1
|
Qiu Z, Zhan Y, Chen Z, Huang W, Liao J, Chen Z, Zheng J, Zheng Q, Lu C. SLIT3 deficiency promotes non-small cell lung cancer progression by modulating UBE2C/WNT signaling. Open Life Sci 2024; 19:20220956. [PMID: 39479352 PMCID: PMC11524389 DOI: 10.1515/biol-2022-0956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 11/02/2024] Open
Abstract
In our prior research, it was noted that slit guidance ligand 3 (SLIT3), a member of the SLIT-secreted protein family, may play a potential role in tumorigenesis. In addition, our prior work has found that the SLIT3 gene is highly methylated, especially in advanced-stage lung cancer tissues. Herein, we propose the hypothesis that abnormal SLIT3 expression may be linked to lung cancer development. In this study, decreased SLIT3 at the transcriptome and proteome levels was observed in lung cancer tissues. Furthermore, the downregulation of SLIT3 was related to a higher tumor stage and poorer prognosis. Silencing SLIT3 expression enhanced cell proliferation and migration, indicating potential characteristics of a tumor suppressor gene of SLIT3 in non-small-cell lung cancer (NSCLC). Furthermore, SLIT3 deficiency stimulates UBE2C upregulation and regulates NSCLC progression through Wnt3A/β-catenin signaling. The activation of the WNT signaling pathway was highly correlated with chemoresistance development in lung cancer. In conclusion, SLIT3 deficiency promotes lung cancer onset and progression by modulating UBE2C/WNT signaling. SLIT3/UBE2C/WNT may serve as novel biomarkers and therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Zidan Qiu
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Ying Zhan
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Zhiyong Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Wenjin Huang
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Jianrong Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Zhen Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Junqiong Zheng
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Qiuxiang Zheng
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| | - Cuiping Lu
- Longyan First Affiliated Hospital of Fujian Medical University, Jiuyi North Road No. 105, Xinluo District, Longyan, 364000, Fujian, The People’s Republic of China
| |
Collapse
|
2
|
Zhang H, Du Y, Lu D, Wang X, Li Y, Qing J, Zhang Y, Liu H, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. UBE2C orchestrates bone formation through stabilization of SMAD1/5. Bone 2024; 187:117175. [PMID: 38917963 DOI: 10.1016/j.bone.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| |
Collapse
|
3
|
Jiang Y, Liu B, Fu L, Li F. UBE2C regulates the KEAP1/NRF2 signaling pathway to promote the growth of gastric cancer by inhibiting autophagy. Int J Biol Macromol 2024; 276:134011. [PMID: 39032892 DOI: 10.1016/j.ijbiomac.2024.134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, ranking fourth in incidence and second in mortality among malignant tumors. In recent years, there has been some progress in biological treatment and targeted treatment for gastric cancer, but the prognosis for gastric cancer patients remains pessimistic, and the molecular mechanisms involved are not yet clear. In this study, bioinformatics analysis showed that Ubiquitin-conjugating enzyme E2C(UBE2C) was abnormally expressed in various types of cancer. Furthermore, UBE2C protein and mRNA expression was significantly elevated in gastric cancer tissues and cells. Silencing UBE2C significantly inhibited the proliferation and migration of gastric cancer cells. Mechanistically, UBE2C overexpression inhibited gastric cancer cell autophagy, leading to the accumulation of p62. Furthermore, immunoprecipitation results showed that UBE2C overexpression promoted the interaction between p62 and KEAP1, while inhibiting the binding of NRF2 to KEAP1, thereby weakening the ubiquitination and degradation of NRF2. In addition, the silencing of UBE2C leads to a reduction in the nuclear accumulation of NRF2. Importantly, the NRF2 activator TBHQ reversed the inhibition of gastric cancer cell proliferation and migration caused by the silencing of UBE2C. In summary, our study provides new insights into the molecular mechanisms of UBE2C in anti-cancer therapy.
Collapse
Affiliation(s)
- Yunhe Jiang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lifu Fu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.
| |
Collapse
|
4
|
Lv C, Wang Y, Kong L, Guo J, Chen X, Guo F, Dong Z, Li Z, Yang X, Yang M, Yang W, Li F, Zhang H. Securinine inhibits carcinogenesis in gastric cancer by targeting AURKA-β-catenin/Akt/STAT3 and the cell cycle pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155735. [PMID: 38810557 DOI: 10.1016/j.phymed.2024.155735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the β-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and β-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Yun Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Orthopedics, The Second People's Hospital of Changzhi, Changzhi, PR China
| | - Luke Kong
- Basic Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Medical Laboratory, Jincheng People's Hospital, Jincheng, PR China
| | - Jianghong Guo
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China; Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China
| | - Xiaoxia Chen
- Department of Medicine, Shanxi Renan Hospital, Taiyuan, PR China
| | - Fengtao Guo
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Zhuanxia Dong
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Zhiyuan Li
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, PR China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China
| | - Mudan Yang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China
| | - Wenhui Yang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China.
| | - Feng Li
- Central Laboratory, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, PR China.
| | - Huanhu Zhang
- Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, PR China; Shanxi University of Chinese Medicine, Jin Zhong, PR China.
