1
|
Akther A, Millat MS, Islam MA, Chowdhury MMI, Aziz MA, Barek MA, Uddin SMN, Ahmed F, Islam MS. Association of HOTAIR rs7958904 Polymorphism with Cervical Cancer Risk. Reprod Sci 2024; 31:3420-3427. [PMID: 39300033 DOI: 10.1007/s43032-024-01679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) has been the prominent cause of cancer-associated fatalities among women in developing countries. In terms of occurrence and mortality, it is ranked second in Bangladesh. Although different genetic polymorphisms linked with this cancer have been investigated over time, the association between the HOTAIR rs7958904 variant and cervical cancer is being reported for the first time in Bangladeshi women. RT-PCR-based TaqMan assay was employed to perform this case-control study on 200 cervical cancer patients and 148 healthy volunteers. Both cases and controls had average ages of 57.5 and 52.5 years, respectively. According to Hardy-Weinberg equilibrium, the rs7958904 allele of HOTAIR gene pretended no deviation for both cases and control groups. The genotyping results showed that rs7958904 has a significant correlation to the development of cervical cancer in different genetic association models, such as co-dominant 1 (CC vs. GG: OR = 1.67, p = 0.0435), co-dominant 2 (CC vs. GG: OR = 3.13, p = 0.0006), co-dominant 3 (CC vs. CG: OR = 1.88, p = 0.0384), dominant (CG + CC vs. GG: OR = 1.98, p = 0.004), recessive (CC vs. GG + CG: OR = 2.25, p = 0.005), and allele model (C vs. G: OR = 1.70, p = 0.0006). In conclusion, the HOTAIR rs7958904 variant has a substantial role in cervical cancer development in Bangladeshi women. Further functional studies with a larger population size are required to support our findings.
Collapse
Affiliation(s)
- Afsana Akther
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka, 1229, Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Md Abdul Aziz
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka, 1229, Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdul Barek
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka, 1229, Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - S M Naim Uddin
- Department of Pharmacy, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Bangladesh Pharmacogenomics Research Network (BdPGRN), Dhaka, 1229, Bangladesh.
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
2
|
Modabber N, Mahboub SS, Khoshravesh S, Karimpour F, Karimi A, Goodarzi V. Evaluation of Long Non-coding RNA (LncRNA) in the Pathogenesis of Chemotherapy Resistance in Cervical Cancer: Diagnostic and Prognostic Approach. Mol Biotechnol 2024; 66:2751-2768. [PMID: 37804407 DOI: 10.1007/s12033-023-00909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Cervical cancer (CC), caused by human papillomavirus (HPV), is a leading cause of female malignancies worldwide. Therefore, understanding the underlying mechanisms of CC development and identifying novel therapeutic targets are significantly important. Cisplatin resistance is a significant challenge in the management of CC. Recent studies highlighted the critical role of long non-coding RNAs (lncRNAs) in modulation of cisplatin resistance. This comprehensive review aims to collect the current understanding roles of lncRNAs and their involvement in cisplatin resistance in CC by highlighting key processes of cancer progression, including apoptosis, proliferation, angiogenesis and epithelial-to-mesenchymal transition (EMT). We discussed the role of lncRNA in CC resistance to cisplatin through molecular pathways and examined gene expression changes. We also discussed treatment strategies and factors that reduce CC resistance to cisplatin by targeting them.
Collapse
Affiliation(s)
- Noushin Modabber
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Sadat Mahboub
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karimpour
- Cancer Reserch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anita Karimi
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
4
|
LIU YUANLIN, LIU YAN, WANG YAN, WANG QIANG, YAN YAN, ZHANG DANDAN, LIU HUIQIN. LncRNA PCGEM1 facilitates cervical cancer progression via miR-642a-5p/KIF5B axis. Oncol Res 2024; 32:1221-1229. [PMID: 38948025 PMCID: PMC11209744 DOI: 10.32604/or.2024.047454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 07/02/2024] Open
Abstract
At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.
Collapse
Affiliation(s)
- YUANLIN LIU
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, 226002, China
| | - YAN LIU
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Nantong City, Nantong, 226002, China
| | - YAN WANG
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Nantong City, Nantong, 226002, China
| | - QIANG WANG
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Nantong City, Nantong, 226002, China
| | - YAN YAN
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - DANDAN ZHANG
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Nantong City, Nantong, 226002, China
| | - HUIQIN LIU
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Nantong City, Nantong, 226002, China
| |
Collapse
|
5
|
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A, Sajedi N. The role of long non-coding RNAs and circular RNAs in cervical cancer: modulating miRNA function. Front Cell Dev Biol 2024; 12:1308730. [PMID: 38434620 PMCID: PMC10906305 DOI: 10.3389/fcell.2024.1308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading cause of cancer-related death in women. Despite advancements in prognosis, long-term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies, immunosuppression, hormonal contraceptives, co-infections, and genetic variations are involved in CC progression. The pathogenesis of various diseases, including cancer, has brought to light the critical regulatory roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in the initiation and progression of CC. This review provides a comprehensive summary of the recent literature regarding the involvement of lncRNAs and circRNAs in modulating miRNA functions in cervical neoplasia and metastasis. Studies have shown that lncRNAs and circRNAs hold great potential as therapeutic agents and innovative biomarkers in CC. However, more clinical research is needed to advance our understanding of the therapeutic benefits of circRNAs and lncRNAs in CC.
Collapse
Affiliation(s)
- Sama Heidari-Ezzati
- School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Ahmadian-Nejad
- School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Sheida Abbasi
- Department of obstetrics and gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
6
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
7
|
Abdi E, Latifi-Navid S, Panahi A. Long noncoding RNA polymorphisms in gynecological cancers. Per Med 2024; 21:59-68. [PMID: 38095072 DOI: 10.2217/pme-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Gynecological malignancies are one of the main causes of cancer-induced mortality. Despite remarkable recent therapeutic advances, current therapeutic options are not sufficient. Regarding the effect of long noncoding RNAs (lncRNAs) on cell differentiation, proliferation and apoptosis, variations in their expression cause different anomalies, such as tumorigenesis. SNPs influence lncRNA function and expression. LncRNA polymorphisms can predict cancer risk and are effective for early diagnosis and customized therapy. In this literature review, we comprehensively investigate the effect of lncRNA polymorphisms on gynecological cancers. LncRNA-related variants are proposed to evaluate cancer incidence, early detection and management of personalized therapy. Nonetheless, more studies are required to validate the consistency of current findings in numerous samples and across various ethnic groups.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| |
Collapse
|
8
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
9
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Ataei A, Tahsili M, Hayadokht G, Daneshvar M, Mohammadi Nour S, Soofi A, Masoudi A, Kabiri M, Natami M. Targeting long noncoding RNAs in neuroblastoma: Progress and prospects. Chem Biol Drug Des 2023; 102:640-652. [PMID: 37291742 DOI: 10.1111/cbdd.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023]
Abstract
Neuroblastoma (NB) is the third most prevalent tumor that mostly influences infants and young children. Although different treatments have been developed for the treatment of NB, high-risk patients have been reported to have low survival rates. Currently, long noncoding RNAs (lncRNAs) have shown an attractive potential in cancer research and a party of investigations have been performed to understand mechanisms underlying tumor development through lncRNA dysregulation. Researchers have just newly initiated to exhibit the involvement of lncRNAs in NB pathogenesis. In this review article, we tried to clarify the point we stand with respect to the involvement of lncRNAs in NB. Moreover, implications for the pathologic roles of lncRNAs in the development of NB have been discussed. It seems that some of these lncRNAs have promising potential to be applied as biomarkers for NB prognosis and treatment.
