1
|
Krishnamoorthy HR, Karuppasamy R. Deciphering the prognostic landscape of triple-negative breast cancer: A focus on immune-related hub genes and therapeutic implications. Biotechnol Appl Biochem 2024. [PMID: 39587411 DOI: 10.1002/bab.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Triple-negative breast cancer (TNBC), known for its hostile nature and limited treatment modalities, has spurred researchers to explore novel approaches for enhancing clinical outcomes. Here, the study aimed to analyze transcriptomics data to identify immune-related hub genes associated with TNBC that might serve as prognostic biomarkers. Initially, we determined genes that were differentially expressed between TNBC and normal tissues by integrating microarray and RNA sequencing data. Then, through protein-protein interaction and module analysis, we identified five putative hub genes: AURKA, CCNB1, CDCA8, GAPDH, and TOP2A. Subsequently, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the hub genes were primarily involved in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis. Additionally, we observed that these five hub genes were significantly elevated at both protein and mRNA levels in TNBC tissues and contributed to worse survival. Furthermore, the expression of these hub genes exhibited a strong positive association with immune-invading cells such as CD8 T cells, CD4 T cells, and dendritic cells. The analysis of the regulatory network revealed three transcription factors (YBX-1, E2F1, and E2F3) and three posttranscriptional regulators (hsa-mir-25-3p, hsa-mir-92a-3p, and hsa-let-7b-5p) of hub genes. Finally, we explored potential drug candidates for the hub genes using Drug-Gene Interaction Database and discovered that there are no FDA-approved drugs for CCNB1 and CDCA8, highlighting a promising area for future research. Taken together, our results will be of immense importance in addressing the intricacies of TNBC.
Collapse
Affiliation(s)
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Yang Y, Wang XL, Yue YX, Chen G, Xia HF. TSG101 overexpression enhances metastasis in oral squamous cell carcinoma through cell cycle regulation. Cell Signal 2024; 125:111519. [PMID: 39571703 DOI: 10.1016/j.cellsig.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The tumor susceptibility gene 101 (TSG101) was firstly identified as a tumor-inhibiting factor in 1996. Subsequent studies gradually revealed its crucial role in several important cellular processes, including cell survival, vesicle transportation, viral infection, etc. Additionally, TSG101 has been identified as an oncoprotein in certain tumorigenic processes. These conflicting findings suggest that TSG101 might exhibit tumor heterogeneity. Currently, the expression pattern and function of TSG101 in oral squamous cell carcinoma (OSCC) are still untouched. Herein, we reported that TSG101 expression is upregulated and is associated with poorer survival and a higher propensity for lymph node metastasis in OSCC patients. In vivo mouse models confirmed that TSG101 down-regulation effectively inhibited the pulmonary metastases of human OSCC cells. In vitro cell experiments not only proved that TSG101 knockdown significantly disrupted metastasis-related phenotypes in different OSCC cell lines, but also revealed that TSG101 possibly controls the cell cycle through regulating the transcription of Cyclin A/B to play these roles. Additionally, we further validated these findings with a mouse cell line and murine orthotopic OSCC models. Collectively, the oncoprotein function of TSG101 in OSCC is evident from this study. We offer fresh insights into the heterogeneity of TSG101 and highlight new potential targets for OSCC management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiao-Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ye-Xin Yue
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Liu Z, He M, Yu Z, Ma L, Wang X, Ning F. TIFA enhances glycolysis through E2F1 and promotes the progression of glioma. Cell Signal 2024; 125:111498. [PMID: 39481822 DOI: 10.1016/j.cellsig.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE TRAF interacting protein with forkhead associated domain (TIFA) influence progression of many cancers. However, its role in glioma remains to be explored. This study investigated the function of TIFA in glioma. METHODS The TIFA expression in glioma and patient outcomes were analyzed using online database. Gene set enrichment analysis (GSEA) revealed related mechanisms of TIFA in glioma. TIFA's effects on glioma glycolysis and growth were assessed using in vitro and in vivo experiments. Moreover, luciferase reporter and ChIP were employed to explore the interactions among E2F1, GLUT1, HK2, and LDHA. The subcutaneous xenograft assay further elaborated the effects of TIFA in glioma. RESULTS We found overexpressed TIFA in glioma. Moreover, the high TIFA expression was associated with poor prognosis of glioma. Furthermore, GSEA indicated that overexpressed TIFA promoted E2F1 and glycolysis. Knockdown of TIFA decreased glioma development in cell and mice. TIFA knockdown down-regulated the expression of E2F1, GLUT1, HK2, and LDHA. CONCLUSIONS The study provides evidence that TIFA regulates E2F1 expression in glioma cells and promotes the proliferation, migration, and glycolysis. TIFA might be an advantageous therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Zhibing Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China; Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China
| | - Miaolong He
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeshun Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Longbo Ma
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xiuwen Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China.
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| |
Collapse
|
4
|
Lukacova E, Hanzlikova Z, Podlesnyi P, Sedlackova T, Szemes T, Grendar M, Samec M, Hurtova T, Malicherova B, Leskova K, Budis J, Burjanivova T. Novel liquid biopsy CNV biomarkers in malignant melanoma. Sci Rep 2024; 14:15786. [PMID: 38982214 PMCID: PMC11233564 DOI: 10.1038/s41598-024-65928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.
Collapse
Affiliation(s)
- E Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | | | - P Podlesnyi
- Instituto de Investigaciones Biomedicas de Barcelona (IIBB), CSIC /Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Barcelona, Spain
| | - T Sedlackova
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Szemes
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - M Samec
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - T Hurtova
- Department of Dermatovenereology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Malicherova
- Department of Clinical Biochemistry, University Hospital in Martin and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - K Leskova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Martin, Slovakia
| | - J Budis
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia.
| |
Collapse
|
5
|
Mao Y, Zhou Y, Chen Y, Xu R, Wu YQ, Zhu WW, Wang XF, Wang Q, Juan CX. Transcriptional mechanism of E2F1/TFAP2C/NRF1 in regulating KANK2 gene in nephrotic syndrome. Exp Cell Res 2024; 435:113931. [PMID: 38253280 DOI: 10.1016/j.yexcr.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.
Collapse
Affiliation(s)
- Yan Mao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Yan Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Yan Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210018, China.
| | - Rong Xu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Yi-Qing Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Wei-Wei Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Xu-Fang Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| | - Qian Wang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Chen-Xia Juan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
6
|
Chi Z, Wang Q, Tong L, Qiu J, Yang F, Guo Q, Li W, Zheng J, Chen Z. Silencing geranylgeranyltransferase I inhibits the migration and invasion of salivary adenoid cystic carcinoma through RhoA/ROCK1/MLC signaling and suppresses proliferation through cell cycle regulation. Cell Biol Int 2024; 48:174-189. [PMID: 37853939 DOI: 10.1002/cbin.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.