| |
Collapse
|
5
|
Zhao Y, Zhang B, Ma Y, Guo M, Zhao F, Chen J, Wang B, Jin H, Zhou F, Guan J, Zhao Q, Liu Q, Wang H, Zhao F, Wang X. Distinct molecular profiles drive multifaceted characteristics of colorectal cancer metastatic seeds. J Exp Med 2024; 221:e20231359. [PMID: 38502057 PMCID: PMC10949939 DOI: 10.1084/jem.20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metastasis of primary tumors remains a challenge for early diagnosis and prevention. The cellular properties and molecular drivers of metastatically competent clones within primary tumors remain unclear. Here, we generated 10-16 single cell-derived lines from each of three colorectal cancer (CRC) tumors to identify and characterize metastatic seeds. We found that intrinsic factors conferred clones with distinct metastatic potential and cellular communication capabilities, determining organ-specific metastasis. Poorly differentiated or highly metastatic clones, rather than drug-resistant clones, exhibited poor clinical prognostic impact. Personalized genetic alterations, instead of mutation burden, determined the occurrence of metastatic potential during clonal evolution. Additionally, we developed a gene signature for capturing metastatic potential of primary CRC tumors and demonstrated a strategy for identifying metastatic drivers using isogenic clones with distinct metastatic potential in primary tumors. This study provides insight into the origin and mechanisms of metastasis and will help develop potential anti-metastatic therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fulai Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiawei Guan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Yuan R, Luo X, Liang Z, Cai S, Zhao Y, Zhu Q, Li E, Liu X, Mo D, Chen Y. UBE2C promotes myoblast differentiation and skeletal muscle regeneration through the Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1065-1071. [PMID: 38690615 PMCID: PMC11322864 DOI: 10.3724/abbs.2024062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/09/2024] [Indexed: 05/02/2024] Open
Abstract
Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis. Knockdown of UBE2C inhibits C2C12 cell differentiation and decreases the expressions of MyoG and MyHC, while overexpression of UBE2C promotes C2C12 cell differentiation. Additionally, knockdown of UBE2C, specifically in the tibialis anterior muscle (TA), severely impedes muscle regeneration in vivo. Mechanistically, we show that UBE2C knockdown reduces the level of phosphorylated protein kinase B (p-Akt) and promotes the degradation of Akt. These findings suggest that UBE2C plays a critical role in myoblast differentiation and muscle regeneration and that UBE2C regulates myogenesis through the Akt signaling pathway.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Guangxi Yangxiang Agriculture and Husbandry Co.Ltd.Guigang537100China
| | - Xiaorong Luo
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Ziyun Liang
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Shufang Cai
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Yunxiang Zhao
- Guangxi Yangxiang Agriculture and Husbandry Co.Ltd.Guigang537100China
| | - Qi Zhu
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Enru Li
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Xiaohong Liu
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Delin Mo
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Yaosheng Chen
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| |
Collapse
|
7
|
Lin X, Pan F, Abudoureyimu M, Wang T, Hao L, Wang R. Aurora-A inhibitor synergistically enhances the inhibitory effect of anlotinib on hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 690:149247. [PMID: 38000292 DOI: 10.1016/j.bbrc.2023.149247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with a global prevalence. In addition to the existing clinical guidelines, the effectiveness of anlotinib and Aurora-A inhibitors in treating HCC has also been demonstrated. However, Anlotinib, as an anti-angiogenesis therapy, has shown significant benefits in clinical trials but is limited by its single-agent treatment and the development of drug resistance. Aurora-A inhibitors are currently being tested in clinical trials but have limited efficacy. Combination therapy may offer clear advantages over monotherapy in this context. METHODS In this study, we used HCC cell lines to investigate whether the combination of the two drugs could enhance their individual strengths and mitigate their weaknesses, thereby providing greater clinical benefits both in vitro and in vivo. RESULTS Our findings confirmed that the Aurora-A inhibitor alisertib and anlotinib exhibited a time-dose-dependent inhibitory effect on HCC cells. In vitro cytological experiments demonstrated that the combination of the two drugs synergistically inhibited cell proliferation, invasion, and metastasis, while promoting cell apoptosis. Furthermore, we identified the underlying molecular mechanism by which the combination of the Aurora-A inhibitor alisertib and anlotinib inhibited HCC through the inhibition of the NF-ĸB signaling pathway. CONCLUSIONS In summary, we have demonstrated the effectiveness of combining anlotinib with an Aurora-A inhibitor, which expands the potential applications of anlotinib in the clinical treatment of HCC in the future.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Liping Hao
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Ong KH, Lai HY, Sun DP, Chen TJ, Huang SKH, Tian YF, Chou CL, Shiue YL, Chan TC, Li CF, Kuo YH. Ubiquitin-conjugating enzyme E2C (UBE2C) is a prognostic indicator for cholangiocarcinoma. Eur J Med Res 2023; 28:593. [PMID: 38102624 PMCID: PMC10724938 DOI: 10.1186/s40001-023-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Cholangiocarcinoma is the most common malignant bile duct tumor in Southeast Asia. The special location of cholangiocarcinoma leads to it being difficult to diagnose. Currently, the progress in clinical prognosis outcomes remains abysmal owing to the lack of definitive diagnostic criteria. Therefore, uncovering the potential markers for cholangiocarcinoma is a pressing issue. Ubiquitin-conjugating enzyme E2 C (UBE2C) is a critical ubiquitination enzyme; it is involved in the tumorigenesis of various malignancies and affects the patient's prognosis. However, there is currently no relevant literature to indicate whether UBE2C is related to the clinical survival outcome of cholangiocarcinoma patients. In this report, we mined the published cholangiocarcinoma transcriptome data set (GSE26566), compared it with the ubiquitination-associated gene (GO:0016567), and identified that UBE2C was highly expressed in cholangiocarcinoma tumor tissue. Moreover, high expression of UBE2C was markedly correlated with surgical margin, primary tumor, histological variants, and histological grade. More specifically, high expression of UBE2C was negatively associated with overall survival, disease-specific survival, local recurrence-free survival, and metastasis-free survival in patients with cholangiocarcinoma. Our findings demonstrate that UBE2C may provide a potential therapeutic marker and prognostic factor for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Ding-Ping Sun
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, 711, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Yu-Hsuan Kuo
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
- College of Pharmacy and Science, Chia Nan University, Tainan, 71710, Taiwan.
| |
Collapse
|
9
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Liu X, Liu H, Gu N, Pei J, Lin X, Zhao W. Preeclampsia promotes autism in offspring via maternal inflammation and fetal NFκB signaling. Life Sci Alliance 2023; 6:e202301957. [PMID: 37290815 PMCID: PMC10250690 DOI: 10.26508/lsa.202301957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Preeclampsia (PE) is a risk factor for autism spectrum disorder (ASD) in offspring. However, the exact mechanisms underlying the impact of PE on progeny ASD are not fully understood, which hinders the development of effective therapeutic approaches. This study shows the offspring born to a PE mouse model treated by Nω-nitro-L-arginine methyl ester (L-NAME) exhibit ASD-like phenotypes, including neurodevelopment deficiency and behavioral abnormalities. Transcriptomic analysis of the embryonic cortex and adult offspring hippocampus suggested the expression of ASD-related genes was dramatically changed. Furthermore, the level of inflammatory cytokines TNFα in maternal serum and nuclear factor kappa B (NFκB) signaling in the fetal cortex were elevated. Importantly, TNFα neutralization during pregnancy enabled to ameliorate ASD-like phenotypes and restore the NFκB activation level in the offspring exposed to PE. Furthermore, TNFα/NFκB signaling axis, but not L-NAME, caused deficits in neuroprogenitor cell proliferation and synaptic development. These experiments demonstrate that offspring exposed to PE phenocopies ASD signatures reported in humans and indicate therapeutic targeting of TNFα decreases the likelihood of bearing children with ASD phenotypes from PE mothers.
