1
|
Sood A, Jothiswaran V, Singh A, Sharma A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1074-1099. [PMID: 39351437 PMCID: PMC11438574 DOI: 10.37349/etat.2024.00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.
Collapse
Affiliation(s)
- Apurva Sood
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - V.V. Jothiswaran
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Amrita Singh
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
2
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
3
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Dho M, Candian V, Tedeschi R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics (Basel) 2023; 12:952. [PMID: 37370271 DOI: 10.3390/antibiotics12060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Several insects are known as vectors of a wide range of animal and human pathogens causing various diseases. However, they are also a source of different substances, such as the Antimicrobial Peptides (AMPs), which can be employed in the development of natural bioactive compounds for medical, veterinary and agricultural applications. It is well known that AMP activity, in contrast to most classical antibiotics, does not lead to the development of natural bacterial resistance, or at least the frequency of resistance is considered to be low. Therefore, there is a strong interest in assessing the efficacy of the various peptides known to date, identifying new compounds and evaluating possible solutions in order to increase their production. Moreover, implementing AMP modulation in insect rearing could preserve insect health in large-scale production. This review describes the current knowledge on insect AMPs, presenting the validated ones for the different insect orders. A brief description of their mechanism of action is reported with focus on proposed applications. The possible effects of insect diet on AMP translation and synthesis have been discussed.
Collapse
Affiliation(s)
- Matteo Dho
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
5
|
Li W, Mu L, Zou Y, Wang W, Zhao H, Wu X, Liao S. Effect of Silkworm Pupa Protein Hydrolysates on Proliferation of Gastric Cancer Cells In Vitro. Foods 2022; 11:foods11152367. [PMID: 35954133 PMCID: PMC9368083 DOI: 10.3390/foods11152367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The proliferation inhibition effects of the hydrolysates from silkworm pupa proteins on MGC-803 gastric cancer cells were investigated in this study. The specific morphological changes (cell membrane, cell nucleus and cytoskeleton) of cells were measured. In vitro, the proliferation of MGC-803 cells was inhibited by silkworm pupa protein hydrolysates (SPPHs) in a dose-dependent manner. The flow cytometry analysis showed that the blocking effect of SPPHs on the MGC-803 cells was mainly in the G0/G1-phase. The morphological changes, disintegration of the cytoskeleton and retardant cell cycles were probably related to the activation of apoptosis. Thus, SPPHs could be promising as a chemopreventive agent due to their ability to promote apoptosis of tumor cells.
Collapse
Affiliation(s)
- Weixin Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lixia Mu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Correspondence: ; Tel./Fax: +86-20-8723-6897
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
6
|
Jiang J, Pan Y, Li J, Xia L. Cecropin-Loaded Zeolitic Imidazolate Framework Nanoparticles with High Biocompatibility and Cervical Cancer Cell Toxicity. Molecules 2022; 27:4364. [PMID: 35889239 PMCID: PMC9315993 DOI: 10.3390/molecules27144364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cecropins (CECs) are insect venom-derived amphiphilic peptides with numerous pharmacological effects, including anti-inflammatory, antibacterial, antiviral, and anti-tumor activities. Cecropins induce tumor cell death by disrupting phospholipid membrane integrity. However, non-specific cytotoxicity and in vivo rapid degradation limit clinical application. Nanotechnologies provide novel strategies for tumor eradication, including nanocarriers that can precisely target drugs to tumor tissue. We report the fabrication of CEC-encapsulated zeolitic imidazolate framework 8 (ZIF-8) nanoparticles (CEC@ZIF-8 NPs) via the preparation of CEC@ZIF-8 NPs in pure water by one-pot stirring. This method yielded morphologically uniform NPs with 20 wt% drug loading capacity and 9% loading efficiency. The NP formulation protected CECs from proteasome degradation, enhanced peptide bioavailability, promoted HeLa tumor cell uptake, and increased antitumor efficacy compared to free CECs. In conclusion, this ZIF-8 encapsulation strategy may enhance the clinical applicability of CECs and other antitumor peptides.