Collapse
Affiliation(s)
- Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Golsa Hayadokht
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Kabiri
- Faculty of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Molika P, Bissanum R, Surachat K, Pattanapanyasat K, Hanprasertpong J, Chotigeat W, Navakanitworakul R. Exploration of Extracellular Vesicle Long Non-Coding RNAs in Serum of Patients with Cervical Cancer. Oncology 2023; 102:53-66. [PMID: 37573780 DOI: 10.1159/000533145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Cervical cancer (CC) is the fourth most common cancer type and a leading cause of cancer-related deaths in women worldwide. Its underlying molecular mechanisms are unclear. Cancer cell-derived extracellular vesicles (EVs) are involved in cancer development and progression by delivering regulatory factors, including microRNAs and long non-coding RNAs (lncRNAs). METHODS Here, we identified the EV lncRNA expression profiles associated with different developmental stages of CC using next-generation sequencing. EVs from the serum of patients with stages I-III CC and healthy donors were characterized using EV marker immunoblotting and transmission electron microscopy. RESULTS The EV concentration increases with progression of the disease. Most particles had a 100-250-nm diameter, and their sizes were similar in all groups. We identified many lncRNAs that were uniquely and differentially expressed (DE) in patients with different stages of CC. The pathway analysis results indicated that the upregulated DE EV lncRNAs abundant in stages I and II were associated with cell proliferation and inflammation and cancer progression pathways, respectively. LINC00941, LINC01910, LINC02454, and DSG2-AS1 were highly expressed, suggesting poor overall survival of CC patients. Interestingly, DSG2-AS1 was associated with the human papillomavirus infection pathway through AKT3, DLG1, and COL6A2 genes. CONCLUSION This is the first study that reports the levels of EVs and their lncRNA contents change during cancer development, demonstrating the existence of a unique vesicle-mediated cell-to-cell communication network underlying cancer progression.
Collapse
Affiliation(s)
- Piyatida Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand,
| | - Rassanee Bissanum
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jitti Hanprasertpong
- Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
12
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Qian L, Li L, Li Y, Li S, Zhang B, Zhu Y, Yang B. LncRNA HOTAIR as a ceRNA is related to breast cancer risk and prognosis. Breast Cancer Res Treat 2023:10.1007/s10549-023-06982-4. [PMID: 37294527 DOI: 10.1007/s10549-023-06982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Breast cancer (BC) is one of the biggest threats to women's health. LncRNA HOTAIR is related to the recurrence and metastasis of BC. Whether HOTAIR can serve as an effective biomarker to distinguish BC patients with different prognosis need to be further studied. METHODS The miRNA and mRNA expression profile data of BC patients were downloaded from TCGA database. Univariate Cox regression was used to screen differential expression genes (DEGs). The miRcode database and miRWalk database were used to predict miRNA binding to HOTAIR and binding sites of miRNAs, respectively. Kaplan-Meier (KM) analysis was used to estimate the overall survival rate of BC patients. Finally, qRT-PCR and western blot were applied to evaluate the expression level of HOTAIR and mRNAs between BC cells and normal mammary cells. RESULTS The patients with high HOTAIR expression had poor prognosis in BC. Totally 10 genes correlated with BC prognosis were identified from 170 DEGs, among which PAX7, IYD, ZIC2, MS4A1, TPRXL, CD24, LHX1 were positively correlated with HOTAIR, while CHAD, NPY1R, TPRG1 were opposite. The levels of IYD, ZIC2, CD24 mRNA and protein were increased in BC tissues and BC cells. In BC cells, the levels of IYD, ZIC2 and CD24 mRNA and protein were significantly increased in HOTAIR overexpressed group. HOTAIR had the strongest interaction with hsa-miR-129-5p, followed by hsa-miR-107. CONCLUSION HOTAIR regulated the expression of downstream genes by interacting with 8 miRNAs and ultimately affected the prognosis of BC patients.
Collapse
Affiliation(s)
- Liyu Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Li Li
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Li
- Department of Cardiac Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Bo Zhang
- Department of Immunology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, 300170, China.
- Department of Clinical Laboratory, Tianjin Third Center Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| | - Bing Yang
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
14
|
Long non-coding RNAs as promising biomarkers and therapeutic targets in cervical cancer. Noncoding RNA Res 2023; 8:233-239. [PMID: 36890809 PMCID: PMC9988427 DOI: 10.1016/j.ncrna.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Cervical cancer is the second most common cancer in women. The detection of oncopathologies in the early stages of development is a paramount task of modern medicine, which can be solved only by improving modern diagnostic methods. The use of screening for certain tumor markers could complement modern tests such as testing for oncogenic types of human papillomavirus (HPV), cytology, colposcopy with acetic acid and iodine solutions. Such highly informative biomarkers can be long noncoding RNAs (lncRNAs) that are highly specific compared to the mRNA profile and are involved in the regulation of gene expression. LncRNAs are a class of non-coding RNAs molecules that are typically over 200 nucleotides in length. LncRNAs may be involved in the regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling pathways, and apoptosis. LncRNAs molecules are highly stable due to their small size, which is also their undoubted advantage. The study of individual lncRNAs as regulators of the expression of genes involved in the mechanisms of oncogenesis cervical cancer can be not only of great diagnostic value, but, as a result, of therapeutic significance in cervical cancer patients. This review article will present the characteristics of lncRNAs that allow them to be used as accurate diagnostic and prognostic tools, as well as to consider them as effective therapeutic targets in cervical cancer.