Collapse
Affiliation(s)
- Xueyuan Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
| | - Haiyan Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Nihao Gu
- International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Key Laboratory for Embryo-Feta Original Adult Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangnan Pei
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xianhua Lin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenlong Zhao
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Key Laboratory for Embryo-Feta Original Adult Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Nousiainen R, Eloranta K, Isoaho N, Cairo S, Wilson DB, Heikinheimo M, Pihlajoki M. UBE2C expression is elevated in hepatoblastoma and correlates with inferior patient survival. Front Genet 2023; 14:1170940. [PMID: 37377594 PMCID: PMC10291054 DOI: 10.3389/fgene.2023.1170940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor among children. To gain insight into the pathobiology of HB, we performed RNA sequence analysis on 5 patient-derived xenograft lines (HB-243, HB-279, HB-282, HB-284, HB-295) and 1 immortalized cell line (HUH6). Using cultured hepatocytes as a control, we found 2,868 genes that were differentially expressed in all of the HB lines on mRNA level. The most upregulated genes were ODAM, TRIM71, and IGDCC3, and the most downregulated were SAA1, SAA2, and NNMT. Protein-protein interaction analysis identified ubiquitination as a key pathway dysregulated in HB. UBE2C, encoding an E2 ubiquitin ligase often overexpressed in cancer cells, was markedly upregulated in 5 of the 6 HB cell lines. Validation studies confirmed UBE2C immunostaining in 20 of 25 HB tumor specimens versus 1 of 6 normal liver samples. The silencing of UBE2C in two HB cell models resulted in decreased cell viability. RNA sequencing analysis showed alterations in cell cycle regulation after UBE2C knockdown. UBE2C expression in HB correlated with inferior patient survival. We conclude that UBE2C may hold prognostic utility in HB and that the ubiquitin pathway is a potential therapeutic target in this tumor.
Collapse
Affiliation(s)
- Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Noora Isoaho
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefano Cairo
- Champions Oncology, Hackensack, NJ, United States
- Istituto di Ricerca Pediatrica, Padova, Italy
- XenTech, Evry, France
| | - David B. Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Zhang Y, Li X, Gong Y, Du D, Chen H, Liu L, Cheng Z. Aberrant expression of UBE2C in endometrial cancer and its correlation to epithelial mesenchymal transition. Medicine (Baltimore) 2023; 102:e33834. [PMID: 37335710 DOI: 10.1097/md.0000000000033834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C), its overexpression promotes tumor progression, is a key component of the ubiquitin conjugating proteasome complex. Epithelial-mesenchymal transition, which is lost epithelial features and gained mesenchymal features in some epithelial cancers, is involved in epithelial cancers' invasiveness and metastasis. The aim of this study is to detect the expression of UBE2C, WNT5α, and E-cad in endometrial cancer (EC) and their clinical significance. The expression of UBE2C, WNT5α, and ZEB1 in 125 cases EC tissues were detected by immunohistochemistry. Patients clinicopathological, demography, and follow-up data were also collected. Positive rates of expression of UBE2C and ZEB1 were significantly higher in EC tissues when compared with the control tissues. The positive expression of UBE2C and ZEB1 were positively associated with tumor stages, local lymph node metastasis, and International Federation of Gynecology and Obstetrics (FIGO) stages. The positive rate of expression of WNT5a was significantly lower in EC tissues when compared with the control tissues. And positive expression of E-cad was inversely related to tumor stages, lymph node metastasis stages, and FIGO stages. Kaplan-Meier analyses demonstrated that positive expression of UBE2C or ZEB1 for EC patients had unfavorably overall survival time when compared with patients with negative expression of UBE2C or ZEB1. And EC patients with positive expression of WNT5a had favorably overall survival time when compared with EC patients with negative expression of WNT5a. Multivariate analysis demonstrated that positive expression UBE2C, WNT5α, and ZEB1, as well as FIGO stages were independent prognostic factors for EC patients. UBE2C, ZEB1, and WNT5a should be considered promising biomarkers for EC patients' prognosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Xueting Li
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Yingying Gong
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Danli Du
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Huilei Chen
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Lei Liu
- Department of Gynaecology and Obstetrics, Bengbu City, China
| | - Zenong Cheng
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu City, China
- Department of Pathology, Bengbu Medical University, Bengbu City, China
| |
Collapse
|
14
|
Li J, Qi Y, Li B, Liu Y, Yang K, Zhang Z, Zhu J, Du E. STIL/AURKA axis promotes cell proliferation by influencing primary cilia formation in bladder cancer. J Transl Med 2023; 21:281. [PMID: 37101292 PMCID: PMC10131372 DOI: 10.1186/s12967-023-04118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
15
|
Lei X, Hu X, Lu Q, Fu W, Sun W, Ma Q, Huang D, Xu Q. Ubiquitin‑conjugating enzymes as potential biomarkers and therapeutic targets for digestive system cancers (Review). Oncol Rep 2023; 49:63. [PMID: 36799184 PMCID: PMC9944987 DOI: 10.3892/or.2023.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Digestive system cancers are the leading cause of cancer‑related death worldwide due to their high morbidity and mortality rates. The current treatment methods include surgical treatment, chemotherapy, radiotherapy and endoscopic treatment, and the precisely targeted therapy of digestive system cancers requires to be further studied. The ubiquitin‑proteasome system is the main pathway for protein degradation in cells and the ubiquitin‑conjugating enzymes (E2s) have a decisive role in the specific selection of target proteins for degradation. The E2s have an important physiological role in digestive system cancers, which is related to the clinical tumor stage, differentiation degree and poor prognosis. Furthermore, they are involved in the physiological processes of digestive system tumor cell proliferation, migration, invasion, stemness, drug resistance and autophagy. In the present article, the progress and achievements of the E2s in gastric cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, intrahepatic cholangiocarcinoma, gallbladder cancer and esophageal squamous cell carcinoma were reviewed, which may provide early screening indicators and reliable therapeutic targets for digestive system cancers.