Collapse
Affiliation(s)
- Zengpeng Chi
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lei Tong
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Fang Yang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qingyuan Guo
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjian Li
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
7
|
Zhou F, Deng Z, Shen D, Lu M, Li M, Yu J, Xiao Y, Wang G, Qian K, Ju L, Wang X. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 2024; 43:594-607. [PMID: 38182895 DOI: 10.1038/s41388-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengxin Lu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Lu Y, Wei Y, Shen X, Tong Y, Lu J, Zhang Y, Ma Y, Zhang R. Mechanism of E2F1 in the proliferation, migration, and invasion of endometrial carcinoma cells via the regulation of BMI1 transcription. Genes Genomics 2023; 45:1423-1431. [PMID: 37646913 DOI: 10.1007/s13258-023-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Endometrial carcinoma (EC) is the most prevalent gynecological cancer. Transcription factor (TF) regulates a large number of downstream target genes and is a key determinant of all physiological activities, including cell proliferation, differentiation, apoptosis, and cell cycle. The transcription factor E2F1 shows prominent roles in EC. BMI1 is a member of Polycomb suppressor Complex 1 (PRC1) and has been shown to be associated with EC invasiveness. It is currently unclear whether E2F1 can participate in the proliferation, migration, and invasion processes of EC cells by regulating BMI1 transcription. OBJECTIVE We investigated whether E2F1 could participate in the proliferation, migration, and invasion processes of EC cells by regulating BMI1 transcription, in order to further clarify the pathogenesis and etiology of EC, and provide reference for identifying potential therapeutic targets and developing effective prevention and treatment strategies for this disease. METHODS Human endometrial epithelial cells (hEECs) and human EC cell lines were selected. E2F1 expression was assessed by Western blot. E2F1 was silenced in AN3CA or overexpressed in HEC-1 by transfections, or E2F1 was silenced and BMI1 was overexpressed in AN3CA by cotransfection. Cell proliferation, migration, and invasion were detected by MTT, wound healing, and Transwell assays. The binding sites between E2F1 and BMI1 promoters were predicted through JASPAR website, and the targeted binding was verified by dual-luciferase report and ChIP assays. RESULTS E2F1 was up-regulated in human EC cell lines, with its expression highest in AN3CA, and lowest in HEC-1. AN3CA invasion, migration, and proliferation were repressed by E2F1 knockdown, while those of HEC-1 cells were promoted by E2F1 overexpression. E2F1 overexpression increased the activity of wild type BMI1 reporter vector promoter, while this promotion was weakened after mutation of the predicted binding site in the BMI1 promoter. In the precipitated E2F1, BMI1 promoter site level was higher than that of IgG immunoprecipitant. BMI1 silencing suppressed AN3CA cell growth. BMI1 overexpression partially abrogated E2F1 silencing-inhibited EC cell growth. CONCLUSION E2F1 promoted EC cell proliferation, invasion, and migration by promoting the transcription of BMI1.
Collapse
Affiliation(s)
- Yanyang Lu
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Ying Wei
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Xiaoqin Shen
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Yixi Tong
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Jin Lu
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Yahui Zhang
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Yun Ma
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China
| | - Rong Zhang
- Department of Gynecology, The Second Affiliated Hospital of Soochow University, N0.1055, Sanxiang Road, 215000, Suzhou, China.
| |
Collapse
|
9
|
Kublanovsky M, Ulu GT, Weirich S, Levy N, Feldman M, Jeltsch A, Levy D. Methylation of the transcription factor E2F1 by SETD6 regulates SETD6 expression via a positive feedback mechanism. J Biol Chem 2023; 299:105236. [PMID: 37690684 PMCID: PMC10551896 DOI: 10.1016/j.jbc.2023.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.
Collapse
Affiliation(s)
- Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gizem T Ulu
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Nurit Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
10
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Li H, Wang H, Cui Y, Jiang W, Zhan H, Feng L, Gao M, Zhao K, Zhang L, Xie X, Zhao N, Li Y, Liu P. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas 2023; 160:23. [PMID: 37198697 DOI: 10.1186/s41065-023-00280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in digestive tract. To explore the role of epigenetic factor EZH2 in the malignant proliferation of PC, so as to provide effective medical help in PC. Sixty paraffin sections of PC were collected and the expression of EZH2 in PC tissues was detected by immunohistochemical assay. Three normal pancreas tissue samples were used as controls. The regulation of EZH2 gene on proliferation and migration of normal pancreatic cell and PC cell were determined by MTS, colony forming, Ki-67 antibody, scratch and Transwell assays. Through differential gene annotation and differential gene signaling pathway analysis, differentially expressed genes related to cell proliferation were selected and verified by RT-qPCR. EZH2 is mainly expressed in the nuclei of pancreatic tumor cells, but not in normal pancreatic cells. The results of cell function experiments showed that EZH2 overexpression could enhance the proliferation and migration ability of PC cell BXPC-3. Cell proliferation ability increased by 38% compared to the control group. EZH2 knockdown resulted in reduced proliferation and migration ability of cells. Compared with control, proliferation ability of cells reduced by 16%-40%. The results of bioinformatics analysis of transcriptome data and RT-qPCR demonstrated that EZH2 could regulate the expression of E2F1, GLI1, CDK3 and Mcm4 in normal and PC cells. The results revealed that EZH2 might regulate the proliferation of normal pancreatic cell and PC cell through E2F1, GLI1, CDK3 and Mcm4.
Collapse
Affiliation(s)
- Hongfeng Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China
| | - Yunlong Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenhua Jiang
- Department of Radiotherapy, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hongjie Zhan
- Department of Gastric Cancer, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lixia Feng
- Department of Nursing, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Konggang Hospital, Tianjin, 300300, China
| | - Mingyou Gao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Kuo Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Limeng Zhang
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiaojing Xie
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ning Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, No. 12 Health Road, Shijiazhuang, 050000, Hebei, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
12
|
Olatunji I, Cui F. Multimodal AI for prediction of distant metastasis in carcinoma patients. FRONTIERS IN BIOINFORMATICS 2023; 3:1131021. [PMID: 37228671 PMCID: PMC10203594 DOI: 10.3389/fbinf.2023.1131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Metastasis of cancer is directly related to death in almost all cases, however a lot is yet to be understood about this process. Despite advancements in the available radiological investigation techniques, not all cases of Distant Metastasis (DM) are diagnosed at initial clinical presentation. Also, there are currently no standard biomarkers of metastasis. Early, accurate diagnosis of DM is however crucial for clinical decision making, and planning of appropriate management strategies. Previous works have achieved little success in attempts to predict DM from either clinical, genomic, radiology, or histopathology data. In this work we attempt a multimodal approach to predict the presence of DM in cancer patients by combining gene expression data, clinical data and histopathology images. We tested a novel combination of Random Forest (RF) algorithm with an optimization technique for gene selection, and investigated if gene expression pattern in the primary tissues of three cancer types (Bladder Carcinoma, Pancreatic Adenocarcinoma, and Head and Neck Squamous Carcinoma) with DM are similar or different. Gene expression biomarkers of DM identified by our proposed method outperformed Differentially Expressed Genes (DEGs) identified by the DESeq2 software package in the task of predicting presence or absence of DM. Genes involved in DM tend to be more cancer type specific rather than general across all cancers. Our results also indicate that multimodal data is more predictive of metastasis than either of the three unimodal data tested, and genomic data provides the highest contribution by a wide margin. The results re-emphasize the importance for availability of sufficient image data when a weakly supervised training technique is used. Code is made available at: https://github.com/rit-cui-lab/Multimodal-AI-for-Prediction-of-Distant-Metastasis-in-Carcinoma-Patients.
Collapse
Affiliation(s)
| | - Feng Cui
- Thomas H. Gosnell School of Life Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
13
|
Ou ZY, Wang K, Shen WW, Deng G, Xu YY, Wang LF, Zai ZY, Ling YA, Zhang T, Peng XQ, Chen FH. Oncogenic FLT3 internal tandem duplication activates E2F1 to regulate purine metabolism in acute myeloid leukaemia. Biochem Pharmacol 2023; 210:115458. [PMID: 36803956 DOI: 10.1016/j.bcp.2023.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Oncogene FLT3 internal tandem duplication (FLT3-ITD) mutation accounts for 30 % of acute myeloid leukaemia (AML) cases and induces transformation. Previously, we found that E2F transcription factor 1 (E2F1) was involved in AML cell differentiation. Here, we reported that E2F1 expression was aberrantly upregulated in AML patients, especially in AML patients carrying FLT3-ITD. E2F1 knockdown inhibited cell proliferation and increased cell sensitivity to chemotherapy in cultured FLT3-ITD-positive AML cells. E2F1-depleted FLT3-ITD+ AML cells lost their malignancy as shown by the reduced leukaemia burden and prolonged survival in NOD-PrkdcscidIl2rgem1/Smoc mice receiving xenografts. Additionally, FLT3-ITD-driven transformation of human CD34+ hematopoietic stem and progenitor cells was counteracted by E2F1 knockdown. Mechanistically, FLT3-ITD enhanced the expression and nuclear accumulation of E2F1 in AML cells. Further study using chromatin immunoprecipitation-sequencing and metabolomics analyses revealed that ectopic FLT3-ITD promoted the recruitment of E2F1 on genes encoding key enzymatic regulators of purine metabolism and thus supported AML cell proliferation. Together, this study demonstrates that E2F1-activated purine metabolism is a critical downstream process of FLT3-ITD in AML and a potential target for FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Zi-Yao Ou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Shen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ge Deng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ya-Yun Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Long-Fei Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhuo-Yan Zai
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-An Ling
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao-Qing Peng
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
14
|
Du J, Rui F, Hao Z, Hang Y, Shu J. Transcription Factor E2F1 Regulates the Expression of ADRB2. Int J Anal Chem 2023; 2023:8210685. [PMID: 37128280 PMCID: PMC10148742 DOI: 10.1155/2023/8210685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023] Open
Abstract
Adrenergic beta-2-receptor (ADRB2) is highly expressed in various tissue cells, affecting the susceptibility, development, and drug efficacy of diseases such as bronchial asthma and malignant tumor. However, the transcriptional regulatory mechanism of the human ADRB2 gene remains unclear. This study aimed to clarify whether E2F transcription factor 1 (E2F1) was involved in the transcriptional regulation of the human ADRB2 gene. First, the 5' flanking region of the human ADRB2 gene was cloned, and its activity was detected using A549 and BEAS-2B cells. Second, it was found that the overexpression of E2F1 could increase promoter activity by a dual-luciferase reporter gene assay. In contrast, treatment of knockdown of E2F1 significantly resulted in a decrease in its promoter activity. Moreover, mutation of the binding site of E2F1 greatly reduced the potential of human ADRB2 promoter transcriptional activity to be regulated by E2F1 overexpression and knockdown. Additionally, by real-time quantitative PCR and Western blot analysis, we demonstrated that overexpression of E2F1 elevated the ADRB2 mRNA expression and protein levels while si-E2F1 reduced its expression. Finally, the consequence of the chromatin immunoprecipitation assay showed that E2F1 was able to bind to the promoter region of ADRB2 in vivo. These results confirmed that E2F1 upregulated the expression of the human ADRB2 gene.