Collapse
Affiliation(s)
| | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (J.J.); (Y.P.)
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (J.J.); (Y.P.)
| |
Collapse
|
7
|
Antiproliferative and Proapoptotic Effects of Phenanthrene Derivatives Isolated from Bletilla striata on A549 Lung Cancer Cells. Molecules 2022; 27:molecules27113519. [PMID: 35684456 PMCID: PMC9181924 DOI: 10.3390/molecules27113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Lung cancer continues to be the world’s leading cause of cancer death and the treatment of non-small cell lung cancer (NSCLC) has attracted much attention. The tubers of Bletilla striata are regarded as “an excellent medicine for lung diseases” and as the first choice to treat several lung diseases. In this study, seventeen phenanthrene derivatives, including two new compounds (1 and 2), were isolated from the tubers of B. striata. Most compounds showed cytotoxicity against A549 cells. An EdU proliferation assay, a cell cycle assay, a wound healing assay, a transwell migration assay, a flow cytometry assay, and a western blot assay were performed to further investigate the effect of compound 1 on A549 cells. The results showed that compound 1 inhibited cell proliferation and migration and promoted cell apoptosis in A549 cells. The mechanisms might correlate with the regulation of the Akt, MEK/ERK, and Bcl-2/Bax signaling pathways. These results suggested that the phenanthrenes of B. striata might be important and effective substances in the treatment of NSCLC.
Collapse
|
8
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Molecular basis of the anticancer, apoptotic and antibacterial activities of Bombyx mori Cecropin A. Arch Biochem Biophys 2022; 715:109095. [PMID: 34826396 DOI: 10.1016/j.abb.2021.109095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
As Cecropin XJ, Cecropin A from Bombyx mori is one of the very few antimicrobial peptides having shown activity against esophageal cancer cells. It displays remarkable sequence-similarity to Cecropin XJ but slightly enhanced activity. In this work we show by NMR that both peptides are unstructured in solution but get structured in the presence of DPC micelles, mimicking the surface of biological membranes. In order to get insight into the molecular basis of its anticancer, antimicrobial and antifungal activity, we have investigated by MD simulations their interaction with a large variety of lipid bilayers mimicking cancer, mitochondrial, bacterial and fungal membranes. At variance with CecXJ, organized in two main helices, CecA tends to form a three helix bundle resulting in enhanced adaptability to its membrane targets. A specificity for the headgroup of phosphatidylserine and affinity for phosphatidylglycerol and cardiolipin may account for its selective targeting of cancer, bacterial and mitochondrial membranes, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
9
|
Zhou F, Dai O, Peng C, Xiong L, Ao H, Liu F, Zhou QM. Pro-Angiogenic Effects of Essential Oil from Perilla frutescens and Its Main Component (Perillaldehyde) on Zebrafish Embryos and Human Umbilical Vein Endothelial Cells. Drug Des Devel Ther 2021; 15:4985-4999. [PMID: 34924753 PMCID: PMC8674578 DOI: 10.2147/dddt.s336826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Perilla frutescens (L.) Britt., a traditional edible-medicinal herb in China, has been used to treat cardiovascular and cerebrovascular (cardio-cerebrovascular) diseases for thousands of years. However, knowledge of the mechanisms underlying the effects of essential oil from P. frutescens (EOPF) in the treatment of cardio-cerebrovascular diseases is lacking. The promotion of angiogenesis is beneficial in the treatment of ischemic cardio-cerebrovascular diseases. The current study investigated the pro-angiogenic role of EOPF and its main component perillaldehyde in sunitinib-injured transgenic Tg (flk1:EGFP) zebrafish embryos and human umbilical vein endothelial cells (HUVECs) for the first time. Materials and Methods The pro-angiogenic effects of EOPF and perillaldehyde were observed in vivo using transgenic Tg (flk1:EGFP) zebrafish embryos and in vitro using HUVECs. Cell viability, proliferation, migration, tube formation, and protein levels were detected by MTT, EdU staining, wound healing, transwell chamber, and Western blot assays, respectively. Results EOPF and perillaldehyde exerted a significant stimulatory effect on the formation of zebrafish intersegmental vessels (ISVs). Moreover, EOPF and perillaldehyde promoted proliferation, migration, and tube formation in sunitinib-treated