Collapse
Affiliation(s)
- Xiangxiang Lei
- Institute of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Sun
- Second Clinical Medical Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiancheng Ma
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| |
Collapse
|
16
|
Paisana E, Cascão R, Custódia C, Qin N, Picard D, Pauck D, Carvalho T, Ruivo P, Barreto C, Doutel D, Cabeçadas J, Roque R, Pimentel J, Miguéns J, Remke M, Barata JT, Faria CC. UBE2C promotes leptomeningeal dissemination and is a therapeutic target in brain metastatic disease. Neurooncol Adv 2023; 5:vdad048. [PMID: 37215954 PMCID: PMC10195208 DOI: 10.1093/noajnl/vdad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Despite current improvements in systemic cancer treatment, brain metastases (BM) remain incurable, and there is an unmet clinical need for effective targeted therapies. Methods Here, we sought common molecular events in brain metastatic disease. RNA sequencing of thirty human BM identified the upregulation of UBE2C, a gene that ensures the correct transition from metaphase to anaphase, across different primary tumor origins. Results Tissue microarray analysis of an independent BM patient cohort revealed that high expression of UBE2C was associated with decreased survival. UBE2C-driven orthotopic mouse models developed extensive leptomeningeal dissemination, likely due to increased migration and invasion. Early cancer treatment with dactolisib (dual PI3K/mTOR inhibitor) prevented the development of UBE2C-induced leptomeningeal metastases. Conclusions Our findings reveal UBE2C as a key player in the development of metastatic brain disease and highlight PI3K/mTOR inhibition as a promising anticancer therapy to prevent late-stage metastatic brain cancer.
Collapse
Affiliation(s)
- Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Clara Barreto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa; Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Delfim Doutel
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - José Cabeçadas
- Anatomic Pathology Department, Instituto Português de Oncologia Francisco Gentil, R. Prof. Lima Basto, 1099-023, Lisboa, Portugal
| | - Rafael Roque
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Pimentel
- Neurology Department, Laboratory of Neuropathology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - José Miguéns
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf; Moorenstraße 5, 40225 Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Claudia C Faria
- Corresponding Author: Claudia C. Faria, Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal ()
| |
Collapse
|
17
|
Xu J, Chen M, Hu M, Wang H, Zuo Z, Wang J, Xie Z. Claudin 19 inhibits the malignant potential of breast cancer cells by modulating extracellular matrix-associated UBE2C/Wnt signaling. Am J Cancer Res 2022; 12:5552-5563. [PMID: 36628278 PMCID: PMC9827091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 01/12/2023] Open
Abstract
Claudin proteins are a major component of the tight junctions between cells, which are involved in a variety of human diseases, including cancer. This study aimed to investigate the functional role of claudin 19 (CLDN19) in human breast cancer progression. Here, we firstly found that CLDN19 was downregulated in breast tumor tissues than normal control, and loss of CLDN19 predicted poor patient survival in patients with breast cancer, by utilizing the Cancer Genome Atlas Program (TCGA) dataset analysis. To further validate the tumor suppressive effects of CLDN19, we established CLDN19 overexpressed MDA-MB-231 and T47D cells. And overexpression of CLDN19 resulted in suppression of cell growth/migration in breast cancer cells cultured in 3D environment or in vivo. Mechanistically, we demonstrated that CLDN19 downregulated ubiquitin conjugating enzyme E2 C (UBE2C) expression, which further suppressed Wnt/β-catenin pro-survival signaling pathway activation induced by extracellular matrix (ECM), in 3D environment or in vivo. Altogether, our study revealed a tumor suppressive role of CLDN19, which hindered ECM/UBE2C/Wnt signaling activation in breast cancer, and offered novel insight for tumor diagnosis and targeted therapy.
Collapse
|
18
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
19
|
Wang J, Zhang M, Liu S, He Z, Wang R, Liang M, An Y, Jiang C, Song C, Ning Z, Yin F, Huang H, Li Z, Ye Y. Targeting UBE2C for degradation by bioPROTACs based on bacterial E3 ligase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Pan B, Yin S, Peng F, Liu C, Liang H, Su J, Hsiao WLW, Cai Y, Luo D, Xia C. Vorinostat targets UBE2C to reverse epithelial-mesenchymal transition and control cervical cancer growth through the ubiquitination pathway. Eur J Pharmacol 2021; 908:174399. [PMID: 34331954 DOI: 10.1016/j.ejphar.2021.174399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023]
Abstract
Vorinostat is a histone deacetylase inhibitor (HDACi) that was demonstrated in our previous study to inhibit the proliferation, migration, and invasion of cervical cancer cells by regulating the PI3K/Akt signaling pathway. However, the molecular mechanism of vorinostat in cervical cancer treatment remains to be further elucidated. A nude mouse xenograft model was established to analyze the antitumor effect of vorinostat in vivo. The combination of iTRAQ-based proteomics and parallel reaction monitoring (PRM) technology has proven to be an efficient and reliable method to identify potential targets for cancer chemotherapy. In this study, 254 differentially expressed proteins in vorinostat-treated cervical cancer cells, among which 180 were upregulated and 74 were downregulated, were identified by using an iTRAQ-based proteomic strategy. Subsequent bioinformatic and PRM analysis of these differentially expressed proteins indicated that UBE2C is a promising target of vorinostat in the inhibition of cervical cancer cell proliferation. We confirmed that the expression of endogenous UBE2C in cervical cancer cell lines was significantly higher than that in normal cervical epithelial cell lines. Additionally, we found that vorinostat downregulated the expression of UBE2C, SQSTM1/p62, N-cadherin, vimentin and upregulated E-cadherin in SiHa and HeLa cells. Our results also showed that vorinostat can downregulate the expression of SQSTM1/p62, N-cadherin, and vimentin during the treatment of cervical cancer cells by regulating UBE2C, while upregulating the expression of E-cadherin. In conclusion, vorinostat reverses epithelial-mesenchymal transition by targeting UBE2C and controls the proliferation of cervical cancer cells through the ubiquitination pathway. UBE2C can be used as a promising target for the development of vorinostat treatment strategies.