Collapse
|
15
|
Dabi Y, Favier A, Razakamanantsoa L, Suisse S, Marie Y, Touboul C, Ferrier C, Bendifallah S, Daraï E. Value of non-coding RNAs to assess lymph node status in cervical cancer. Front Oncol 2023; 13:1144672. [PMID: 37234986 PMCID: PMC10206114 DOI: 10.3389/fonc.2023.1144672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cervical cancer (CC) is the fourth cancer in women and is the leading cause of cancer death in 42 countries. Lymph node metastasis is a determinant prognostic factor, as underlined in the latest FIGO classification. However, assessment of lymph node status remains difficult, despite the progress of imaging such as PET-CT and MRI. In the specific setting of CC, all data underlined the need for new biomarkers easily available to assess lymph node status. Previous studies have underlined the potential value of ncRNA expression in gynecological cancers. In this review, we aimed to evaluate the contribution of ncRNAs in tissue and biofluid samples to determine lymph node status in CC with potential impact on both surgical and adjuvant therapies. In tissue samples, our analysis found that there are arguments to support the role of ncRNAs in physiopathology, differential diagnosis from normal tissue, preinvasive and invasive tumors. In biofluids, despite small studies especially concerning miRNAs expression, promising data opens up new avenue to establish a non-invasive signature for lymph node status as well as a tool to predict response to neo- and adjuvant therapies, thus improving management algorithm of patients with CC.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Amelia Favier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Léo Razakamanantsoa
- Sorbonne University, Inserm UMR S 938, Centre de recherche de saint Antoine (CRSA), Hôpital Saint Antoine, Paris, France
- Department of Radiology imaging and Interventional speciality imaging, Tenon Hospital, Paris, France
| | | | - Yannick Marie
- Gentoyping and Sequencing core facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Cyril Touboul
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Clément Ferrier
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Sofiane Bendifallah
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Sorbonne University, Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
16
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
17
|
Marino GB, Wojciechowicz ML, Clarke DJB, Kuleshov MV, Xie Z, Jeon M, Lachmann A, Ma’ayan A. lncHUB2: aggregated and inferred knowledge about human and mouse lncRNAs. Database (Oxford) 2023; 2023:baad009. [PMID: 36869839 PMCID: PMC9985331 DOI: 10.1093/database/baad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Long non-coding ribonucleic acids (lncRNAs) account for the largest group of non-coding RNAs. However, knowledge about their function and regulation is limited. lncHUB2 is a web server database that provides known and inferred knowledge about the function of 18 705 human and 11 274 mouse lncRNAs. lncHUB2 produces reports that contain the secondary structure fold of the lncRNA, related publications, the most correlated coding genes, the most correlated lncRNAs, a network that visualizes the most correlated genes, predicted mouse phenotypes, predicted membership in biological processes and pathways, predicted upstream transcription factor regulators, and predicted disease associations. In addition, the reports include subcellular localization information; expression across tissues, cell types, and cell lines, and predicted small molecules and CRISPR knockout (CRISPR-KO) genes prioritized based on their likelihood to up- or downregulate the expression of the lncRNA. Overall, lncHUB2 is a database with rich information about human and mouse lncRNAs and as such it can facilitate hypothesis generation for many future studies. The lncHUB2 database is available at https://maayanlab.cloud/lncHUB2. Database URL: https://maayanlab.cloud/lncHUB2.
Collapse
Affiliation(s)
- Giacomo B Marino
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Maxim V Kuleshov
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Minji Jeon
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| |
Collapse
|
18
|
Eoh KJ, Lee DW, Nam EJ, Kim JI, Moon H, Kim SW, Kim YT. HOXA‑AS3 induces tumor progression through the epithelial‑mesenchymal transition pathway in epithelial ovarian cancer. Oncol Rep 2023; 49:64. [PMID: 36799173 PMCID: PMC9944947 DOI: 10.3892/or.2023.8501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/18/2022] [Indexed: 02/16/2023] Open
Abstract
HOXA cluster antisense RNA 3 (HOXA‑AS3) is considered to be involved in several malignancies, however, its biological function in the progression of epithelial ovarian cancer (EOC) remains unclear. The present study compared the expression of HOXA‑AS3 in ovarian cancer and normal ovarian tissues and analyzed the association between the expression of HOXA‑AS3 and the survival outcomes of patients with ovarian cancer. RNA interference was used to suppress HOXA‑AS3 expression in ovarian cancer cell lines in order to demonstrate the function of HOXA‑AS3 in ovarian cancer progression. The associations between HOXA‑AS3 and epithelial‑mesenchymal transition (EMT) markers were explored to verify the mechanism of action of HOXA‑AS3 in ovarian cancer. The results of the present study revealed that ovarian cancer tissues exhibited higher HOXA‑AS3 expression than normal ovarian tissues. Clinical data indicated that HOXA‑AS3 was a significant predictor of progression‑free survival and overall survival. Patients with high HOXA‑AS3 expression had a poorer prognosis than patients with low HOXA‑AS3 expression. In vitro experiments using HOXA‑AS3‑knockdown ovarian cancer cell lines demonstrated that HOXA‑AS3 knockdown inhibited cell proliferation and migration. HOXA‑AS3 was a potent inducer and modulator of the expression of EMT pathway‑related markers and interacted with both the mRNA and protein forms of HOXA3. Collectively, the findings of the present study demonstrated that HOXA‑AS3 expression is associated with ovarian cancer progression and thus, may be employed as a prognostic marker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Kyung Jin Eoh
- Department of Obstetrics and Gynecology, Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do 16995, Republic of Korea
| | - Dae Woo Lee
- Department of Obstetrics and Gynecology, Bucheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Bucheon, Gyeonggi-do 14647, Republic of Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae In Kim
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hanna Moon
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea,Correspondence to: Dr Young Tae Kim, Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seoul 03722, Republic of Korea, E-mail:
| |
Collapse
|
19
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Zhou M, Liu L, Wang J, Liu W. The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol 2022; 10:1060909. [PMID: 36438563 PMCID: PMC9682114 DOI: 10.3389/fcell.2022.1060909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is one of the common tumors and often causes cancer-related death in women. Chemotherapy is a common cancer therapy, which displays a pivotal clinical benefit for cancer patients. However, chemoresistance becomes a big obstacle for failure of treatment in cancer patients. Recently, long noncoding RNAs (lncRNAs) have been identified to regulate drug resistance in human cancers, including cervical cancer. In this review, we describe the role of lncRNAs in regulation of chemotherapeutic resistance in cervical cancer. We also discuss the molecular mechanisms of lncRNA-mediated drug resistance in cervical cancer. Moreover, we describe that targeting lncRNAs could reverse drug resistance in cervical cancer. Therefore, lncRNAs could become effective therapeutic targets and chemotherapeutic sensitizers for cervical cancer patients.