Collapse
Affiliation(s)
- Juan Du
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Rui
- Department of Neonatology, Changzhou Maternal and Child Health Hospital, Changzhou, Jiangsu, China
| | - Zhongfen Hao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Hang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther 2022; 29:1001-1011. [PMID: 34799723 DOI: 10.1038/s41417-021-00405-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023]
Abstract
Prostate cancer (PCa) is a commonly diagnosed malignancy in men. The transcription factor p53, a well-known cancer suppressor, has been extensively analyzed in the progression of many tumor types, but its involvement in PCa remains not fully understood. Hence, this study aims to explore the possible molecular mechanism underlying p53 in the growth and metastasis of PCa. Based on bioinformatics analysis findings of GEPIA and starBase databases, p53 was demonstrated to be involved in the development of PCa by transcriptionally activating microRNA-519d-3p (miR-519d-3p) expression to suppress the expression of E2F transcription factor 1 (E2F1) and CD147. In order to verify this finding, clinically-obtained PCa tumor tissues were enrolled and commercially-purchased PCa cell lines were used to detect the cell viability, cycle, and apoptosis, as well as invasion and migration by CCK-8, flow cytometry, and Transwell assays respectively. The results of clinical tissue experiments and in vitro cell experiments showed that miR-519d-3p and p53 were poorly-expressed in PCa tissues and cell lines, while E2F1 was highly-expressed. Overexpression of miR-519d-3p led to inhibited PCa cell proliferation, invasion and migration, and p53 overexpression was found to promote miR-519d-3p expression to suppress the malignant characteristics of PCa cells, while the additional E2F1 overexpression restored the malignant traits. Moreover, ChIP analysis and dual-luciferase reporter assay confirmed the interactions among p53, miR-519d-3p, and E2F1. Mechanistically, it was found that p53 transcriptionally activated miR-519d-3p to suppress E2F1 expression. Finally, the in vitro results were further validated by in vivo experiments, which showed that miR-519d-3p prevents tumorigenesis and lymph node metastasis of PCa in nude mice via negatively regulation of E2F1 and CD147. Taken together, the findings uncover that the transcription factor p53 could upregulate miR-519d-3p expression to directly suppress the expression of E2F1, thus inhibiting PCa growth and metastasis. It highlights a novel therapeutic strategy against PCa based on the p53/miR-519d-3p/E2F1 regulatory pathway.
Collapse
|
16
|
Liang D, Li Z, Feng Z, Yuan Z, Dai Y, Wu X, Zhang F, Wang Y, Zhou Y, Liu L, Shi M, Xiao Y, Guo B. Metformin Improves the Senescence of Renal Tubular Epithelial Cells in a High-Glucose State Through E2F1. Front Pharmacol 2022; 13:926211. [PMID: 35814218 PMCID: PMC9262145 DOI: 10.3389/fphar.2022.926211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic kidney disease is a major cause of chronic kidney condition and the most common complication of diabetes. The cellular senescence participates in the process of diabetic kidney disease, but the specific mechanism is not yet clear. Cell cycle-related protein E2F transcription factor 1 (E2F1) is a member of the E2F transcription factor family, it plays a key role in cellular damage under HG conditions. In this study, we explored whether metformin improves a high-glucose-induced senescence and fibrosis of renal tubular epithelial cells through cell cycle-related protein E2F1. In the in vivo experiments, the recombinant adeno-associated virus (AAV-shE2F1) knockdown E2F1 gene was injected into the tail vein of 16-weeks-old db/db mice for 8 weeks. The 16-week-old db/db mice were administered metformin (260 mg/kg/d) continuously for 8 weeks. The normal control group (NC) and diabetic model group (DM) were set up simultaneously. Mice renal tubular epithelial cells (mRTECs) were cultured in vitro. The cells were randomly divided into the following groups: normal glucose (NG, containing 5.5 mmol/L glucose), high glucose group (HG, containing 30 mmol/L glucose), NG/HG metformin intervention group (NG/HG + Met), NG/HG negative control siRNA transfection group (NG/HG + Control), NG/HG E2F1 siRNA transfection group (NG/HG + siRNA E2F1), HG metformin intervention and overexpression E2F1 plasmid transfection group (HG + Met + overexpress-E2F1). The expression of related indexes were detected by Western blot, real-time polymerase chain reaction (PCR), immunohistochemistry, and immunofluorescence. The results showed that E2F1 knockdown or metformin reduces the degree of renal fibrosis, DNA damage, and cellular senescence in the DM group; metformin also reduced the expression of E2F1. If E2F1 was overexpressed, the effects of metformin in delaying fibrosis and reducing DNA damage and cellular senescence could be weakened. Thus, metformin alleviates high-glucose-induced senescence and fibrosis of renal tubular epithelial cells by downregulating the expression of E2F1.
Collapse
Affiliation(s)
- Dan Liang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Zhiyang Li
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Zhaowei Feng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Zhiping Yuan
- University Town Hospital, Guizhou Medical University, Guiyang, China
| | - Yunli Dai
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Xin Wu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Wang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Yuxia Zhou
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Lingling Liu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- *Correspondence: Ying Xiao, ; Bing Guo,
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- *Correspondence: Ying Xiao, ; Bing Guo,
| |
Collapse
|
17
|
Tumor Suppressor Role and Clinical Significance of the FEV Gene in Prostate Cancer. DISEASE MARKERS 2022; 2022:8724035. [PMID: 35548776 PMCID: PMC9085333 DOI: 10.1155/2022/8724035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Background In our previous research, we developed a 32-gene risk index model that may be utilized as a robust prognostic method for predicting prostate cancer (PCa) recurrence after surgery. Among the 32 genes, the Fifth Ewing Variant (FEV) gene was one of the top downregulated genes in relapsed PCa. However, current understanding of the FEV gene and its involvement in PCa is limited. Methods FEV mRNA expression was analyzed and correlated to clinical outcomes in PCa patients who underwent prostatectomy at the Massachusetts General Hospital. Specimens from tissue microarray (TMA) including 102 prostate cancer patients were analysis for the expression of FEV. Meanwhile, FEV expression profiles were also assessed in PCa cell lines and in BPH-1 prostate epithelial cells using western blotting and quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we transfected LNCaP and PC-3 cells with either an empty vector or full-length FEV gene and performed in vitro cell functional assays. The part FEV plays in tumor xenograft growth was also assessed in vivo. Results Of the 191 patients included in this study base on the DASL dataset, 77 (40.3%) and 24 (13.6%), respectively, developed prostate-specific antigen (PSA) relapse and metastasis postradical prostatectomy. Significant FEV downregulation was observed in PCa patients showing PSA failure and metastasis. The protein expression of FEV was significantly negatively correlated with the Gleason score and pathological stage in prostate cancer tissues. Similarly, FEV expression significantly decreased in all PCa cell lines relative to BPH-1 (all P < 0.05). Functional assays revealed that FEV expression markedly inhibited PCa cell growth, migration, and invasion, which in turn significantly repressed the growth of tumor xenografts in vivo. Conclusion The results of this study suggest an association between downregulated FEV expression and PSA relapse in PCa patients. In addition, FEV may act as a tumor suppressor in PCa.