Collapse
Affiliation(s)
- Botao Pan
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Shuanghong Yin
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Chang Liu
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Huiyi Liang
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Jiyan Su
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, 999078, China
| | - Yantao Cai
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong, 518000, China.
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Wang Y, Shi F, Tao R, Wu J, Gu J, Yang R, Wu S. The Relationship Between UBE2C and AGGF1 Overexpression and Tumor Angiogenesis in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:5919-5930. [PMID: 34354374 PMCID: PMC8331115 DOI: 10.2147/cmar.s320393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Tumor infiltration and metastasis are the leading causes of death for patients with tumors. Angiogenesis is a prerequisite for tumor growth and metastasis. Angiogenic factor with G patch and FHA domains 1 (AGGF1) is an angiogenic factor, whereas ubiquitin-conjugating enzyme E2C (UBE2C) functions in protein ubiquitination. Microvessel density (MVD) is the most common indicator of tumor microvessels, and vasculogenic mimicry (VM) facilitates blood supply to tumors. This study explored UBE2C and AGGF1 expression in non-small cell lung cancer (NSCLC) and their relationship with angiogenesis and prognosis to identify biological factors that might predict NSCLC infiltration, metastasis, and prognosis. Methods The specimens and clinical pathological data of patients with NSCLC confirmed by pathology after surgical resection between January 2013 and December 2015 were collected. UBE2C and AGGF1 expression, as well as microvessel formation and VM in NSCLC, was observed using immunohistochemistry. The relationships between UBE2C, AGGF1, MVD, VM, and clinical pathological parameters and their relationships with overall survival (OS) and disease-free survival (DFS) were analyzed. Results UBE2C and AGGF1 levels in NSCLC tissues were significantly higher than those in corresponding normal tissues (57.1% vs 15.6 and 59.7% vs 25.3%, respectively; P < 0.05). UBE2C, AGGF1, MVD, and VM were positively correlated with each other (P < 0.05) and were all related to tumor size, lymph node metastasis, and tumor-node-metastasis stage (P < 0.05). Kaplan–Meier analysis showed that patient OS and DFS in the UBE2C, AGGF1, VM-positive, and high-MVD groups were reduced (all P < 0.001). Univariate and multivariate analyses showed that UBE2C, AGGF1, VM, and MVD were independent risk factors for NSCLC prognosis. Conclusion UBE2C and AGGF1 overexpression is associated with angiogenesis and poor prognosis and may be important for predicting NSCLC invasion, metastasis, and prognosis.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Run Tao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Jiatao Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Jinxiang Gu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
22
|
Mesquita FP, Lucena da Silva E, Souza PFN, Lima LB, Amaral JL, Zuercher W, Albuquerque LM, Rabenhorst SHB, Moreira-Nunes CA, Amaral de Moraes ME, Montenegro RC. Kinase inhibitor screening reveals aurora-a kinase is a potential therapeutic and prognostic biomarker of gastric cancer. J Cell Biochem 2021; 122:1376-1388. [PMID: 34160883 DOI: 10.1002/jcb.30015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Gastric cancer is one of the most common and deadly types of cancer in the world, and poor prognosis with treatment failure is widely reported in the literature. In this context, kinases have been considered a relevant choice for targeted therapy in gastric cancer. Here, we explore the antiproliferative and antimigratory effects of the AURKA inhibitor and the prognostic and therapeutic value as a biomarker of gastric cancer. A total of 145 kinase inhibitors were screened to evaluate the cytotoxic or cytostatic effects in the gastric cancer cell line. Using the Alamar Blue assay, flow cytometry, quantitative polymerase chain reaction, and observation of caspase 3/7 activity and cell migration, we investigated the antiproliferative, proapoptotic, and antimigratory effects of the AURKA inhibitor. Moreover, AURKA overexpression was evaluated in the gastric cell lines and the gastric tumor tissue. Out of the 145 inhibitors, two presented the highest antiproliferative effect. Both molecules can induce apoptosis by the caspases 3/7 pathway in addition to inhibiting cancer cell migration, mainly the AURKA inhibitor. Moreover, molecular docking analysis revealed that GW779439X interacts in the active site of the AURKA enzyme with similar energy as a well-described inhibitor. Our study identified AURKA overexpression in the gastric cancer cell line and gastric tumor tissue, revealing that its overexpression in patients with cancer is correlated with low survival. Therefore, it is feasible to suggest AURKA as a potential marker of gastric cancer, besides providing robust information for diagnosis and estimated survival of patients. AURKA can be considered a new molecular target used in the prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Felipe P Mesquita
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Emerson Lucena da Silva
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Luina B Lima
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - William Zuercher
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Louise M Albuquerque
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Silvia H B Rabenhorst
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Caroline A Moreira-Nunes
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Maria E Amaral de Moraes
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Raquel C Montenegro
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
23
|
ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis 2021; 12:620. [PMID: 34131100 PMCID: PMC8206128 DOI: 10.1038/s41419-021-03894-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children and its mortality rate is relatively high. However, driver genes of NB are not clearly identified. Using bioinformatics analysis, we determined the top 8 differentially expressed genes (DEGs) in NB, including GFAP, PAX6, FOXG1, GAD1, PTPRC, ISL1, GRM5, and GATA3. Insulin gene enhancer binding protein 1 (ISL1) is a LIM homeodomain transcription factor which has been found to be highly expressed in a variety of malignant tumors, but the function of ISL1 in NB has not been fully elucidated. We identified ISL1 as an oncogene in NB. ISL1 is preferentially upregulated in NB tissues compared with normal tissues. High ISL1 expression is significantly associated with poor outcome of NB patients. Knockdown of ISL1 markedly represses proliferation and induces cell apoptosis in vitro, and suppresses tumorigenicity in vivo, while overexpression of ISL1 has the opposite effects. Mechanistically, we demonstrate that ISL1 promotes cell proliferation and EMT transformation through PI3K/AKT signaling pathway by upregulating Aurora kinase A (AURKA), a serine-threonine kinase that is essential for the survival of NB cells. The blockade of AURKA attenuates the function of ISL1 overexpression in the regulation of cell proliferation and migration, Conclusively, this study showed that ISL1 targeted AURKA to facilitate the development of NB, which provided new insights into the tumorigenesis of NB. Thus, ISL1 may be a promising therapeutic target in the future.