Collapse
|
21
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
22
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
23
|
Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci Rep 2022; 12:1249. [PMID: 35075166 PMCID: PMC8786922 DOI: 10.1038/s41598-022-05119-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
New predictors that could boost early detection of preeclampsia (PE) and prognosticate its severity are urgently needed. We examined serum miR-17, miR-363, MALAT-1 and HOTAIR as potential biomarkers of PE risk, onset and severity. This prospective study included 160 pregnant females; 82 PE cases and 78 healthy pregnancies. Serum samples were collected between 20 to 40 weeks of gestation. Early-onset PE was defined as developing clinical manifestations at ≤ 34 gestational weeks. Severe PE was defined as systolic blood pressure ≥ 160 mmHg and/or diastolic blood pressure ≥ 110 mmHg and proteinuria (≥ 2 g/24 h or ≥ 2+ dipstick). Selection of PE-related non-coding RNAs and functional target gene analysis were conducted using bioinformatics analysis. Expression profiles were assessed by RT-qPCR. Serum miR-363 and MALAT-1 were downregulated, meanwhile miR-17 was upregulated, and HOTAIR was not significantly altered in PE compared with healthy pregnancies. miR-17 was elevated while miR-363 and MALAT-1 were reduced in severe versus mild PE. miR-363 was lower in early-onset versus late-onset PE. MALAT-1, miR-17 and miR-363 showed diagnostic potential and discriminated severe PE, whereas miR-363 distinguished early-onset PE in the receiver-operating-characteristic analysis. miR-363 and MALAT-1 were significantly associated with early and severe PE, respectively in multivariate logistic analysis. In PE, miR-17 and MALAT-1 were significantly correlated with gestational age (r = - 0.328 and r = 0.322, respectively) and albuminuria (r = 0.312, and r = - 0.35, respectively). We constructed the MALAT-1, miR-363, and miR-17-related protein-protein interaction networks linked to PE. Serum miR-17, miR-363 and MALAT-1 could have utility as new biomarkers of PE diagnosis. miR-363 may be associated with early-onset PE and MALAT-1 downregulation correlates with PE severity.
Collapse
|
24
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
25
|
Zhang Y, Zheng M, Zhang L, Yuan P, Zhou J, Wang Y, Wang H. LncRNA LOXL1-AS1 Facilitates the Oncogenic Character in Cervical Cancer by the miR-526b-5p /LYPLA1 Axis. Biochem Genet 2022; 60:1298-1312. [PMID: 34984578 DOI: 10.1007/s10528-021-10182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Increasing reports demonstrate that long noncoding RNAs participate in the regulation of numerous malignancies, cervical cancer included. Although lncRNA LOXL1 antisense RNA 1 has been commonly accepted to be an oncogene in many cancers. Here, the role of LOXL1-AS1 in CC still need to be explored. In this study, LOXL1-AS1 was found elevated in CC tissues and cells. LOXL1-AS1 depletion restrained CC cell proliferation, migration, invasion, and angiogenesis in vivo. Furthermore, we found that LOXL1-AS1 upregulated Lysophospholipase 1 expression via sequestering miR-526b-5p. Rescue assays revealed that overexpression of LYPLA1 reversed the LOXL1-AS1 silencing-induced inhibitory effects on the malignant phenotypes of CC cells. To conclude, this study showed that LOXL1-AS1 facilitates cellular process in CC via functioning as a miR-526b-5p sponge.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Meng Zheng
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Lingyan Zhang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Ping Yuan
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Jianbo Zhou
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Yongfang Wang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China
| | - Haihong Wang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, No. 248, Fudong Middle Road, Yancheng, 224599, Jiangsu, China.
| |
Collapse
|
26
|
Yin L, Zhang Y, Zheng L. Analysis of differentially expressed long non‑coding RNAs revealed a pro‑tumor role of MIR205HG in cervical cancer. Mol Med Rep 2021; 25:42. [PMID: 34878159 DOI: 10.3892/mmr.2021.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common female malignancy for both incidence and mortality worldwide and is one of the major threats to women's health. The role of long non‑coding RNAs (lncRNAs) in cervical cancer remains largely unknown. In the present study, the differentially expressed lncRNAs in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues were retrieved form The Cancer Genome Atlas (TCGA) and were analyzed. The expression analysis of related genes was performed with GEPIA. The proliferation and migratory and invasive abilities of MIR205HG knockdown CESC cells were analyzed using Cell Counting Kit‑8 and transwell assays. The expression of Ki‑67 and p16 was detected by immunofluorescence. A total of 203 differentially expressed lncRNAs were identified. The results demonstrated that MIR205HG was overexpressed in CESC tissues. Furthermore, the genes related to MIR205HG were enriched in cancer‑related pathways. MIR205HG knockdown significantly decreased the proliferation and migratory and invasive abilities of CESC cells. In addition, silencing of MIR205HG significantly decreased the expression of p16 in C‑33 A cells. The expression of fibroblast growth factor receptor 3, thymidine phosphorylase and GTPase HRas was downregulated in MIR205HG knockdown CESC cells. These findings revealed some potential lncRNA candidates for cervical cancer research and suggested that MIR205HG may have a pro‑tumor role in CESC.
Collapse
Affiliation(s)
- Lu Yin
- Department of Obstetrics and Gynecology, Changning District Maternal and Child Health Care Center, Shanghai 200050, P.R. China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Changning District Maternal and Child Health Care Center, Shanghai 200050, P.R. China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
27
|
Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers (Basel) 2021; 13:cancers13225748. [PMID: 34830902 PMCID: PMC8616420 DOI: 10.3390/cancers13225748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine cervical cancer is one of the leading causes of cancer-related mortality in women worldwide. Each year, over half a million new cases are estimated, resulting in more than 300,000 deaths. While less-invasive, fertility-preserving surgical procedures can be offered to women in early stages, treatment for locally advanced disease may include radical hysterectomy, primary chemoradiotherapy (CRT) or a combination of these modalities. Concurrent platinum-based chemoradiotherapy regimens remain the first-line treatments for locally advanced cervical cancer. Despite achievements such as the introduction of angiogenesis inhibitors, and more recently immunotherapies, the overall survival of women with persistent, recurrent or metastatic disease has not been extended significantly in the last decades. Furthermore, a broad spectrum of molecular markers to predict therapy response and survival and to identify patients with high- and low-risk constellations is missing. Implementation of these markers, however, may help to further improve treatment and to develop new targeted therapies. This review aims to provide comprehensive insights into the complex mechanisms of cervical cancer pathogenesis within the context of molecular markers for predicting treatment response and prognosis.