Collapse
|
18
|
Han Z, Mo R, Cai S, Feng Y, Tang Z, Ye J, Liu R, Cai Z, Zhu X, Deng Y, Zou Z, Wu Y, Cai Z, Liang Y, Zhong W. Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Front Cell Dev Biol 2022; 10:831329. [PMID: 35531101 PMCID: PMC9068940 DOI: 10.3389/fcell.2022.831329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Given the tumor heterogeneity, most of the current prognostic indicators cannot accurately evaluate the prognosis of patients with prostate cancer, and thus, the best opportunity to intervene in the progression of this disease is missed. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. Accumulating studies indicate that prostate cancer (PCa) carcinogenesis is attributed to aberrant E2F expression or E2F alteration. However, the expression patterns and prognostic value of the eight E2Fs in prostate cancer have yet to be explored. In this study, The Cancer Genome Atlas (TCGA), Kaplan–Meier Plotter, Metascape, the Kyoto Encyclopedia of Genes and Genomes (KEGG), CIBERSORT, and cBioPortal and bioinformatic analysis were used to investigate E2Fs in patients with PCa. Our results showed that the expression of E2F1–3, E2F5, and E2F6 was higher in prostate cancer tissues than in benign tissues. Furthermore, elevated E2F1–3 and E2F5 expression levels were associated with a higher Gleason score (GS), advanced tumor stage, and metastasis. Survival analysis suggested that high transcription levels of E2F1–3, E2F5, E2F6, and E2F8 were associated with a higher risk of biochemical recurrence. In addition, we developed a prognostic model combining E2F1, E2F6, Gleason score, and the clinical stage that may accurately predict a biochemical recurrence-free survival. Functional enrichment analysis revealed that the E2F family members and their neighboring genes were mainly enriched in cell cycle-related pathways. Somatic mutations in different subgroups were also investigated, and immune components were predicted. Further experiments are warranted to clarify the biological associations between Pca-related E2F family genes, which may influence prognosis via the cell cycle pathway.
Collapse
Affiliation(s)
- Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rujun Mo
- Department of Urology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shanghua Cai
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Tang
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejin Zhu
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yulin Deng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| |
Collapse
|
19
|
Centenera MM, Vincent AD, Moldovan M, Lin HM, Lynn DJ, Horvath LG, Butler LM. Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants. Cancers (Basel) 2022; 14:cancers14071708. [PMID: 35406480 PMCID: PMC8996971 DOI: 10.3390/cancers14071708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary There is a widespread push toward more biologically relevant pre-clinical models of prostate cancer that can improve the discovery and translation of new drugs and biomarkers for this disease. Patient-derived explant culture is an innovative pre-clinical model that utilizes surgical prostate cancer specimens in a way that retains the architecture, microenvironment and heterogeneity of prostate tumors—factors that critically influence cell behavior and response to therapy. With increasing tissue complexity comes increasing complexity of analysis. The aim of this study was to provide critical information for the successful application and analysis of the patient-derived prostate cancer explant model. Abstract Prostate cancer is a complex and heterogeneous disease, but a small number of cell lines have dominated basic prostate cancer research, representing a major obstacle in the field of drug and biomarker discovery. A growing lack of confidence in cell lines has seen a shift toward more sophisticated pre-clinical cancer models that incorporate patient-derived tumors as xenografts or explants, to more accurately reflect clinical disease. Not only do these models retain critical features of the original tumor, and account for the molecular diversity and cellular heterogeneity of prostate cancer, but they provide a unique opportunity to conduct research in matched tumor samples. The challenge that accompanies these complex tissue models is increased complexity of analysis. With over 10 years of experience working with patient-derived explants (PDEs) of prostate cancer, this study provides guidance on the PDE method, its limitations, and considerations for addressing the heterogeneity of prostate cancer PDEs that are based on statistical modeling. Using inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) as an example of a drug that induces robust proliferative response, we demonstrate how multi-omics analysis in prostate cancer PDEs is both feasible and essential for identification of key biological pathways, with significant potential for novel drug target and biomarker discovery.
Collapse
Affiliation(s)
- Margaret M. Centenera
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Andrew D. Vincent
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Max Moldovan
- Biometry Hub, Faculty of Science, University of Adelaide, Waite Campus, SA 5005, Australia;
| | - Hui-Ming Lin
- Garvan Institute for Medical Research, Darlinghurst, NSW 2010, Australia; (H.-M.L.); (L.G.H.)
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Lisa G. Horvath
- Garvan Institute for Medical Research, Darlinghurst, NSW 2010, Australia; (H.-M.L.); (L.G.H.)
- Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- University of Sydney, Camperdown, NSW 2006, Australia
| | - Lisa M. Butler
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
| |
Collapse
|
20
|
Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2022; 40:1109-1119. [PMID: 32936048 PMCID: PMC7544927 DOI: 10.1080/07391102.2020.1822208] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel β strands, β1' and β2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O. Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen M. Sayed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Amr H. Saleh
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
21
|
Tang Y, Jiang L, Zhao X, Hu D, Zhao G, Luo S, Du X, Tang W. FOXO1 inhibits prostate cancer cell proliferation via suppressing E2F1 activated NPRL2 expression. Cell Biol Int 2021; 45:2510-2520. [PMID: 34459063 DOI: 10.1002/cbin.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/11/2022]
Abstract
Previous studies in our lab suggest that nitrogen permease regulator 2-like (NPRL2) upregulation in prostate cancer is associated with malignant behavior and poor prognosis. However, the underlying mechanisms of NPRL2 dysregulation remain poorly understood. This study aimed to explore the transcription factors (TFs) contributing to NPRL2 dysregulation in prostate cancer. Potential TFs were identified using prostate tissue/cell-specific chromatin immunoprecipitation (ChIP)-seq data collected in the Cistrome Data Browser and Signaling Pathways Project. Dual-luciferase assay and ChIP-qPCR assay were conducted to assess the binding and activating effect of TFs on the gene promoter. Cell Counting Kit-8 and colony formation assays were performed to assess cell proliferation. Results showed that E2F1 is a TF that bound to the NPRL2 promoter and activated its transcription. NPRL2 inhibition significantly alleviated E2F1 enhanced cell proliferation. Kaplan-Meier survival analysis indicated that E2F1 upregulation was associated with unfavorable progression-free survival and disease-specific survival. FOXO1 interacted and E2F1 in both PC3 and LNCaP cells and weakened the binding of E2F1 to the NPRL2 promoter. Functionally, FOXO1 overexpression significantly slowed the proliferation of PC3 and LNCaP cells and also decreased E2F1 enhanced cell proliferation. In summary, this study revealed a novel FOXO1/E2F1-NPRL2 regulatory axis in prostate cancer. E2F1 binds to the NPRL2 promoter and activates its transcription, while FOXO1 interacts with E2F1 and weakens its transcriptional activating effects. These findings help expand our understanding of the prostate cancer etiology and suggest that the FOXO1/E2F1-NPRL2 signaling axis might be a potential target.
