1
|
Cu (II)-coordinated silica based mesoporous inorganic-organic hybrid material: synthesis, characterization and evaluation for drug delivery, antibacterial, antioxidant and anticancer activities. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Muslim M, Ahmad M, Arish M, Alam MJ, Alarifi A, Afzal M, Sepay N, Ahmad S. 5-Hydroxyisophthalic acid and neocuproine containing copper(II) complex as a promising cytotoxic agent: Structure elucidation, topology, Hirshfeld surface, DFT calculations, and molecular docking analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Oh KK, Adnan M, Cho DH. Network pharmacology-based study to identify the significant pathways of Lentinula edodes against cancer. J Food Biochem 2022; 46:e14258. [PMID: 35633195 DOI: 10.1111/jfbc.14258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Lentinula edodes (LE) is known as a good food source with potent anticancer efficacy, but its active chemical compounds and pathways against cancer have not been revealed. This study was to uncover the active chemical constituents and pathways of LE against cancer through network pharmacology. The chemical compositions were recognized by gas chromatography-mass spectrometry (GC-MS) and filtered drug-like compounds (DLCs) by SwissADME. Targets related to filtered compounds were recognized by two public databases and the final overlapping targets were identified by Venn diagram. Then, protein-protein interaction (PPI) and pathway-target-compound (PTC) networks were built by RStudio. Ultimately, we recognized the key compounds and targets via molecular docking test (MDT). A total of 33 compounds from LE were accepted by Lipinski's rule were selected as DLCs. The 33 compounds were associated with 108 targets and a key target (cyclooxygenase2 [COX2]) was identified through PPI networks. Most significantly, inactivation of pathways in cancer and activation of peroxisome proliferator activated receptor signaling pathway were significant pathways of LE. On MDT, we identified a key compound (Indole, 2-methyl-3-phenyl) on COX2 related to inactivation of athways in cancer, additionally, the number of 6 ergostane steroids was associated with the two pathways might be dual efficacy to alleviate inflammation against cancer. Overall, 13 targets, 11 compounds, and 2 key pathways of LE were identified as the significant elements to treat cancer. Hence, this study shows therapeutic evidence to verify the promising clinical effect of LE on cancer, suggesting that LE might be an important mushroom against cancer. PRACTICAL APPLICATIONS: Lentinula edodes (LE) has been used widely in cuisine as well as alternative medicines, especially, for anticancer. The LE has rich nutritional compounds including proteins, vitamins, polyphenols, and glucans, however, most of which have a critical hurdle as poor bioavailability not to be applicable for pharmaceuticals. Its main cause is very hydrophilic property. Thus, we adopted GC-MS analysis to identify lipophilic compounds to enhance cell permeability involved in bioavailability. The compounds selected from LE were confirmed by Lipinski's rule for drug-like-compounds (DLCs). Then, we retrieved targets associated with DLCs, and multiple pathways, multiple targets, and multiple compounds against cancer on network-based analysis. In summary, our study reveals the medicinal value of LE on cancer based on the multicomponents. Overall, the aim of this work is to represent the pharmacological evidence to reveal the therapeutic efficacy of AC on cancer, suggesting that DLCs from AC might be alleviators to dampen cancer.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
4
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|
5
|
Cu(II) complex with auxin (3-indoleacetic acid) and an aromatic planar ligand: synthesis, crystal structure, biomolecular interactions and radical scavenging activity. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:771-785. [PMID: 33929571 DOI: 10.1007/s00249-021-01525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
A novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, ESI-TOF, FTIR and single-crystal X-ray diffraction techniques. Interaction of the complex with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33258 displacement assay. The interactions between the complex and bovine serum albumin (BSA) were investigated by electronic absorption and fluorescence spectroscopy methods. The experimental results indicate that the fluorescence quenching mechanism between the complex and BSA is a static quenching process. The Stern-Volmer constants, binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance between the complex and BSA was calculated according to Förster non-radiation energy transfer theory (FRET). The effect of the complex on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimensional (3D) fluorescence spectroscopy. Furthermore, the oxygen radical scavenging activity of the complex was determined in terms of IC50, using the DPPH and H2O2 method, to show that it particularly enables electron loss from radical species. This study highlights the importance of indole and moieties in the development of antioxidant agents. A potent drug candidate novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)] (ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, FTIR, ESI-MS and single-crystal X-ray diffraction techniques. The complex has been tested for in vitro biomacromolecular interactions by spectroscopic methods. Furthermore, radical scavenging activities of the complex were also investigated.