Collapse
|
28
|
Trujano-Camacho S, Cantú-de León D, Delgado-Waldo I, Coronel-Hernández J, Millan-Catalan O, Hernández-Sotelo D, López-Camarillo C, Pérez-Plasencia C, Campos-Parra AD. Inhibition of Wnt-β-Catenin Signaling by ICRT14 Drug Depends of Post-Transcriptional Regulation by HOTAIR in Human Cervical Cancer HeLa Cells. Front Oncol 2021; 11:729228. [PMID: 34778043 PMCID: PMC8580948 DOI: 10.3389/fonc.2021.729228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Cervical cancer (CC), in addition to HPV infection, the most relevant alteration during CC initiation and progression is the aberrant activation of Wnt/β-catenin pathway. Several inhibitory drugs of this pathway are undergoing preclinical and clinical studies. Long non-coding RNAs (lncRNAs) are associated with resistance to treatments. In this regard, understanding the efficiency of drugs that block the Wnt/β-catenin pathway in CC is of relevance to eventually propose successful target therapies in patients with this disease. METHODS We analyzed the levels of expression of 249 components of the Wnt/β-catenin pathway in a group of 109 CC patients. Three drugs that blocking specific elements of Wnt/β-catenin pathway (C59, NSC668036 and ICRT14) by TOP FLASH assays and qRT-PCR were tested in vitro in CC cells. RESULTS 137 genes of the Wnt/β-catenin pathway were up-regulated and 112 down-regulated in CC patient's samples, demonstrating that this pathway is dysregulated. C59 was an efficient drug to inhibit Wnt/β-catenin pathway in CC cells. NSC668036, was not able to inhibit the transcriptional activity of the Wnt/β-catenin pathway. Strikingly, ICRT14 was neither able to inhibit this pathway in HeLa cells, due to HOTAIR interaction with β-catenin, maintaining the Wnt/β-catenin pathway activated. CONCLUSIONS These results demonstrate a mechanism by which HOTAIR evades the effect of ICRT14, a Wnt/β-catenin pathway inhibitory drug, in HeLa cell line. The emergence of these mechanisms reveals new scenarios in the design of target therapies used in cancer.
Collapse
Affiliation(s)
- Samuel Trujano-Camacho
- Postgraduate in Experimental Biology, DCBS, Autonomous Metropolitan University-Iztapalapa, Iztapalapa, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - David Cantú-de León
- Unidad de Investigaciones Biomédicas en Cancerología, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Izamary Delgado-Waldo
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | | | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Alma D. Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| |
Collapse
|
29
|
Zhang W, Wu Q, Liu Y, Wang X, Ma C, Zhu W. LncRNA HOTAIR promotes chemoresistance by facilitating epithelial to mesenchymal transition through miR-29b/PTEN/PI3K signaling in cervical cancer. Cells Tissues Organs 2021; 211:16-29. [PMID: 34571508 DOI: 10.1159/000519844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/09/2022] Open
Affiliation(s)
- Wenying Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Qiongwei Wu
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Yu Liu
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Xujie Wang
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Chengbin Ma
- Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
31
|
Sun X, Chen Z. Cancer-associated fibroblast-derived CCL5 contributes to cisplatin resistance in A549 NSCLC cells partially through upregulation of lncRNA HOTAIR expression. Oncol Lett 2021; 22:696. [PMID: 34457051 PMCID: PMC8358620 DOI: 10.3892/ol.2021.12957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant C-C motif chemokine ligand 5 (CCL5) is associated with disease progression, poor prognosis and chemotherapy resistance in human malignancy. The tumor microenvironment (TME) contributes to chemotherapy resistance. However, the role of cancer-associated fibroblasts (CAFs)-derived CCL5 is not well documented. Hence, the present study aimed to investigate the effects of CAFs on chemotherapy resistance in A549 non-small cell lung cancer (NSCLC) cells and the underlying mechanism. Primary CAFs isolated from patients with NSCLC were found to express and secrete elevated levels of CCL5, which attenuated cisplatin (DDP)-induced apoptosis, as indicated by flow cytometry analysis. In addition, CCL5 upregulated the expression levels of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in the tumor cells, and silencing HOTAIR in tumor cells enhanced the cytotoxic effect of cisplatin, characterized by decreased cell viability and increased apoptotic rate. Mechanistically, HOTAIR was found to inactivate the caspase-3/BCL-2 signaling pathway in A549 NSCLC cells. Collectively, the current study demonstrated that CAFs in the TME may serve a crucial role in the higher expression levels of CCL5 in tumors and that CAF-derived CCL5 may promote cisplatin resistance via upregulating lncRNA HOTAIR expression.
Collapse
Affiliation(s)
- Xiangjun Sun
- Department of Respiratory and Critical Care Medicine, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| | - Zhijie Chen
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| |
Collapse
|
32
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
33
|
Zhou Y, Wang Y, Lin M, Wu D, Zhao M. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int 2021; 21:400. [PMID: 34320988 PMCID: PMC8317292 DOI: 10.1186/s12935-021-02103-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common gynaecological malignancies all around the world. The mechanisms of cervical carcinoma formation remain under close scrutiny. The long non-coding RNAs (lncRNA) and microRNAs (miRNAs) play important roles in controlling gene expression and promoting the development and progression of cervical cancer by acting as competitive endogenous RNA (ceRNA). However, the roles of lncRNA associated with ceRNAs in cervical carcinogenesis remains unknown. In this study, the expression of long non-coding RNA HOTAIR was investigated in HPV16 positive cervical cancer cells, the candidate miRNAs and target genes were identified to clarify putative ceRNAs of HOTAIR/miRNA in cervical cancer cells. Methods The proliferation ability of cells was measured by CCK8 and EdU incorporation assays and cell apoptosis was analyzed by flow cytometry. The expression of HOTAIR, miR-214-3p, HPV16 E7 mRNA were detected by qRT-PCR. As for searching for the interaction between miR-214-3p and HOTAIR, the binding sites for miR-214-3p on HOTAIR was predicted by starbase v2.0 database, then dual-luciferase assay was used to verify the binding sites. In addition, Gene Ontology (GO) and protein–protein interaction (PPI) network analysis of target genes of miR-214-3p were performed with bioinformatics analysis. The potential signal pathway regulated by HOTAIR/miR-214-3p was predicted by KEGG enrichment analysis and confirmed by qPCR and WB analysis in cervical cancer cells. Results Our results showed that expression of HOTAIR was up-regulated, while that of miR-214-3p was down-regulated