of China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an, PR People’s Republic of China
| | - Baicun Li
- College of Bioscience and Food Engineering, Shaanxi Xue Qian Normal University, Xi’an, PR People’s Republic of China
| |
Collapse
|
8
|
He J, Zhou J, Yang W, Zhou Q, Liang X, Pang X, Li J, Pan F, Liang H. Dexamethasone affects cell growth/apoptosis/chemosensitivity of colon cancer via glucocorticoid receptor α/NF-κB. Oncotarget 2017; 8:67670-67683. [PMID: 28978062 PMCID: PMC5620202 DOI: 10.18632/oncotarget.18802] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids are effective to treat lymphoma and leukemia. Their effect in colon cancer remains far from clear. Here, we found that glucocorticoid receptor (GR) α protein level was dramatically lower in colon cancer than in lymphoma. Colon cell lines LoVo and HCT116 were GRα-rich and GRα was not detectable in HT29 or SW480. Dexamethasone significantly inhibited cell growth of GRα-rich cell lines and did not significantly affect GRα-negative cell lines. Dexamethasone induced apoptosis and increased chemosensitivity of GRα-rich cell lines. Knockdown of GRα significantly attenuated dexamethasone effects on cell growth, apoptosis and chemosensitivity. NF-κB p65 significantly correlated with GRα in colon cancer samples. Dexamethasone decreased NF-κB p65 activity. Knockdown of NF-κB p65 increased apoptosis. Our data demonstrate GRα protein level is dramatically lower in colon cancer than in lymphoma. Dexamethasone inhibits cell growth, induces apoptosis and enhances chemosensitivity in colon cancer, at least partly, via GRα and NF-κB.
Collapse
Affiliation(s)
- Jianming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Radiotherapy, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Jinming Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiwen Yang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qi Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xi Liang
- Department of Radiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Xueli Pang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Feng Pan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
FENG NAN, LUO JIANMIN, GUO XIMIN. Silybin suppresses cell proliferation and induces apoptosis of multiple myeloma cells via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2016; 13:3243-8. [DOI: 10.3892/mmr.2016.4887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
|