Collapse
|
24
|
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci 2021; 78:4955-4972. [PMID: 33860332 PMCID: PMC8233288 DOI: 10.1007/s00018-021-03827-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
Collapse
Affiliation(s)
- Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
26
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. MicroRNA-based regulation of Aurora A kinase in breast cancer. Oncotarget 2020; 11:4306-4324. [PMID: 33245732 PMCID: PMC7679040 DOI: 10.18632/oncotarget.27811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in cellular physiology and disease pathogenesis is becoming increasingly relevant in recent years specifically in cancer research. Breast cancer (BC) has become a health concern and accounts for most of the cancer-related incidences and mortalities reported amongst females. In spite of the presence of promising tools for BC therapy, the mortality rate of metastatic BC cases is still high. Therefore, the genomic exploration of the BC subtype and the use of ncRNAs for possible regulation is pivotal. The expression and prognostic values of AURKA gene were assessed by Oncomine, GEPIA, KM-plotter, and bc-GenExMiner v4.4, respectively. Associated proteins and functional enrichment were evaluated by Cytoscape and DAVID databases. Additionally, molecular docking approach was employed to investigate the regulatory role of hsa-miR-32-3p assisted argonaute (AGO) protein of AURKA gene in BC. AURKA gene was highly expressed in patients with BC relative to normal counterpart and significantly correlated with poor survival. The docking result suggested that AURKA could be regulated by hsa-miR-32-3p as confirmed by the reported binding energy and specific interactions. The study gives some insights into role of AURKA and its regulation by microRNAs through AGO protein. It also provides exciting opportunities for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
27
|
Huang C, Wu YJ, He WF, Zhao SL, Ouyang YY, Ai XH, Liu ZQ, Tang SY. MiR-185-3p regulates epithelial mesenchymal transition via PI3K/Akt signaling pathway by targeting cathepsin D in gastric cancer cells. Transl Cancer Res 2020; 9:6988-7000. [PMID: 35117305 PMCID: PMC8799188 DOI: 10.21037/tcr-19-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recently research reported that miR-185-3p could serve as an independent prognosis factor in gastric cancer (GC). However, the functional role and underlying mechanism of miR-185-3p in GC and epithelial-mesenchymal transition (EMT) progression remains largely elusive. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to analyze the expression of miR-185-3p and cathepsin D in patient-derived GC samples and various GC cell lines. Scratch assay and Transwell assay were used to evaluate the migration ability. The influence of miR-185-3p on the cell cycle distribution and cell apoptosis was evaluated using flow cytometry. Western blotting assay was performed to detect the expression of EMT associated proteins and the activity of PI3K/Akt signaling pathway. Furthermore, the interaction between miR-185-3p and cathepsin D was explored by dual-luciferase reporter assay. RESULTS Our data revealed that miR-185-3p was down-regulated, while cathepsin D was up-regulated in both patient-derived GC samples and GC cells. Apart from inducing apoptosis, overexpression of miR-185-3p also inhibited EMT process and migration of GC cells. Mechanically, we firstly verified that miR-185-3p directly targeted the cathepsin D. Furthermore, miR-185-3p exerted its function on EMT process and migration via inhibiting cathepsin D to mediated PI3K/Akt signaling pathway. CONCLUSIONS Our findings suggested that miR-185-3p targeted cathepsin D inhibiting EMT process via PI3K/Akt signaling, which may serve as a potential prognosis factor and therapeutic target to reduce the malignancy of GCs.
Collapse
Affiliation(s)
- Cheng Huang
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - Yang-Jie Wu
- Oncology Department of Medical, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wei-Feng He
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - Shun-Li Zhao
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | | | - Xiao-Hong Ai
- Oncology Department of Medical, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Qi Liu
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| | - San-Yuan Tang
- Oncology Department, Brain Hospital of Hunan Province, Changsha, China
| |
Collapse
|
28
|
Liu PF, Chen CF, Shu CW, Chang HM, Lee CH, Liou HH, Ger LP, Chen CL, Kang BH. UBE2C is a Potential Biomarker for Tumorigenesis and Prognosis in Tongue Squamous Cell Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10090674. [PMID: 32899896 PMCID: PMC7555092 DOI: 10.3390/diagnostics10090674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) involves in numerous cellular processes and the tumor progression in many cancers. However, its role in oral squamous cell carcinoma (OSCC) is unclear. We aimed to investigate the role and clinical significance of UBE2C in OSCC. The expression levels of UBE2C were examined by immunohistochemistry in 185 buccal mucosa squamous cell carcinomas, 247 tongue squamous cell carcinomas (TSCCs) and 75 lip squamous cell carcinomas. The roles of UBE2C in cell growth, invasion/migration and cancer stemness were also examined in OSCC cells. The expression levels of UBE2C protein were higher in tumor tissues than they were in the corresponding tumor adjacent normal tissues from OSCC patients. Higher UBE2C expression was associated with poor cell differentiation and lymph node invasion in OSCC patients. High UBE2C expression was also correlated with shorter disease-specific survival in TSCC patients having poor cell differentiation, advanced pathological stages, lymph node metastasis as well as receiving radiation therapy. Compared to control cells, OSCC cells in which UBE2C was silenced showed decreased cell proliferation, migration/invasion and colony formation and they exhibited lower expression levels of the following cancer stemness markers—ALDH1/A2, CD44, CD166 and EpCAM. High co-expression levels of UBE2C/CD44, UBE2C/CD166 and UBE2C/EpCAM were associated with poor prognosis in oral cancer patients from The Cancer Genome Atlas database. Our findings indicated that UBE2C might be a potential biomarker for tumorigenesis and prognosis in TSCC.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (P.-F.L.); (C.-H.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (P.-F.L.); (C.-H.L.)
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-M.C.); (H.-H.L.); (L.-P.G.)