in HPV16-positive cervical cancer cells. The expression status of HPV16 E7 played an important role in regulating expression of HOTAIR or miR-214-3p in cervical cancer cells. HOTAIR knockdown could significantly inhibited cell proliferate ability and promote cellular apoptosis, whereas the inhibition of miR-214-3p expression partially reversed such results. Bioinformatics analysis identified 1451 genes as target genes of miR-214-3p. The Gene ontology (GO) and KEGG Pathway enrichment analysis showed that these target genes were mainly related to regulation of cell communication, protein binding, enzyme binding and transferase activity, and Wnt ligand biogenesis. Pathway enrichment analysis results showed that the predicted target genes were significantly enriched in Wnt/β-catenin signaling pathway. Finally, our results confirmed that miR-214-3p could significantly inhibit β-catenin expression in HPV16 positive cancer cells by qPCR and WB analysis. Conclusion HOTAIR could act as a ceRNA through binding to miR-214-3p, promote cell proliferation and inhibit the apoptosis of HPV16 positive cervical cancer. HOTAIR/miR-214-3p/Wnt/β-catenin signal pathway might played important regulated roles in HPV16 positive cervical cancer. Our results provided new insight into defining novel biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Yu Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuqing Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Daiqian Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Min Zhao
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
34
|
Long noncoding RNA HOTAIR as a biomarker for the detection of Cervical Cancer and Cervical Intraepithelial Neoplasia. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Xin X, Li Q, Fang J, Zhao T. LncRNA HOTAIR: A Potential Prognostic Factor and Therapeutic Target in Human Cancers. Front Oncol 2021; 11:679244. [PMID: 34367966 PMCID: PMC8340021 DOI: 10.3389/fonc.2021.679244] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory function on transcription, can repress gene expression by recruiting chromatin modifiers. HOTAIR is an oncogenic lncRNA, and numerous studies have determined that HOTAIR is highly upregulated in a wide variety of human cancers. In this review, we briefly summarize the impact of lncRNA HOTAIR expression and functions on different human solid tumors, and emphasize the potential of HOTAIR on tumor prognosis and therapy. Here, we review the recent studies that highlight the prognostic potential of HOTAIR in drug resistance and survival, and the progress of therapies developed to target HOTAIR to date. Furthermore, targeting HOTAIR results in the suppression of HOTAIR expression or function. Thus, HOTAIR knockdown exhibits great therapeutic potential in various cancers, indicating that targeting lncRNA HOTAIR may serve as a promising strategy for cancer therapy. We also propose that preclinical studies involving HOTAIR are required to provide a better understanding of the exact molecular mechanisms underlying the dysregulation of its expression and function in different human cancers and to explore effective methods of targeting HOTAIR and engineering efficient and targeted drug delivery methods in vivo.
Collapse
Affiliation(s)
- Xiaoru Xin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qianan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
36
|
Feng Q, Wang D, Guo P, Zhang Z, Feng J. Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation. Oncol Lett 2021; 21:444. [PMID: 33868482 PMCID: PMC8045177 DOI: 10.3892/ol.2021.12705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/23/2021] [Indexed: 01/07/2023] Open
Abstract
The long non-coding RNA (lncRNA) HOTAIR is an oncogene, that has been reported to be aberrantly expressed in multiple types of malignant tumor tissues. However, its expression and association with synovial sarcoma (SS) remains unclear. The present study aimed to elucidate the expression level of HOTAIR in SS tissues and also identify its role. Reverse transcription-quantitative PCR was used to detect the expression level of HOTAIR and microRNA (miR)-126 in 54 tissue samples from patients with SS, in 10 tissue samples from synovium tissues of normal patients, and in SW982 cells. The protein expression level was measured using western blot analysis and cellular immunofluorescence. Cellular proliferation, invasion and migration were assessed using MTT, Transwell and wound healing assays, respectively. HOTAIR was expressed at high levels in SS tissues. In contrast, miR-126 was expressed at low levels in SS tissues, and was negatively correlated with HOTAIR expression. HOTAIR knockdown in SW982 cells inhibited cellular proliferation in vitro, but also significantly increased the ratio of cells in the G1/G0 phase of the cell cycle, and decreased the ratio of cells in the G2/S phase. In addition, HOTAIR knockdown inhibited the invasion and migration of the SW982 cells, as observed in the Transwell and wound healing assays. Furthermore, HOTAIR knockdown increased miR-126 expression level and decreased the expression level of stromal cell-derived factor-1 (SDF-1) at the protein level. On the other hand, while miR-126-mimic decreased the protein expression level of SDF-1, miR-126-inhibitor increased its expression level in SW982 cells. Notably, HOTAIR knockdown or SDF-1 knockout significantly decreased the protein expression levels of CDK1, CDK2, cyclin D1, MMP-9, vimentin and N-cadherin, and significantly increased the protein expression levels of p21, p53 and E-cadherin in SW982 cells. HOTAIR was highly expressed in SS tissues, wherein it could promote the proliferation, invasion and migration of SS cells by increasing the expression of SDF-1 via miR-126 inhibition.
Collapse
Affiliation(s)
- Qi Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Donglai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zibo Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
37
|
Zampedri C, Martínez-Flores WA, Melendez-Zajgla J. The Use of Zebrafish Xenotransplant Assays to Analyze the Role of lncRNAs in Breast Cancer. Front Oncol 2021; 11:687594. [PMID: 34123857 PMCID: PMC8190406 DOI: 10.3389/fonc.2021.687594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents a great challenge since it is the first cause of death by cancer in women worldwide. LncRNAs are a newly described class of non-coding RNAs that participate in cancer progression. Their use as cancer markers and possible therapeutic targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring of disease development, molecular elucidation of pathogenesis and the design of new therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel model for these assays, given the ease with which xenotransplantation trials can be performed and the economic and experimental advantages it offers. In this review we propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs using low to medium high throughput assays.