Collapse
Affiliation(s)
- Yu Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guozhi Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
E2F1 copy number variations in germline and breast cancer: a retrospective study of 222 Italian women. Mol Med 2021; 27:26. [PMID: 33691613 PMCID: PMC7948349 DOI: 10.1186/s10020-021-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer is the most common neoplasia among women in developed countries. The risk factors of breast cancer can be distinguished in modifiable and unmodifiable factors and, among the latter, genetic factors play a key role. Copy number variations (CNVs) are genetic variants that are classified as rare when present in less than 1% of the healthy population. Since rare CNVs are often cause of diseases, over the last years, their contribution in carcinogenesis has become a relevant matter of study. E2F1 is a transcriptional factor that plays an important role in regulating cell cycle and apoptosis. Its double and conflicting role is the reason why it acts both as oncogene and as tumour suppressor, depending on cell context. Since anomalies in expression or in number of copies of E2F1 have been related to several cancers, we aimed to study number of germline copies of E2F1 in women with breast cancer in order to better elucidate their contribution as predisposing factor to this tumour. Methods We performed, hence, a retrospective study on 222 Italian women with breast cancer recruited from October 2002 to December 2007. TaqMan CNV assay and Real-Time PCR were carried out to analyse, respectively, E2F1 CNV and E2F1 expression in the subjects of the study. Chi square test or Fisher’s exact test and Student's t‐test were used to calculate the frequency of CNVs and differences in continuous variables between groups, respectively. Results Intriguingly, we found that 10/222 (4.5%) women with breast cancer had more copies than controls (0/200, 0%), furthermore, the number of copies positively correlated with E2F1 gene expression in breast cancer tissue, suggesting that the constitutive gain of the gene could translate into an increased risk of genomic instability. Additionally, we found that altered E2F1 copies were present prevalently in the patients with contralateral breast cancer (20%) and all of them had a positive family history, both typically associated with hereditary cancer. Conclusions Our findings suggest that copy number variations of E2F1 might be a susceptibility factor for breast cancer, however, further studies on large cohorts are to be performed in order to better delineate the phenotype linked to the gain of E2F1 copies.
Collapse
|
23
|
Clinical Significance of CD147 in Children with Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7647181. [PMID: 33015178 PMCID: PMC7516708 DOI: 10.1155/2020/7647181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Background CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. Objective The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). Results In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. Conclusion The data suggested that increased CD147 level could be a biomarker of IBD in children.
Collapse
|
24
|
Enhanced E2F1 activity increases invasive and proliferative activity of breast cancer cells through non-coding RNA CDKN2B-AS1. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Nishida K, Kuwano Y, Rokutan K. The MicroRNA-23b/27b/24 Cluster Facilitates Colon Cancer Cell Migration by Targeting FOXP2. Cancers (Basel) 2020; 12:cancers12010174. [PMID: 31936744 PMCID: PMC7017312 DOI: 10.3390/cancers12010174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Acquisition of cell migration capacity is an early and essential process in cancer development. The aim of this study was to identify microRNA gene expression networks that induced high migration capacity. Using colon cancer HCT116 cells subcloned by transwell-based migrated cell selection, microRNA array analysis was performed to examine the microRNA expression profile. Promoter activity and microRNA targets were assessed with luciferase reporters. Cell migration capacity was assessed by either the transwell or scratch assay. In isolated subpopulations with high migration capacity, the expression levels of the miR-23b/27b/24 cluster increased in accordance with the increased expression of the short C9orf3 transcript, a host gene of the miR-23b/27b/24 cluster. E2F1-binding sequences were involved in the basic transcription activity of the short C9orf3 expression, and E2F1-small-interfering (si)RNA treatment reduced the expression of both the C9orf3 and miR-23b/27b/24 clusters. Overexpression experiments showed that miR-23b and miR-27b promoted cell migration, but the opposite effect was observed with miR-24. Forkhead box P2 (FOXP2) mRNA and protein levels were reduced by both/either miR-23b and miR-27b. Furthermore, FOXP2 siRNA treatment significantly promoted cell migration. Our findings demonstrated a novel role of the miR-23b/27b/24 cluster in cell migration through targeting FOXP2, with potential implications for the development of microRNA-based therapy targeted at inhibiting cancer migration.
Collapse
|
26
|
Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, Jiang R, Ai Z, Zhang Z, Teng Y. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine 2020; 51:102609. [PMID: 31915116 PMCID: PMC7000338 DOI: 10.1016/j.ebiom.2019.102609] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most common gynecological malignancies among women. Maternal embryonic leucine Zipper Kinase (MELK) is upregulated in a variety of human tumors, where it contributes to malignant phenotype and correlates with a poor prognosis. However, the biological function of MELK in EC progression remains largely unknown. Methods We explored the MELK expression in EC using TCGA and GEO databases and verified it using clinical samples by IHC methods. CCK-8 assay, colony formation assay, cell cycle assay, wound healing assay and subcutaneous xenograft mouse model were generated to estimate the functions of MELK and its inhibitor OTSSP167. qRT-PCR, western blotting, co-immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assay were performed to uncover the underlying mechanism concerning MELK during the progression of EC. Findings MELK was significantly elevated in patients with EC, and high expression of MELK was associated with serous EC, high histological grade, advanced clinical stage and reduced overall survival and disease-free survival. MELK knockdown decreased the ability of cell proliferation and migration in vitro and subcutaneous tumorigenesis in vivo. In addition, high expression of MELK could be regulated by transcription factor E2F1. Moreover, we found that MELK had a direct interaction with MLST8 and then activated mTORC1 and mTORC2 signaling pathway for EC progression. Furthermore, OTSSP167, an effective inhibitor, could inhibit cell proliferation driven by MELK in vivo and vitro assays. Interpretation We have explored the crucial role of the E2F1/MELK/mTORC1/2 axis in the progression of EC, which could be served as potential therapeutic targets for treatment of EC. Funding This research was supported by National Natural Science Foundation of China (No:81672565), the Natural Science Foundation of Shanghai (Grant NO:17ZR1421400 to Dr. Zhihong Ai) and the fundamental research funds for central universities (No: 22120180595).
Collapse
Affiliation(s)
- Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Qiulin Ge
- Centre of assisted reproduction, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Yang Zhou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Rongzhen Jiang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Zhihong Ai
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
27
|
Chun JN, Cho M, Park S, So I, Jeon JH. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochim Biophys Acta Rev Cancer 2019; 1873:188336. [PMID: 31870703 DOI: 10.1016/j.bbcan.2019.188336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The transcription factor E2F1 plays a crucial role in mediating multiple cancer hallmark capabilities that regulate cell cycle, survival, apoptosis, metabolism, and metastasis. Aberrant activation of E2F1 is closely associated with a poor clinical outcome in various human cancers. However, E2F1 has conflictingly been reported to exert tumor suppressive activity, raising a question as to the nature of its substantive role in the control of cell fate. In this review, we summarize deregulated E2F1 activity and its role in prostate cancer. We highlight the recent advances in understanding the molecular mechanism by which E2F1 regulates the development and progression of prostate cancer, providing insight into how cell context or data interpretation shapes the role of E2F1 in prostate cancer. This review will aid in translating biomedical knowledge into therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
28
|
Zhou Q, Wang C, Zhu Y, Wu Q, Jiang Y, Huang Y, Hu Y. Key Genes And Pathways Controlled By E2F1 In Human Castration-Resistant Prostate Cancer Cells. Onco Targets Ther 2019; 12:8961-8976. [PMID: 31802906 PMCID: PMC6827506 DOI: 10.2147/ott.s217347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Treatment of castration-resistant prostate cancer (CRPC) is an enormous challenge. As E2F transcription factor 1 (E2F1) is an essential factor in CRPC, this study investigated the genes and pathways controlled by E2F1 and their effects on cellular behavior in CRPC. Methods In vitro assays were used to evaluate cellular proliferation, apoptosis, and behavior. Cellular expression was quantified by RNA sequencing (RNA-seq). Gene co-expression was assessed using the GeneMANIA database, and correlations were analyzed with the GEPIA server. Altered pathways of differentially expressed genes (DEGs) were revealed by functional annotation. Module analysis was performed using the STRING database and hub genes were filtered with the Cytoscape software. Some DEGs were validated by real-time quantitative PCR (RT-qPCR). Results Knockdown of E2F1 significantly inhibited proliferation and accelerated apoptosis in PC3 cells but not in DU145 cells. Invasion and migration were reduced for both cell lines. A total of 1811 DEGs were identified in PC3 cells and 27 DEGs in DU145 cells exhibiting E2F1 knockdown. Ten overlapping DEGs, including TMOD2 and AIF1L, were identified in both knockdown cell lines and were significantly enriched for association with actin filament organization pathways. TMOD2 and KREMEN2 were genes co-expressed with E2F1; six overlapping DEGs were positively correlated with transcription factor E2F1. DEGs of the PC3 and DU145 groups were associated with multiple pathways. Five DEGs that overlapped between the two cell lines and three hub DEGs from PC3 cells were validated by RT-qPCR. Conclusion The results of this study suggest that E2F1 has a critical role in regulating actin filaments, as indicated by the change in expression level of several genes, including TMOD2 and AIF1L, in CRPC. This extends our understanding of the cellular responses affected by E2F1 in CRPC.