HUVECs. Additionally, our findings uncovered that the pro-angiogenic effects of EOPF and perillaldehyde were mediated by increases in the expression ratios of p-ERK1/2 to ERK1/2 and Bcl-2 to Bax. Conclusion The present study is the first report to provide clear evidence that EOPF and perillaldehyde promote angiogenesis by stimulating repair of sunitinib-injured ISVs in zebrafish embryos and promoting proliferation, migration, and tube formation in sunitinib-injured HUVECs. The underlying mechanisms are related to increased p-ERK1/2 to ERK1/2 and Bcl-2 to Bax expression ratios. EOPF and perillaldehyde may be used in the treatment of cardio-cerebrovascular diseases, which is consistent with the traditional application of P. frutescens.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ou Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qin-Mei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| |
Collapse
|
10
|
Ramos-Martín F, D’Amelio N. Molecular Basis of the Anticancer and Antibacterial Properties of CecropinXJ Peptide: An In Silico Study. Int J Mol Sci 2021; 22:E691. [PMID: 33445613 PMCID: PMC7826669 DOI: 10.3390/ijms22020691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/04/2023] Open
Abstract
Esophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi. Here, we present the first study of its mechanism of action based on molecular dynamics (MD) simulations and sequence-property alignment. Although unstructured in solution, predictions highlight the presence of two helices separated by a flexible hinge containing P24 and stabilized by the interaction of W2 with target biomembranes: an amphipathic helix-I and a poorly structured helix-II. Both MD and sequence-property alignment point to the important role of helix I in both the activity and the interaction with biomembranes. MD reveals that CXJ interacts mainly with phosphatidylserine (PS) but also with phosphatidylethanolamine (PE) headgroups, both found in the outer leaflet of cancer cells, while salt bridges with phosphate moieties are prevalent in bacterial biomimetic membranes composed of PE, phosphatidylglycerol (PG) and cardiolipin (CL). The antibacterial activity of CXJ might also explain its interaction with mitochondria, whose phospholipid composition recalls that of bacteria and its capability to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
11
|
Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus. Biomolecules 2021; 11:biom11010083. [PMID: 33440876 PMCID: PMC7826645 DOI: 10.3390/biom11010083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil (Rhynchophorus ferrugineus Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from the immunized hemolymph of this beetle. In total, 17 different bactericidal or bacteriostatic compounds were isolated via a series of high-pressure liquid chromatography steps, and their partial amino acid sequences were determined by N-terminal sequencing or by mass spectrometry. The bioinformatic analysis of the results facilitated identification and description of corresponding nucleotide coding sequences for each peptide and protein, based on the recently published R. ferrugineus transcriptome database. The identified compounds are represented by several well-known bactericidal factors: two peptides similar to defensins, one cecropin-A1-like peptide, and one attacin-B-like protein. Interestingly, we have also identified some unexpected compounds comprising five isoforms of pheromone-binding proteins as well as seven isoforms of odorant-binding proteins. The particular role of these factors in insect response to bacterial infection needs further investigation.
Collapse
|
12
|
Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. Trends Cancer 2021; 7:557-572. [PMID: 33446447 DOI: 10.1016/j.trecan.2020.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Accumulating preclinical and clinical evidence indicates that high degrees of heterogeneity among malignant cells constitute a considerable obstacle to the success of cancer therapy. This calls for the development of approaches that operate - or enable established treatments to operate - despite such intratumoral heterogeneity (ITH). In this context, oncolytic peptides stand out as promising therapeutic tools based on their ability to drive immunogenic cell death associated with robust anticancer immune responses independently of ITH. We review the main molecular and immunological pathways engaged by oncolytic peptides, and discuss potential approaches to combine these agents with modern immunotherapeutics in support of superior tumor-targeting immunity and efficacy in patients with cancer.