Collapse
Affiliation(s)
- Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| |
Collapse
|
38
|
Zhang Y, Wang C, Zou X, Tian X, Hu J, Zhang CY. Simultaneous Enzyme-Free Detection of Multiple Long Noncoding RNAs in Cancer Cells at Single-Molecule/Particle Level. NANO LETTERS 2021; 21:4193-4201. [PMID: 33949866 DOI: 10.1021/acs.nanolett.0c05137] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aberrant change in long noncoding RNA (lncRNA) is associated with various diseases and cancers. So far, simultaneous detection of lncRNAs has remained a great challenge due to their large size and extensive secondary structure. Herein, we develop an enzyme-free single-molecule/particle detection method for simultaneous detection of multiple lncRNAs in cancer cells based on target-catalyzed strand displacement. We designed the magnetic bead-capture probe-multiple Cy5/Cy3-modified reporter unit complexes to isolate and identify lncRNA MALAT1 and lncRNA HOTAIR. The target-catalyzed strand displacement reactions lead to the release of Cy5 and Cy3 fluorescent molecules from the complexes, which can be subsequently quantified by single-molecule/particle detection. The dual-targetability, good selectivity and high sensitivity of this method enables simultaneous detection of multiple lncRNAs in even single cancer cell. Importantly, this method can discriminate cancer cells from normal cells and has significant advantages in the simple sequence design and in being free of enzymes, holding great potential in living cell imaging and early clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
39
|
Liu Y, Tu H, Zhang L, Xiong J, Li L. FOXP3‑induced LINC00885 promotes the proliferation and invasion of cervical cancer cells. Mol Med Rep 2021; 23:458. [PMID: 33880574 PMCID: PMC8072316 DOI: 10.3892/mmr.2021.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer in women worldwide. LINC00885, a novel oncogenic type of long non-coding RNA, is upregulated in various types of cancer, but its expression in CC remains unknown. The aim of the present study was to investigate the expression of LINC00885 in CC, and its effect on the proliferation and invasion of CC cells in vitro. The expression levels of LINC00885 and forkhead box protein 3 (FOXP3) from The Cancer Genome Atlas (TCGA) were selected to analyze the differences between CC tissues and normal cervical tissues using bioinformatics analyses. Reverse transcription-quantitative (RT-q)PCR was used to detect the relative expression of LINC00885 in CC cell lines, and its expression was knocked down. Cell Counting Kit-8 assays and EdU staining were used to detect the changes in cell proliferative capacity of cells. Transwell experiments were used to examine cell invasion. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed to examine the interactions between LINC00885 and FOXP3. FOXP3 and epithelial-mesenchymal transition (EMT)-related proteins were detected using western blotting. The expression of LINC00885 and FOXP3 in CC tissues and CC cells was significantly higher compared with the normal cervical tissues and normal cervical epithelial cells. FOXP3 could specifically interact with the promoter of LINC00885 and activate LINC00885 transcription. Knockdown of LINC00885 and silencing of FOXP3 significantly inhibited proliferation, invasion and EMT of CC cells. Overexpression of LINC00885 reversed the inhibitory effects of FOXP3 knockdown on the proliferation and invasion of CC cells. Collectively, LINC00885 and FOXP3 may serve as biomarkers for the early diagnosis of CC and as a potential therapeutic target for reversing the malignant phenotype of CC.
Collapse
Affiliation(s)
- Yawen Liu
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haiyan Tu
- Department of Gynecological Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Zhang
- Department of Gynecological Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Li
- Department of Gynecological Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
Zhai Y, Liu Y, Wang Z, Wang W, Zhou J, Lu J. Long Non-Coding RNA LINC00313 Accelerates Cervical Carcinoma Progression by miR-4677-3p/CDK6 Axis. Onco Targets Ther 2021; 14:2213-2226. [PMID: 33824592 PMCID: PMC8018412 DOI: 10.2147/ott.s265007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cervical cancer is one of the most common gynecologic tumors. Evidence is accumulating that long non-coding RNAs participate in the pathogenesis of cancers, but the expression and role of lncRNA LINC00313 in cervical carcinoma is not reported. Methods We measured the expression levels of LINC00313 in clinical samples of cervical carcinoma and investigated the function of LINC00313 in the regulation of proliferation, metastasis, and EMT. Luciferase reporter assay was employed to explore the molecular regulation process of LINC00313. Results Our data showed that the levels of LINC00313 in cervical carcinoma tissues and cells were significantly up-regulated. Functionally, LINC00313 accelerated the progression, migration, and EMT of SiHa and Hela cells. Luciferase reporter assay confirmed that miR-4677-3p/CDK6 regulatory axis is the direct downstream of LINC00313. Functional gain- and loss-of-function strategies further showed that LINC00313 induced the up-regulation of CDK6 expression through competitive binding with miR-4677-3p, leading to promote the progression of cervical carcinoma. Conclusion Our results demonstrated that LINC00313 accelerated the progression of cervical cancer through the miR-4677-3p/CDK6 regulatory axis. LncRNA LINC00313 may serve as a potential target for the diagnosis and treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Yongning Zhai
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Yang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhen Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Wang
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Jingyuan Lu
- Department of Radiological Intervention, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
41
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
43
|
Paço A, Aparecida de Bessa Garcia S, Leitão Castro J, Costa-Pinto AR, Freitas R. Roles of the HOX Proteins in Cancer Invasion and Metastasis. Cancers (Basel) 2020; 13:E10. [PMID: 33375038 PMCID: PMC7792759 DOI: 10.3390/cancers13010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis correspond to the foremost cause of cancer-related death, and the molecular networks behind these two processes are extremely complex and dependent on the intra- and extracellular conditions along with the prime of the premetastatic niche. Currently, several studies suggest an association between the levels of HOX genes expression and cancer cell invasion and metastasis, which favour the formation of novel tumour masses. The deregulation of HOX genes by HMGA2/TET1 signalling and the regulatory effect of noncoding RNAs generated by the HOX loci can also promote invasion and metastasis, interfering with the expression of HOX genes or other genes relevant to these processes. In this review, we present five molecular mechanisms of HOX deregulation by which the HOX clusters products may affect invasion and metastatic processes in solid tumours.
Collapse
Affiliation(s)
- Ana Paço
- BLC3—Biomassa Lenho-Celulósica de 3ª Geração, Campus of Technology and Innovation, 3405-169 Oliveira do Hospital, Portugal
| | - Simone Aparecida de Bessa Garcia
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Joana Leitão Castro
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Ana Rita Costa-Pinto
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
45
|
Park SA, Kim LK, Kim YT, Heo TH, Kim HJ. Long Noncoding RNA E2F4as Promotes Progression and Predicts Patient Prognosis in Human Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123626. [PMID: 33287341 PMCID: PMC7761684 DOI: 10.3390/cancers12123626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary LncRNA is a promising biomarker that predicts the prognosis of a variety of cancers, but the important role of E2F4antisense lncRNA in cancer remains unclear. Therefore, we decided to explore the role of E2F4as lncRNA in the blood of an ovarian cancer patient. We found that E2F4as was highly expressed in ovarian cancer patients, and that the higher the expression of E2F4as, the worse the patient’s prognosis. In addition, we observed that downregulation of E2F4as in ovarian cancer cells reduced cell proliferation, invasion and migration, decreased expression of EMT-related genes, and increased apoptosis. These findings suggest that E2F4as may be a predictive biomarker in the blood of ovarian cancer patients, and have shown the potential to promote tumor aggression through EMT-related mechanisms. Abstract (1) Background: LncRNAs could be a promising biomarker to predict the prognosis of various cancers. The significance of E2F4antisense lncRNA remains unclear in cancer. In this study, we examined the expression level of E2F4as in the serum of ovarian cancer patients and the functional role of E2F4as. (2) Methods: Serum samples were obtained from 108 OC patients and 32 normal patients to measure the expression of E2F4as in the serum. Ovarian cancer cells were used to investigate the role of E2F4as in cell proliferation, invasion, migration and apoptosis, and the expression of E2F4as was knocked down using RNA interference. In addition, E2F4as knockdown cell lines were used in in vivo experiments. (3) Results: The expression of E2F4as was significantly higher in the serum of OC patients than in that of control patients (p < 0.05). The knockdown of E2F4as in ovarian cancer cells led to a decrease in cell proliferation, invasion and migration and an increase in apoptosis. E2F4as knockdown also reduced the expression of epithelium–mesenchymal metastasis (EMT) genes. (4) Conclusion: These findings highlight the clinical significance of E2F4as in predicting the prognosis of OC patients and suggest its potential in promoting tumour aggressiveness by the regulation of EMT-related mechanisms.