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Bor-Hwang Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
- Correspondence: ; Tel.: +886-7-342-2121 (ext. 4600)
| |
Collapse
|
29
|
Bioinformatics Analysis of Key Genes and circRNA-miRNA-mRNA Regulatory Network in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2862701. [PMID: 32908877 PMCID: PMC7463386 DOI: 10.1155/2020/2862701] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world, with morbidity and mortality ranking second among all cancers. Accumulating evidences indicate that circular RNAs (circRNAs) are closely correlated with tumorigenesis. However, the mechanisms of circRNAs still remain unclear. This study is aimed at determining hub genes and circRNAs and analyzing their potential biological functions in GC. Expression profiles of mRNAs and circRNAs were downloaded from the Gene Expression Omnibus (GEO) data sets of GC and paracancer tissues. Differentially expressed genes (DEGs) and differentially expressed circRNAs (DE-circRNAs) were identified. The target miRNAs of DE-circRNAs and the bidirectional interaction between target miRNAs and DEGs were predicted. Functional analysis was performed, and the protein-protein interaction (PPI) network and the circRNA-miRNA-mRNA network were established. A total of 456 DEGs and 2 DE-circRNAs were identified with 3 mRNA expression profiles and 2 circRNA expression profiles. GO analysis indicated that DEGs were mainly enriched in extracellular matrix and cell adhesion, and KEGG confirmed that DEGs were mainly associated with focal adhesion, the PI3K-Akt signaling pathway, extracellular matrix- (ECM)- receptor interaction, and gastric acid secretion. 15 hub DEGs (BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, UBE2C, CCNB1, CD44, CXCL8, COL3A1, COL5A2, and THBS1) were identified from the PPI network. Furthermore, the survival analysis indicate that GC patients with a high expression of the following 9 hub DEGs, namely, BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C, had significantly worse overall survival. The circRNA-miRNA-mRNA network was constructed based on 1 circRNA, 15 miRNAs, and 45 DEGs. In addition, the 45 DEGs included 5 hub DEGs. These results suggested that hub DEGs and circRNAs could be implicated in the pathogenesis and development of GC. Our findings provide novel evidence on the circRNA-miRNA-mRNA network and lay the foundation for future research of circRNAs in GC.
Collapse
|
30
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
31
|
Gao X, Lai Y, Zhang Z, Ma Y, Luo Z, Li Y, Yang C, Lu G, Li J. Long Non-coding RNA RP11-480I12.5 Promotes the Proliferation, Migration, and Invasion of Breast Cancer Cells Through the miR-490-3p-AURKA-Wnt/β-Catenin Axis. Front Oncol 2020; 10:948. [PMID: 32733789 PMCID: PMC7358571 DOI: 10.3389/fonc.2020.00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 01/29/2023] Open
Abstract
Background: RP11-480I12. 5 is a newly identified long non-coding RNA (lncRNA) that has never been studied in breast cancer (BC). The biological function of RP11-480I12.5 in breast carcinoma and its underlying mechanism are still unknown. Methods: We scanned The Cancer Genome Atlas (TCGA) database and identified RP11-480I12.5 as one of the most dysregulated lncRNAs. The level of RP11-480I12.5 was assessed in BC tissue samples and BC cell lines. The prognostic value of RP11-480I12.5 expression was assessed using the Kaplan–Meier method. The biological influence of RP11-480I12.5 on BC cell lines was studied using proliferation and Transwell migration and invasion assays. Results: RP11-480I12.5 expression was upregulated in data from both the TCGA database and our own database. Moreover, Kaplan–Meier and Cox proportional hazard analyses indicated that high RP11-480I12.5 expression was related to poor overall survival. Moreover, RP11-480I12.5 promoted the proliferation, migration, and invasion of BC. RP11-480I12.5 promoted the expression of AURKA and the activation of the downstream Wnt/β-catenin pathway by sponging the microRNA (miRNA) miR-490-3p. Conclusion: Taken together, our results indicate that RP11-480I12.5 is associated with tumor progression in BCs. Our findings indicate that the lncRNA RP11-480I12.5 promotes the proliferation, migration, and invasion of BC cells through the miR-490-3p-AURKA-Wnt/β-catenin axis, which may serve as a therapeutic target in the future.
Collapse
Affiliation(s)
- Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanhui Lai
- Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanqiang Zhang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhizhai Luo
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanghong Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ciqiu Yang
- Department of Breast and Thyroid Surgery, Guangdong General Hospital, Guangzhou, China
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Chen X, Zhang S, Liu C, Li G, Lu S, Wang Y, Zhang X, Huang D, Qiu Y, Liu Y. UBE2O Promotes Progression and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:6191-6202. [PMID: 32636643 PMCID: PMC7334014 DOI: 10.2147/ott.s253861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background UBE2O, as a member of the ubiquitin-conjugating enzyme family, is abnormally expressed and exhibits abnormal functions in human malignancies. However, the function of UBE2O in head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our study aims to investigate the role of UBE2O in HNSCC progression and the underlying mechanisms. Methods The expression of UBE2O in HNSCC patients was investigated with data from the Cancer Genome Atlas (TCGA) and from a separate primary tumor cohort. The function of UBE2O in HNSCC cells was studied by cell viability assay, colony formation assay, wound healing assay, and cell migration and invasion chamber assay. The effect of UBE2O on tumor growth in vivo was determined in a subcutaneous xenograft model of HNSCC. Results TCGA data showed that UBE2O mRNA expression was dramatically increased in HNSCC tissues and that patients with high expression of UBE2O transcripts had a worse survival prognosis than patients with low expression of UBE2O transcripts. Gain-of-function and loss-of-function analyses revealed that oncogenic UBE2O enhanced the proliferation, migration and invasion of HNSCC cells in vitro. Further, mechanistic analysis revealed that UBE2O induced the epithelial-mesenchymal transition (EMT) phenotype and also potentiated TGF-β1-induced EMT, and thus leading to an enhanced capacity of migration and invasion in HNSCC. Finally, xenograft models showed that UBE2O knockout obviously inhibited the occurrence of EMT, angiogenesis and tumor growth in HNSCC in vivo. Conclusion Our study indicates that UBE2O acts as an oncogene to promote the malignant progression and EMT of HNSCC.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
33
|
Ye CJ, Zhan Y, Yang R, Li Y, Dong R. Single-cell transcriptional profiling identifies a cluster of potential metastasis-associated UBE2C+ cells in immature ovarian teratoma. Biochem Biophys Res Commun 2020; 528:567-573. [PMID: 32505346 DOI: 10.1016/j.bbrc.2020.05.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
To dissect the disease heterogeneity and identify the underlying cellular and molecular events related to metastasis of immature ovarian teratoma in children, single-cell RNA sequencing was performed for a 2-year-old patient with liver metastases from immature ovarian teratoma. A total of 5976 cells were obtained for further analysis, with a median unique molecular identifier count of 6011 per cell and a median number of 1741 genes detected per cell. Fourteen clusters were recognized, with the main lineages comprising epithelial cells, macrophages, fibroblasts, glial cells, and dendritic cells. Ten subclusters of epithelial cells were further defined, originating from the urinary tract, esophagus, bronchus, lung, skin, and gastrointestinal tract. An undefined UBE2C + population in an active state of proliferation was also identified and its biological processes were related to meiosis and maturation of oocytes. Pseudotime analysis revealed different distributions of epithelial cells in the development trajectory. In conclusion, a cluster of UBE2C + epithelial cells in an active state of proliferation was identified in an immature ovarian teratoma in a child, and may contribute to metastasis by regulating epithelial-mesenchymal transition. These findings help toward understanding the origin of the malignant behaviors, offer a potential biomarker for early determination of the tumor nature, and provide new ideas for the therapy of immature ovarian teratoma in children.