Collapse
|
6
|
Sharma P, Nath H, Frontera A, Barcelo-Oliver M, Verma AK, Hussain S, Bhattacharyya MK. Biologically relevant unusual cooperative assemblies and fascinating infinite crown-like supramolecular nitrate–water hosts involving guest complex cations in bipyridine and phenanthroline-based Cu( ii) coordination compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01004b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytotoxicity in cancer cells with structure activity relationship has been explored in Cu(ii) compounds involving biologically relevant cooperative assemblies and fascinating crown-like nitrate–water hosts with guest complex cations.
Collapse
Affiliation(s)
- Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Hiren Nath
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Miquel Barcelo-Oliver
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Sahid Hussain
- Department of Chemistry
- Indian Institute of Technology Patna, Bihta
- Patna-801103
- India
| | | |
Collapse
|
7
|
Lu W, Shi J, Nie Y, Yang L, Chen J, Zhao F, Yang S, Xu L, Chi X. Synthesis, crystal structure, antiproliferative activity, DNA binding and density functional theory calculations of 3‐(pyridin‐2‐yl)‐8‐
tert
‐butylcoumarin and its copper(II) complex. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wen Lu
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jiuzhou Shi
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - YingFang Nie
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Lu Yang
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jichao Chen
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Fengyi Zhao
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Shilong Yang
- Advanced Analysis and Testing Center Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Li Xu
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Xingwei Chi
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 China
| |
Collapse
|
8
|
Kaur K, Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med Chem 2020; 19:962-983. [PMID: 30864529 DOI: 10.2174/1871520619666190312125602] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the second most common cause of cancer related deaths in women. Due to severe side effects and multidrug resistance, current therapies like hormonal therapy, surgery, radiotherapy and chemotherapy become ineffective. Also, the existing drugs for BC treatment are associated with several drawbacks such as poor oral bioavailability, non-selectivity and poor pharmacodynamics properties. Therefore, there is an urgent need for the development of more effective and safer anti BC agents. OBJECTIVE This article explored in detail the possibilities of indole-based heterocyclic compounds as anticancer agents with breast cancer as their major target. METHODS Recent literature related to indole derivatives endowed with encouraging anti BC potential is reviewed. With special focus on BC, this review offers a detailed account of multiple mechanisms of action of various indole derivatives: aromatase inhibitor, tubulin inhibitor, microtubule inhibitor, targeting estrogen receptor, DNA-binding mechanism, induction of apoptosis, inhibition of PI3K/AkT/NFkB/mTOR, and HDAC inhibitors, by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that indole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Indoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, indole derivatives have been found to modulate critical targets such as topoisomerase and HDAC. These derivatives have shown significant activity against breast cancer cells. CONCLUSION In BC, indole derivatives seem to be quite competent and act through various mechanisms that are well established in case of BC. This review has shown that indole derivatives can further be explored for the betterment of BC chemotherapy. A lot of potential is still hidden which demands to be discovered for upgrading BC chemotherapy.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| |
Collapse
|
9
|
Zhang Z, Gu Y, Wang Z, Wang H, Zhao Y, Chu X, Zhang C, Yan M. Synthesis and biological evaluation of novel indoleamide derivatives as antioxidative and antitumor agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Zhang
- School of PharmacyJining Medical University Shandong China
| | - Ying‐Lin Gu
- School of PharmacyJining Medical University Shandong China
| | | | - Huan‐Nan Wang
- School of PharmacyJining Medical University Shandong China
| | - Yan Zhao
- Oncology Department, Rizhao Central Hospital Shandong China
| | - Xue‐Mei Chu
- School of PharmacyJining Medical University Shandong China
| | - Chun‐Yan Zhang
- School of PharmacyJining Medical University Shandong China