Collapse
Affiliation(s)
- Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Candiolo, Italy
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
13
|
Zhou F, Liu F, Liu J, He YL, Zhou QM, Guo L, Peng C, Xiong L. Stachydrine promotes angiogenesis by regulating the VEGFR2/MEK/ERK and mitochondrial-mediated apoptosis signaling pathways in human umbilical vein endothelial cells. Biomed Pharmacother 2020; 131:110724. [DOI: 10.1016/j.biopha.2020.110724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
|
14
|
Xu P, Lv D, Wang X, Wang Y, Hou C, Gao K, Guo X. Inhibitory effects of Bombyx mori antimicrobial peptide cecropins on esophageal cancer cells. Eur J Pharmacol 2020; 887:173434. [PMID: 32763299 DOI: 10.1016/j.ejphar.2020.173434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022]
Abstract
Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Ping Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Dingding Lv
- Nursing School, Zhenjiang College, Zhenjiang, 21200, Jiangsu, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yongsheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
15
|
Brady D, Grapputo A, Romoli O, Sandrelli F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int J Mol Sci 2019; 20:E5862. [PMID: 31766730 PMCID: PMC6929098 DOI: 10.3390/ijms20235862] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Alessandro Grapputo
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Ottavia Romoli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, 97306 Cayenne, French Guiana, France
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| |
Collapse
|
16
|
Vázquez-Cervantesa GI, Villaseñor-Aguayoa K, Hernández-Damiána J, Aparicio-Trejoa OE, Medina-Camposa ON, López-Marureb R, Pedraza-Chaverria J. Antitumor Effects of Nordihydroguaiaretic Acid (NDGA) in Bladder T24 Cancer Cells are Related to Increase in ROS Production and Mitochondrial Leak Respiration. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the effect of nordihydroguaiaretic acid (NDGA) on tumor bladder T24 cells. Bladder cancer T24 cells were cultured on Dulbecco's Modified Eagle Medium in presence of NDGA. Cell viability and apoptosis were evaluated after 24, 48 and 72 h by using fluorescein diacetate (FDA) and Alexa fluor 488 annexin-V/propidium iodide solution, respectively. To determine the mitochondrial effects of NDGA (0-24 h), reactive oxygen species (ROS) levels by dihydroethidium fluorescence, mitochondrial membrane potential (ΔΨm) by 5,5’,6,6'-tetrachloro-1,1’,3,3'-tetraethyl-imidacarbocyanine iodide (JC-1) dual fluorescence and cellular respiration states by high resolution respirometry were evaluated. It was found that NDGA reduced T24 cell viability after 72 h of incubation in a concentration-dependent manner and apoptosis increased at 48 h. Furthermore, 20 μM NDGA increased ROS levels, decreased ΔΨm and promoted leak of respiration from mitochondrial respiratory chain in T24 cells which was associated to the death of tumor cells. Taken together these results suggested that antitumor effects of NDGA in T24 cells are related to its ability to induce mitochondrial alteration.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez-Cervantesa
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Karla Villaseñor-Aguayoa
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jacqueline Hernández-Damiána
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Omar Emiliano Aparicio-Trejoa
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Omar Noel Medina-Camposa
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Rebeca López-Marureb
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - José Pedraza-Chaverria
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
- Physiology Department (Cell Biology), National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| |
Collapse
|
17
|
Xia LJ, Wu YL, Ma J, Zhang FC. Therapeutic effects of antimicrobial peptide on malignant ascites in a mouse model. Mol Med Rep 2018; 17:6245-6252. [PMID: 29512744 PMCID: PMC5928604 DOI: 10.3892/mmr.2018.8691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/13/2017] [Indexed: 12/27/2022] Open
Abstract
The primary objective of the treatment of malignant ascites in advanced stages is to alleviate symptoms using procedures such as diuresis, paracentesis of subretinal fluid and vena cava anastomosis. The effectiveness of systemic or intraperitoneal chemotherapy treatment is limited, and more efficacious therapies are required. The authors of the present study demonstrated that an antimicrobial peptide, cecropinXJ, isolated from the larvae of Bombyx mori, selectively inhibits the proliferation of gastric cancer cells. However, the effects of antibacterial peptides on gastric ascites tumor remains unclear. In the present study, the therapeutic effects of cecropinXJ were investigated in mice bearing malignant ascites. Compared with bovine serum albumin treatment, cecropinXJ and doxorubicin (Dox) significantly inhibited the formation and growth of malignant ascites, and prolonged the survival time of ascites tumor‑bearing mice. In addition, cecropinXJ treatment normalized the hematological and biochemical phenotypes, induced tumor cell apoptosis in ascites and improved the survival of mice bearing malignant ascites when compared with Dox treatment. These results suggested that cecropinXJ might be a promising therapeutic candidate for the treatment of gastric cancer‑associated ascites.