Collapse
Affiliation(s)
- Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Seoul 03722, Korea; (S.-A.P.); (L.K.K.)
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Seoul 03722, Korea; (S.-A.P.); (L.K.K.)
| | - Young Tae Kim
- Institute of Women’s Life Medical Science, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Seoul 03722, Korea; (S.-A.P.); (L.K.K.)
- Correspondence: (T.-H.H.); (H.J.K.); Tel.: +82-2-2164-4088 (T.-H.H.); +82-2-2164-4088 (H.J.K.)
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Seoul 03722, Korea; (S.-A.P.); (L.K.K.)
- Correspondence: (T.-H.H.); (H.J.K.); Tel.: +82-2-2164-4088 (T.-H.H.); +82-2-2164-4088 (H.J.K.)
| |
Collapse
|
46
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2020; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
47
|
Zhong Y, Lu Q, Qiu W, Luo Y. LINC00636 promotes lymph node metastasis and cervical cancer through targeting NM23. Biosci Rep 2020; 40:BSR20200367. [PMID: 33034616 PMCID: PMC7601350 DOI: 10.1042/bsr20200367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Metastasis is a major obstacle in treatment of cervical cancer, and long non-coding RNA (lncRNA) mediated regulatory effect on associated genes expression is found to be involved in metastasis. However, its mechanisms have not been fully elucidated. MATERIALS AND METHODS Specimens from patients with cervical cancer metastasis and non-metastasis were used to screen out candidate non-coding RNAs (ncRNAs) and possible downstream targets. And then, effects were determined in vitro and in vivo through knockdown and overexpression techniques. RESULTS LINC00636 was significantly higher in serum and solid tumor cells of metastatic cervical cancer patients than non-metastatic patients. And knockdown of LINC00636 significantly suppressed invasion, proliferation of cervical cancer cells. NM23 expression was negatively regulated by LINC00636 and it mediated anti-tumor effects was partially blocked by overexpression of LINC00636. CONCLUSION LINC00636 might promote metastasis of cervical cancer cells through inhibiting NM23 expression.
Collapse
Affiliation(s)
- Yue Zhong
- Department of Ultrasound, Neijiang First People’s Hospital, Neijiang city, Sichuan Province, 641000, China
| | - Qiang Lu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, 610041, China
| | - Wei Qiu
- Department of Ultrasound, Neijiang First People’s Hospital, Neijiang city, Sichuan Province, 641000, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, 610041, China
| |
Collapse
|
48
|
Qiu J, Zhou S, Cheng W, Luo C. LINC00294 induced by GRP78 promotes cervical cancer development by promoting cell cycle transition. Oncol Lett 2020; 20:262. [PMID: 32989396 PMCID: PMC7517597 DOI: 10.3892/ol.2020.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies, and it has become a crucial public health problem. In the present study, the expression profiles of cervical cancer and normal cervical tissues were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Subsequently, the dysregulated long non-coding RNAs (lncRNAs) in cervical cancer were identified using R software Differentially expressed lncRNAs in cervical cancer that were associated with glucose-regulated protein 78 (GRP78) were screened out and the results demonstrated that eight lncRNAs were strongly positively correlated with GRP78. In order to confirm the relationship between GRP78 and candidate lncRNAs, GRP78 small interfering RNA (siRNA) was transfected into HeLa cells. The target lncRNAs that were regulated by GRP78 were then identified by reverse transcription-quantitative PCR and it was revealed that LINC00294 was significantly downregulated following GRP78-knockdown. Subsequently, Gene Set Enrichment Analysis demonstrated that LINC00294 was mainly enriched in regulating the cell cycle and the Hedgehog pathway. Following transfection of HeLa and SiHa cells with LINC00294 siRNA, the cell cycle was arrested at the G0/G1 phase. Western blotting suggested that LINC00294-knockdown downregulated the expression of cell cycle-associated factors (cyclin D, cyclin E and cyclin Dependent kinase 4) and upregulated cell cycle inhibitory factors (p16 and p21). The Hedgehog pathway was inhibited following knockdown of LINC00294 in HeLa and SiHa cells. In summary, LINC00294 induced by GRP78 promoted the progression of cervical cancer by regulating the cell cycle via Hedgehog pathway.
Collapse
Affiliation(s)
- Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Chengyan Luo
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
49
|
Galvão MLTDC, Coimbra EC. Long noncoding RNAs (lncRNAs) in cervical carcinogenesis: New molecular targets, current prospects. Crit Rev Oncol Hematol 2020; 156:103111. [PMID: 33080526 DOI: 10.1016/j.critrevonc.2020.103111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of lncRNAs has been seen as a key factor in a wide range of diseases including cancer. The role of lncRNAs in cervical cancer has not been clearly explained, and has been the subject of recent studies. In this review, we have compiled an updated list of previously reported lncRNAs and established a general profile of these transcripts in accordance with the role they play in cervical carcinogenesis. Thus, information here includes the influence of lncRNAs on cervical tumorigenic process through a disturbance of cellular activities. Additionally, we described recent discoveries about how HPV contributes to lncRNAs expression in cervical cancer and we summarized exploratory studies of strategies adopted to modulate the expression levels of lncRNAs to treat cervical neoplasia, by drawing attention to radio and chemo-resistance. Finally, this paper provides a broad overview that sets out new research directions about the role of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Maria Luiza Tabosa de Carvalho Galvão
- Faculty of Medical Sciences, University of Pernambuco, Brazil; Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| |
Collapse
|
50
|
Luo F, Wen Y, Zhou H, Li Z. Roles of long non-coding RNAs in cervical cancer. Life Sci 2020; 256:117981. [DOI: 10.1016/j.lfs.2020.117981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
|