| | - Mao‐Cai Yan
- School of PharmacyJining Medical University Shandong China
| |
Collapse
|
10
|
Hurtado M, Sankpal UT, Chhabra J, Brown DT, Maram R, Patel R, Gurung RK, Simecka J, Holder AA, Basha R. Copper-tolfenamic acid: evaluation of stability and anti-cancer activity. Invest New Drugs 2019; 37:27-34. [PMID: 29761244 PMCID: PMC6237668 DOI: 10.1007/s10637-018-0594-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 01/30/2023]
Abstract
The non-steroidal anti-inflammatory drug, Tolfenamic acid (TA) acts as an anti-cancer agent in several adult and pediatric cancer models. Copper (Cu) is an important element with multiple biological functions and has gained interest in medical applications. Recently, [Cu(TA)2(bpy)] (Cu-TA) has been synthesized in order to enhance therapeutic activity. In this study, we synthesized Cu-TA using an established method, characterized it by UV visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR), and tested its anti-cancer activity using twelve cell lines representing various cancers, such as Ewing sarcoma, glioblastoma, medulloblastoma, neuroblastoma, pancreatic and prostate. The anti-proliferative activity of Cu-TA was determined at 48 h post-treatment and compared with the parental compound, TA. The IC50 values were calculated using GraphPad Prism software. The biological stability of Cu-TA was evaluated using twelve-month-old powder and six-month-old stock solution. Cardiomyocytes (H9C2) were used to test the cytotoxicity in non-malignant cells. Cu-TA showed higher anti-proliferative activity, and the IC50 values were 30 to 80% lower when compared with TA. H9C2 cells were non-responsive to Cu-TA, suggesting that it is selective towards malignant cells. Comparison of the twelve-month-old powder and six-month-old stock solution using the Panc1 cell line showed similar IC50 values (<5% variation), confirming the stability of Cu-TA either in powder or solution form. These findings demonstrate the potential of Cu-TA as an effective anti-cancer agent. Further studies to delineate the detailed mechanism of action of Cu-TA for specific cancer model are underway.
Collapse
Affiliation(s)
- Myrna Hurtado
- Graduate School of Biomedical Sciences, Fort Worth, TX, USA
| | - Umesh T Sankpal
- Texas College of Osteopathic Medicine, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Jaya Chhabra
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Deondra T Brown
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Rajasekhar Maram
- Texas College of Osteopathic Medicine, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Rafid Patel
- Texas College of Osteopathic Medicine, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Jerry Simecka
- Pre-clinical Services, UNT Systems College of Pharmacy, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, Fort Worth, TX, USA.
- Texas College of Osteopathic Medicine, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Pre-clinical Services, UNT Systems College of Pharmacy, UNT Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
11
|
Synthesis, crystal structures and in vitro anticancer activities of two copper(II) coordination compounds. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0288-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Bhat GA, Maqbool R, Dar AA, Ul Hussain M, Murugavel R. Selective formation of discrete versus polymeric copper organophosphates: DNA cleavage and cytotoxic activity. Dalton Trans 2018; 46:13409-13420. [PMID: 28948250 DOI: 10.1039/c7dt02763j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper phosphate metalloligands [Cu(X-dipp)(Pyterpy)]2 [X = H (1), Br (2)], exemplifying expanded 4,4'-bipyridine type molecules, have been synthesized by reacting 4'-(4-pyridyl)-2,2':6',2''-terpyridine (Pyterpy) and para substituted 2,6-diisopropylphenyl phosphate (X-dippH2) with copper acetate. The pendant N,N-ends of dimeric copper phosphates 1 and 2 have been forced to engage in further coordination by limiting the concentration of Pyterpy in the reaction mixture to yield rare Pyterpy bridged corner-shared polymeric copper phosphates [Cu2(X-dippH)(X-dipp)(Pyterpy)(H2O)]n [X = Cl (3), Br (4), I (5)]. The formation of 1-5 is supported by spectroscopic and analytical data. The solid state structures of these compounds have further been confirmed by single-crystal X-ray diffraction studies. Soluble dimeric complexes 1 and 2 have been assessed for their in vitro anti-tumour properties against human breast and colorectal cancer cell lines. The DNA cleavage, protein cleaving and cytotoxicity assays revealed that these compounds are effective in cleaving DNA, while the activity of 1 as an anti-tumor agent is better than 2.