Collapse
Affiliation(s)
- Qingniao Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Chengbang Wang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuanyuan Zhu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Qunying Wu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yonghua Jiang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuanjie Huang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yanling Hu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
29
|
Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis 2019; 10:916. [PMID: 31801947 PMCID: PMC6893029 DOI: 10.1038/s41419-019-2154-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
The burgeoning functions of many microRNAs (miRs) have been well study in cancer. However, the level and function of miR-1205 in laryngeal squamous cell cancer remains unknown. In the current research, we validated that miR-1205 was notably downregulated in human laryngeal squamous cell carcinoma (LSCC) samples in comparison with tissues adjacent to LSCC, and correlated with T stage, lymph node metastasis, and clinical stage. Using Kaplan–Meier analysis indicates that high expression of miR-1205 has a favorable prognosis for patients with LSCC. Functional assays show that enforced miR-1205 expression attenuates the migration, growth, and invasion of LSCC cells. And E2F1 is verified to be a target of miR-1205, while E2F1 binds to miR-1205 promoter and transcriptionally inhibits miR-1205 expression. Overexpression of E2F1 reverses the inhibitory impacts of miR-1205 on LSCC cells in part. Importantly, E2F1 is abnormally increased in LSCC tissues, and its protein levels were inversely relevant to miR-1205 expression. High E2F1 protein level is in connection with clinical stage, T stage, lymph node metastasis, and poor prognosis. Consequently, reciprocal regulation of miR-1205 and E2F1 plays a crucial role in the progression of LSCC, suggesting a new miR-1205/E2F1-based clinical application for patients of LSCC.
Collapse
|
30
|
Qi Y, Deng G, Xu P, Zhang H, Yuan F, Geng R, Jiang H, Liu B, Chen Q. HHLA2 is a novel prognostic predictor and potential therapeutic target in malignant glioma. Oncol Rep 2019; 42:2309-2322. [PMID: 31578594 PMCID: PMC6826309 DOI: 10.3892/or.2019.7343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022] Open
Abstract
Glioma is the most common and aggressive tumor type of the central nervous system and is associated with poor prognosis. To date, novel emerging immunotherapies have significantly improved outcomes for patients with various cancer types. Human endogenous retrovirus‑H long terminal repeat‑associating protein 2 (HHLA2), a newly discovered immune checkpoint molecule, has demonstrated its potential as a novel therapeutic target. Therefore, the present study aimed to investigate the clinical prognostic value of HHLA2 in gliomas and its mechanistic role. A systematic review of datasets from The Cancer Genome Atlas was performed. The RNA‑seq data of a total of 669 cases were analyzed and the biological function of HHLA2 was predicted by Gene Ontology (GO) and pathway enrichment analysis. Immunohistochemistry labelling images for HHLA2 was obtained from the Human Protein Atlas. xCell was used to comprehensively analyze the model of tumor‑infiltrating immune cell in glioma. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. The results revealed that the expression levels of HHLA2 were significantly lower in high‑grade glioma, as well as glioma with wild‑type isocitrate dehydrogenase, no deletion of 1p/19q and telomerase reverse transcriptase promoter mutation. Receiver operating characteristic analysis revealed that HHLA2 was a predictor of the neural subtype. The tumor‑infiltrating immune cell model indicated that HHLA2 was negatively associated with tumor‑associated macrophages. GO analysis and pathway enrichment analysis revealed that HHLA2‑associated genes were functionally involved in inhibition of neoplasia‑associated processes. HHLA2 was significantly negatively correlated with certain genes, including interleukin‑10, transforming growth factor‑β, vascular endothelial growth factor and δ‑like canonical Notch ligand 4, and other immune checkpoint molecules, including programmed cell death 1, lymphocyte activating 3 and CD276. Survival analysis indicated that high expression of HHLA2 predicted a favorable prognosis. In conclusion, the present study revealed that upregulation of HHLA2 is significantly associated with a favorable outcome for patients with glioma. Targeting HHLA2 as an immune stimulator may become a valuable approach for the treatment of glioma in clinical practice.
Collapse
Affiliation(s)
- Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Pengfei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| |
Collapse
|
31
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
32
|
Song ZY, Chao F, Zhuo Z, Ma Z, Li W, Chen G. Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging (Albany NY) 2019; 11:4736-4756. [PMID: 31306099 PMCID: PMC6660050 DOI: 10.18632/aging.102087] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
The pathogenic mechanisms of prostate cancer (PCa) remain to be defined. In this study, we utilized the Robust Rank Aggregation (RRA) method to integrate 10 eligible PCa microarray datasets from the GEO and identified a set of significant differentially expressed genes (DEGs) between tumor samples and normal, matched specimens. To explore potential associations between gene sets and PCa clinical features and to identify hub genes, we utilized WGCNA to construct gene co-expression networks incorporating the DEGs screened with the use of RRA. From the key module, we selected LMNB1, TK1, ZWINT, and RACGAP1 for validation. We found that these genes were up-regulated in PCa samples, and higher expression levels were associated with higher Gleason scores and tumor grades. Moreover, ROC and K-M plots indicated these genes had good diagnostic and prognostic value for PCa. On the other hand, methylation analyses suggested that the abnormal up-regulation of these four genes likely resulted from hypomethylation, while GSEA and GSVA for single hub gene revealed they all had a close association with proliferation of PCa cells. These findings provide new insight into PCa pathogenesis, and identify LMNB1, TK1, RACGAP1 and ZWINT as candidate biomarkers for diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Zhen-yu Song
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhiyuan Zhuo
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhe Ma
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Wenzhi Li
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Kim JY, Bang SI, Lee SD. α-Casein Changes Gene Expression Profiles and Promotes Tumorigenesis of Prostate Cancer Cells. Nutr Cancer 2019; 72:239-251. [PMID: 31155933 DOI: 10.1080/01635581.2019.1622742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is among the most prevalent malignancies in men. High intake of dairy products is associated with an increased risk of prostate cancer. No study has examined the gene profile changes and molecular mechanism by which casein, milk protein, affects prostate cancer cells. In this study, we used gene expression profiling to identify gene changes in PC3 prostate cancer cells exposed to α-casein. α-casein altered the expression of a large number of genes-related prostate cancer, transcription factor, apoptotic, metabolic, and cell cycle pathways, in addition to the expected cell proliferation signaling pathways. To clarify the molecular events involved in the effect of α-casein on proliferation and progression of PC3 cells, we examined cell proliferation assay, quantitative real-time PCR, Western blotting, and immunohistochemical and immunofluorescence staining. α-casein promoted PC3 cell proliferation and survival under serum-free conditions by increasing the expression of E2F1 and its target gene PCNA. α-casein also protected PC3 cells from serum-starved autophagic cell death by activating the PI3K/Akt pathway through activation of mTORC1, up-regulation of p70S6K, and down-regulation of LC3 autophagosome formation. Our data provide new insights into the molecular mechanisms underlying the tumorigenic effect of α-casein in prostate cancer cells.