Collapse
Affiliation(s)
- Li-Jie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Yan-Ling Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Ji Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Fu-Chun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
18
|
Xia LJ, Wu YL, Zhang FC. Combination of cecropinXJ and LY294002 induces synergistic cytotoxicity, and apoptosis in human gastric cancer cells via inhibition of the PI3K/Akt signaling pathway. Oncol Lett 2017; 14:7522-7528. [PMID: 29344198 DOI: 10.3892/ol.2017.7112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxic and apoptotic effects of cecropinXJ against human gastric cancer BGC823 cells, either alone, or in combination with a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. Cell viability and the apoptosis rate were measured using flow cytometry with Annexin-V staining. Additionally, the expression levels of several RAC-α serine/threonine kinase (Akt) phosphorylation-associated proteins and apoptosis-regulating proteins were evaluated by western blot analysis. It was observed that the combination of cecropinXJ and LY294002 resulted in significant synergistic cytotoxic and apoptosis effects, as compared with any single agent alone, in a dose-dependent manner. Corresponding to enhanced apoptosis, the expression levels of certain apoptosis-regulating proteins were changed, the most notable being the upregulation of caspase-3, B-cell lymphoma-2 (Bcl-2)-associated death promotor, Bcl-2 homologous antagonist killer, Bcl-2 interacting killer, Bcl-2-like protein 11, Bcl-2-like protein 4 and cytochrome c, and the downregulation of phosphorylated-Bad and Bcl-2 proteins. The present study provided a novel therapeutic regimen for the use of the cecropinXJ in combination with LY294002 for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Jie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Yan-Ling Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Fu-Chun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
19
|
Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol 2016; 100:7397-405. [PMID: 27418360 PMCID: PMC4980408 DOI: 10.1007/s00253-016-7718-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides/proteins (AMPs) are biologically active molecules with diverse structural properties that are produced by mammals, plants, insects, ticks, and microorganisms. They have a range of antibacterial, antifungal, antiviral, and even anticancer activities, and their biological properties could therefore be exploited for therapeutic and prophylactic applications. Cancer and cancer drug resistance are significant current health challenges, so the development of innovative cancer drugs with minimal toxicity toward normal cells and novel modes of action that can evade resistance may provide a new direction for anticancer therapy. The skin is the first line of defense against heat, sunlight, injury, and infection, and skin cancer is thus the most common type of cancer. The skin that has been exposed to sunlight is particularly susceptible, but lesions can occur anywhere on the body. Skin cancer awareness and self-efficacy are necessary to improve sun protection behavior, but more effective preventative approaches are also required. AMPs may offer a new prophylactic approach against skin cancer. In this mini review, we draw attention to the potential use of insect AMPs for the prevention and treatment of skin cancer.
Collapse
Affiliation(s)
- Miray Tonk
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse, 35394, Giessen, Germany.
| |
Collapse
|