Collapse
Affiliation(s)
- Gulzar A Bhat
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | | | | | | | | |
Collapse
|
13
|
Synthesis, characterization, theoretical studies and biological activity of coordination compounds with essential metals containing N4-donor ligand 2,9-di(ethylaminomethyl)-1,10-phenanthroline. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Lai H, Zhang X, Feng P, Xie L, Chen J, Chen T. Enhancement of Antiangiogenic Efficacy of Iron(II) Complex by Selenium Substitution. Chem Asian J 2017; 12:982-987. [DOI: 10.1002/asia.201700272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiang Zhang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Lina Xie
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Jinjin Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
15
|
Wang X, Yan M, Wang Q, Wang H, Wang Z, Zhao J, Li J, Zhang Z. In Vitro DNA-Binding, Anti-Oxidant and Anticancer Activity of Indole-2-Carboxylic Acid Dinuclear Copper(II) Complexes. Molecules 2017; 22:E171. [PMID: 28117677 PMCID: PMC6155821 DOI: 10.3390/molecules22010171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022] Open
Abstract
Indole-2-carboxylic acid copper complex (ICA-Cu) was successfully prepared and characterized through elemental analysis, IR, UV-Vis, ¹H-NMR, TG analysis, and molar conductance, and its molecular formula was [Cu₂(C₉H₆O₂N)₄(H₂O)₂]·2H₂O. The binding ability of ICA-Cu to calf thymus DNA (CT-DNA) was examined by fluorescence spectrometry and the viscosity method. The results indicated that, upon the addition of increasing amounts of CT-DNA, the excitation and emission intensity of ICA-Cu decreased obviously and the excitation spectra shifted towards a long wavelength. ICA-Cu could displace ethidium bromide (EB) from the EB-DNA system, making the fluorescence intensity of the EB-DNA system decrease sharply; the quenching constant KSV value was 3.99 × 10⁴ M-1. The emission intensity of the ICA-Cu-DNA system was nearly constant, along with the addition of Na⁺ in a series of concentrations. The fluorescence of the complex could be protected after the complex interacted with DNA. A viscosity measurement further supported the result that the ICA-Cu complex may interact with DNA in an intercalative binding mode. The antioxidant activities of ICA-Cu were evaluated by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, a hydroxyl radical (OH) scavenging assay, and a 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. The ICA-Cu exhibited the highest inhibitory effects on the ABTS radical (94% inhibition at 60 µM), followed by OH and DPPH radicals (the degrees of inhibition being 71% and 56%, respectively). The in vitro cytotoxicity activity of ICA-Cu against two human breast cancer cell lines, MDA-MB-231 and MCF-7, was investigated by 3-[4,5-dimethyltiazol2-yl]-2.5-diphenyl-tetrazolium bromide (MTT) assay and cellular morphological analysis. The results showed that, upon increasing the concentration of ICA-Cu, an increase was observed in growth-inhibitory activity and the inhibition percentage were greater than 90% at 20 µM in both cell lines. Also, cellular morphological changes in the two cell lines agreed with the cytotoxicity results.
Collapse
Affiliation(s)
- Xiangcong Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Qibao Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Zhengyang Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Jiayi Zhao
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Jing Li
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, Shandong, China.
| |
Collapse
|