Collapse
Affiliation(s)
- Joo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seong Ik Bang
- Department of Urology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Don Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Urology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
34
|
Jin BR, Kim HJ, Seo JH, Kim MS, Lee KH, Yoon IJ, An HJ. HBX-6, Standardized Cornus officinalis and Psoralea corylifolia L. Extracts, Suppresses Benign Prostate Hyperplasia by Attenuating E2F1 Activation. Molecules 2019; 24:molecules24091719. [PMID: 31052610 PMCID: PMC6539643 DOI: 10.3390/molecules24091719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aim of this study was to simplify and identify the contents of the herbal formula, HBX-5. This study was carried out to evaluate the therapeutic effects of HBX-6 in a mouse model of benign prostatic hyperplasia (BPH). Based on in vitro, we selected a candidate, reconstituted an experimental agent and investigated the effects on testosterone-induced BPH rats. Cell viability was determined by MTT assay in RWPE-1 and WPMY-1 cells. The expression of androgen receptor (AR) was measured in dihydrotestosterone-stimulated RWPE-1 and WPMY-1 cells. BPH was induced in mice by a subcutaneous injection of testosterone propionate for four weeks. Animals were divided into six groups: Group 1, control mice; Group 2, mice with BPH; Group 3, mice with BPH treated with finasteride; Group 4, mice with BPH treated with 200 mg/kg HBX-5; Group 5, mice with BPH treated with 100 mg/kg HBX-6; and Group 6, mice with BPH treated with 200 mg/kg HBX-6. Changes in prostate weight were measured after treatments, and the thickness of the epithelium was evaluated. The expression levels of proteins associated with prostatic cell proliferation and cell cycle-related proteins were determined. Based on previous reports and in vitro results, we selected Cornus officinalis and Psoralea corylifolia among HBX-5 components and reconstituted the experimental agent, and named it HBX-6. The result represented a new herbal formula, HBX-6 that suppressed the pathological alterations in BPH and showed a marked reduction in proliferation-related protein expression compared to mice with BPH. Our results indicate that HBX-6 has a better therapeutic effect in the BPH murine model than those of HBX-5 and finasteride, suggesting the role of HBX-6 as a new BPH remedial agent.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Jong-Hwan Seo
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| | - Myoung-Seok Kim
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Kwang-Ho Lee
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Il-Joo Yoon
- Central Research Institue of Hawon Pharmaceutical, Jangheung 59338, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
35
|
Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J. Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 2018; 174:1200-1215.e20. [PMID: 30100187 DOI: 10.1016/j.cell.2018.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Pippa
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Min Song
- Genetic and Genomic Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Carceles-Cordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Dominguez-Andres
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungreem Woo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Ertel
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Cuesta-Dominguez
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Peiyao Li
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep M Prats
- Urology Department, Hospital de Calella, Barcelona 08370, Spain
| | - E Premkumar Reddy
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessandro Fatatis
- Pharmacology and Physiology Department, Drexler University, Philadelphia, PA 19104, USA
| | - Daniel P Petrylak
- Medical Oncology Department, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W Kevin Kelly
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew D Galsky
- Medical Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amaia Lujambio
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Domingo-Domenech
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Lee CJ, Kang D, Lee S, Lee S, Kang J, Kim S. In silico experiment system for testing hypothesis on gene functions using three condition specific biological networks. Methods 2018; 145:10-15. [PMID: 29758273 DOI: 10.1016/j.ymeth.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Abstract
Determining functions of a gene requires time consuming, expensive biological experiments. Scientists can speed up this experimental process if the literature information and biological networks can be adequately provided. In this paper, we present a web-based information system that can perform in silico experiments of computationally testing hypothesis on the function of a gene. A hypothesis that is specified in English by the user is converted to genes using a literature and knowledge mining system called BEST. Condition-specific TF, miRNA and PPI (protein-protein interaction) networks are automatically generated by projecting gene and miRNA expression data to template networks. Then, an in silico experiment is to test how well the target genes are connected from the knockout gene through the condition-specific networks. The test result visualizes path from the knockout gene to the target genes in the three networks. Statistical and information-theoretic scores are provided on the resulting web page to help scientists either accept or reject the hypothesis being tested. Our web-based system was extensively tested using three data sets, such as E2f1, Lrrk2, and Dicer1 knockout data sets. We were able to re-produce gene functions reported in the original research papers. In addition, we comprehensively tested with all disease names in MalaCards as hypothesis to show the effectiveness of our system. Our in silico experiment system can be very useful in suggesting biological mechanisms which can be further tested in vivo or in vitro. AVAILABILITY http://biohealth.snu.ac.kr/software/insilico/.
Collapse
Affiliation(s)
- Chai-Jin Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Dongwon Kang
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea; Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea; Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Zhu GD, Liu F, OuYang S, Zhou R, Jiang FN, Zhang B, Liao WJ. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem Biophys Res Commun 2018; 499:120-127. [DOI: 10.1016/j.bbrc.2018.02.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
|
38
|
Zhang H, Sturgis E, Zhu L, Lu Z, Tao Y, Zheng H, Li G. The Modifying Effect of a Functional Variant at the miRNA Binding Site in E2F1 Gene on Recurrence of Oropharyngeal Cancer Patients with Definitive Radiotherapy. Transl Oncol 2018; 11:633-638. [PMID: 29574328 PMCID: PMC6078938 DOI: 10.1016/j.tranon.2018.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) activates E2F1-driven transcription via the E7-RB-E2F1 pathway. A polymorphism in the 3' UTR of E2F1 gene may disrupt a binding site for miRNA and may affect its transcription level, thus modifying the susceptibility to radiotherapy and outcomes through this pathway. We evaluated the association of a polymorphism at the 3'UTR miRNA binding site of E2F1 gene (rs3213180) with risk of recurrence of SCCOP in a cohort of 1008 patients. Log-rank test and univariate and multivariable Cox models were used to evaluate the associations. Compared with patients with E2F1-rs3213180 GG homozygous genotype, the patients with E2F1-rs3213180GC+CC variant genotypes had significantly better disease-free survival (log-rank P<.001) and decreased risk of SCCOP recurrence (HR, 0.4, 95% CI, 0.3-0.5) after multivariable adjustment. Furthermore, among patients with HPV16-positive tumors, the patients with E2F1-rs3213180 GC+CC variant genotypes had significantly better disease-free survival rates (log-rank P<.001) and lower recurrence risk than those with E2F1-rs3213180 GG homozygous genotype (HR, 0.2, 95% CI, 0.1-0.4). Our findings suggest that E2F1-rs3213180 polymorphism may modulate the risk of recurrence in SCCOP patients, particularly for patients with HPV16-positive tumors of SCCOP. However, future larger population and functional studies are warranted to validate these results.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Otolaryngology-Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai,China
| | - Erich Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Lijun Zhu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Oral and Maxillofacial Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongming Lu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Otolaryngology-Head and Neck Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ye Tao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Otolaryngology-Head and Neck Surgery, the 2nd affiliated hospital of Anhui Medical University, Hefei, China
| | - Hongliang Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
39
|
Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer 2017; 17:719. [PMID: 29115924 PMCID: PMC5678576 DOI: 10.1186/s12885-017-3701-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/22/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an early event in tumour invasion and metastasis, and widespread and distant metastasis at early stages is the typical biological behaviour in small cell lung cancer (SCLC). Our previous reports showed that high expression of the transcription factor E2F1 was involved in the invasion and metastasis of SCLC, but the role of E2F1 in the process of EMT in SCLC is unknown. METHODS Immunohistochemistry was performed to evaluate the expressions of EMT related markers. Immunofluorescence was used to detect the expressions of cytoskeletal proteins and EMT related markers when E2F1 was silenced in SCLC cell lines. Adenovirus containing shRNA against E2F1 was used to knock down the E2F1 expression, and the dual luciferase reporter system was employed to clarify the regulatory relationship between E2F1 and ZEB2. RESULTS In this study, we observed the remodelling of cytoskeletal proteins when E2F1 was silenced in SCLC cell lines, indicating that E2F1 was involved in the EMT in SCLC. Depletion of E2F1 promoted the expression of epithelial markers (CDH1 and CTNNB1) and inhibited the expression of mesenchymal markers (VIM and CDH2) in SCLC cell lines, verifying that E2F1 promotes EMT occurrence. Next, the mechanism by which E2F1 promoted EMT was explored. Among the CDH1 related inhibitory transcriptional regulators ZEB1, ZEB2, SNAI1 and SNAI2, the expression of ZEB2 was the highest in SCLC tissue samples and was highly consistent with E2F1 expression. ChIP-seq data and dual luciferase reporter system analysis confirmed that E2F1 could regulate ZEB2 gene expression. CONCLUSION Our data supports that E2F1 promotes EMT by regulating ZEB2 gene expression in SCLC.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| | - Xufang Chen
- Oncology Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199 China
| | - Weiwei Qiao
- Department of Diagnostics, Binzhou Medical University, Yantai, 264003 China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| | - Daqing Sun
- Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| |
Collapse
|
40
|
Wang Z, Sun X, Bao Y, Mo J, Du H, Hu J, Zhang X. E2F1 silencing inhibits migration and invasion of osteosarcoma cells via regulating DDR1 expression. Int J Oncol 2017; 51:1639-1650. [PMID: 29039472 PMCID: PMC5673022 DOI: 10.3892/ijo.2017.4165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
In the present study, knockdown of E2F1 impaired the migration and invasion of osteosarcoma cells. Further analysis showed that E2F1 knockdown decreased the expression of discoidin domain receptor 1 (DDR1) which plays a crucial role in many fundamental processes such as cell differentiation, adhesion, migration and invasion. Luciferase and ChIP assays confirmed that E2F1 silencing attenuated the expression of DDR1 through disrupting E2F1-mediated transcription of DDR1 in osteosarcoma cells. Similarly with the effect of E2F1 silencing, DDR1 knockdown weakened the migratory and invasive capabilities of osteosarcoma cells; while overexpression of DDR1 resulted in a significant increase of cell motility and invasiveness, even after knocking down E2F1. Interestingly, inactivation of E2F1/DDR1 pathway by shRNA weakened STAT3 signaling and subsequently suppressed the epithelial-mesenchymal transition (EMT) of osteosarcoma cells, as shown with decreased vimentin, MMP2, MMP9, and increased E-cadherin. Consistently, high expressions of E2F1 and DDR1 observed in osteosarcoma tissues were related to TNM stage and metastasis. In addition, high level of E2F1 or DDR1 was associated with poor prognosis in osteosarcoma patients. These results suggest that E2F1/DDR1/STAT3 pathway is critical for malignancy of osteosarcoma, which may provide a novel prognostic indicator or approach for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhaofeng Wang
- Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xianjie Sun
- Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Yi Bao
- Central Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Juanfen Mo
- Central Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Hengchao Du
- Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Jichao Hu
- Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xingen Zhang
- Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
41
|
Uzer H, Akyıldız H, Sözüer E, Akcan A, Öz B. Prognostic value of E2F1 in rectal cancer. Turk J Surg 2017; 33:180-184. [PMID: 28944330 DOI: 10.5152/turkjsurg.2017.3576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate whether E2F transcription factor 1 is a potential prognostic marker in patients with rectal cancer. MATERIAL AND METHODS Eighty-two patients who were treated with curative resection because of rectal cancer in the Erciyes University School of Medicine, Department of General Surgery were included in the study and analyzed retrospectively. Data were obtained from patient files, pathology reports, and hospital information system. Nuclear and cytoplasmic staining of E2F transcription factor 1 was performed for immunohistochemical analysis on paraffin-embedded and blocked tumor tissue samples of patients. The findings of the study were assessed with using IBM Statistical Package for Social Sciences Statistics 20. RESULT In the 5-year follow-up period, 34 (41.5%) patients were alive. Local recurrence was identified in 7 patients. According to E2F transcription factor 1 nuclear staining, the average survival rate in patients was 60% for strong nuclear staining and 28% for weak nuclear staining. There was significant statistical difference between groups according to their degree of nuclear staining (p=0.017). When the patients were evaluated according to cytoplasmic staining with E2F transcription factor 1, the average overall survival rate of patients with positive E2F transcription factor 1 cytoplasmic staining was 48.0±4.6% versus 55.9±7.9% for patients without staining (p=0.408). CONCLUSION The survival rates are higher in rectal cancer patients with strong immunohistochemical nuclear staining of E2F transcription factor 1.
Collapse
Affiliation(s)
- Hasan Uzer
- Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hızır Akyıldız
- Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Erdoğan Sözüer
- Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Alper Akcan
- Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Bahadır Öz
- Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
42
|
Horikawa Y, Watanabe M, Sadahira T, Ariyoshi Y, Kobayashi Y, Araki M, Wada K, Ochiai K, Li SA, Nasu Y. Overexpression of REIC/Dkk-3 suppresses the expression of CD147 and inhibits the proliferation of human bladder cancer cells. Oncol Lett 2017; 14:3223-3228. [PMID: 28927069 DOI: 10.3892/ol.2017.6548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Our group previously developed an adenoviral vector encoding the REIC/Dkk-3 gene (Ad-REIC), a tumor suppressor, for cancer gene therapy. The Ad-REIC agent induces apoptosis and inhibits invasion in a number of cancer cell lines; however, the molecular mechanisms underlying its effects remain unclear. Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a key molecule that promotes cancer proliferation and invasion. In order to elucidate the therapeutic mechanism of Ad-REIC, its effect on the expression of CD147 in human bladder cancer KK47 cells was investigated. Treatment with Ad-REIC markedly downregulated the expression of CD147 and significantly inhibited cellular proliferation. Since the expression of CD147 is reported to be under the positive control of mitogen-activated protein kinase (MAPK) signaling and the c-Myc protein, the correlations between the expression of CD147 and the activation of MAPKs or the expression of c-Myc were examined. Unexpectedly, no positive correlation was observed between the level of CD147 and the potential regulators that were assessed, indicating that another signaling pathway is responsible for the downregulation of CD147. The results from the present study demonstrate that Ad-REIC treatment can significantly downregulate the expression of CD147 in bladder cancer cells. Downregulation of the cancer-progression factor CD147 may be a novel mechanism that underlies the therapeutic effects of Ad-REIC treatment.
Collapse
Affiliation(s)
- Yuhei Horikawa
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Yuichi Ariyoshi
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | | | - Motoo Araki
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Koichiro Wada
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shun-Ai Li
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
43
|
Chen QB, Liang YK, Zhang YQ, Jiang MY, Han ZD, Liang YX, Wan YP, Yin J, He HC, Zhong WD. Decreased expression of TCF12 contributes to progression and predicts biochemical recurrence in patients with prostate cancer. Tumour Biol 2017. [PMID: 28651494 DOI: 10.1177/1010428317703924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Qing-biao Chen
- Affiliated Foshan Hospital of Southern Medical University, Southern Medical University, Foshan, China
- Department of Urology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
| | - Ying-ke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-qiong Zhang
- China Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min-yao Jiang
- Department of Urology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yue-ping Wan
- Department of Urology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
| | - Jie Yin
- Affiliated Foshan Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Hui-Chan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wei-de Zhong
- Department of Urology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Song C, Lu P, Shi W, Sun G, Wang G, Huang X, Wang Z, Wang Z. MiR-622 functions as a tumor suppressor and directly targets E2F1 in human esophageal squamous cell carcinoma. Biomed Pharmacother 2016; 83:843-849. [PMID: 27501502 DOI: 10.1016/j.biopha.2016.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE MicroRNA-622 has been proven down-regulated in many human malignancies and correlated with tumor progression. However, its role in esophageal squamous cell carcinoma (ESCC) is still unclear. The aim of this study was to explore the expression and function of miR-622 in ESCC. METHODS Using quantitative RT-PCR, we detected miR-622 expression in ESCC cell lines and primary tumor tissues. The association of miR-622 expression with clinicopathological factors and prognosis was also analyzed. Then, the effects of miR-622 on the biological behavior of ESCC cells were investigated. At last, the potential regulatory function of miR-622 on E2F1 expression was confirmed. RESULTS miR-622 was found to be down-regulated in ESCC tissues and cell lines. Decreased miR-622 expression was closely correlated with aggressive clinicopathological features and poor overall survival. Multivariate regression analysis corroborated that low level of miR-622 expression was an independent unfavourable prognostic factor for patients with ESCC. Up-regulation of miR-622 could significantly reduce ESCC cell proliferation, enhance cell apoptosis, and impair cell invasion and migration in vitro, while down-regulation of miR-622 showed opposite effects. Further, E2F1 was confirmed as a direct target of miR-622 by using Luciferase Reporter Assay. CONCLUSIONS These findings indicate that miR-622 may act as a tumor suppressor in ESCC and would serve as a potential therapy target for this disease.
Collapse
Affiliation(s)
- Changshan Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Pingfang Lu
- Department of Thoracic Surgery, Guangdong General Hospital of Armed Police Forces, Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510507, China
| | - Weicheng Shi
- Department of Thoracic Surgery, Guangdong General Hospital of Armed Police Forces, Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510507, China
| | - Guoqiang Sun
- Department of Thoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xujie Huang
- Department of Thoracic Surgery, Guangdong General Hospital of Armed Police Forces, Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510507, China
| | - Zheng Wang
- Department of Thoracic Surgery, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| | - Zhigang Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|