Collapse
Affiliation(s)
- Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
34
|
Zhang GC, Yu XN, Sun JL, Xiong J, Yang YJ, Jiang XM, Zhu JM. UBE2M promotes cell proliferation via the β-catenin/cyclin D1 signaling in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:2373-2392. [PMID: 32012120 PMCID: PMC7041726 DOI: 10.18632/aging.102749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Upregulated ubiquitin-conjugating enzyme E2M (UBE2M) is associated with poor prognosis in malignancies; However, the phenotype and mechanism of action of UBE2M in hepatocellular carcinoma (HCC) remain elusive. Here, we report that UBE2M is overexpressed and correlated with poor prognosis in HCC patients. The UBE2M level is an independent prognostic factor for HCC patients. UBE2M knockdown inhibits HCC cell proliferation, migration, and invasion, whereas its overexpression has an opposite effect. Mechanistically, upregulated UBE2M exerts oncogenic effects by translocation of accumulated β-catenin from the cytoplasm to the nucleus, thus activating downstream β-catenin/cyclin D1 signaling. In summary, our study demonstrates a notable role of UBE2M in promoting the growth of HCC, providing a novel strategy for HCC prevention and treatment.
Collapse
Affiliation(s)
- Guang-Cong Zhang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Ju Xiong
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou 570100, China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China
| | - Xue-Mei Jiang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China.,Department of Gastroenterology, Hainan General Hospital, Haikou 570100, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
35
|
Li J, Zhi X, Shen X, Chen C, Yuan L, Dong X, Zhu C, Yao L, Chen M. Depletion of UBE2C reduces ovarian cancer malignancy and reverses cisplatin resistance via downregulating CDK1. Biochem Biophys Res Commun 2019; 523:434-440. [PMID: 31875843 DOI: 10.1016/j.bbrc.2019.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, but the mechanisms of ovarian cancer progression and cisplatin resistance remain unclear. Emerging evidence suggested that ubiquitin-conjugating enzyme E2C (UBE2C) was highly expressed in a variety of tumors and acted as an oncogene. In our study, we demonstrated that UBE2C was overexpressed in ovarian cancer by immunohistochemistry (IHC) and The Cancer Genome Atlas (TCGA) database analysis. It was also found that high levels of UBE2C expression predicted worse clinical outcomes in ovarian cancer. After knocking down UBE2C, SKOV3 and A2780 cells showed inhibitory cell proliferation, increased apoptosis by blocking G2/M transition in vitro and in vivo. Besides, the downregulation of UBE2C reversed the cisplatin resistance states of SKOV3/DDP and A2780/DDP cells. Interestingly, CDK1 expression was also downregulated in UBE2C depleted ovarian cancer cells. Furthermore, we found that UBE2C expression was highly correlated with CDK1 expression in ovarian cancer tissues and cell lines, indicating that UBE2C might cooperate with CDK1 in ovarian tumorigenesis. Collectively, our findings strongly supported UBE2C as a candidate oncogene and a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Shen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Chen Chen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Chenqi Zhu
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Mo Chen
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
36
|
Jin Z, Zhao X, Cui L, Xu X, Zhao Y, Younai F, Messadi D, Hu S. UBE2C promotes the progression of head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2019; 523:389-397. [PMID: 31870550 DOI: 10.1016/j.bbrc.2019.12.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
The development of head and neck squamous cell carcinoma (HNSCC) is a complex pathological process and many cellular and molecular events may occur. The ubiquitin conjugating enzyme E2 (UBE2C) was found to play an oncogenic role in several human cancers. However, its functional role in HNSCC tumorigenesis remains unknown. In this study, UBE2C gene expression in HNSCC was first evaluated using the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The connection between UBE2C gene expression and patients' survival rates of HNSCC and other human cancers was also investigated. Liquid chromatography with tandem mass spectrometry was used to identify differentially expressed proteins, including UBE2C, between UMSCC1 oral cancer cells and normal human oral keratinocytes (NHOKs). Immunohistochemistry (IHC) was used to verify the differential expression of UBE2C protein between HNSCC and adjacent control tissues. Cell cycle analysis, MTT, colony formation, Transwell migration, and Matrigel invasion assays were used to study the effect of UBE2C downregulation on the malignant phenotypes of HNSCC cells. The bioinformatic analysis of the proteins interacting with UBE2C in HNSCC cells was also performed. Based on the data obtained from the cancer databases and our in vitro studies, we found that UBE2C was overexpressed in HNSCC and patients with high UBE2C expression suffered a remarkably worse overall survival rate than those with low UBE2C expression, and a similar observation was found in a number of other human cancers. UBE2C was also found to be overexpressed in HNSCC cells versus normal human oral keratinocytes and inhibition of UBE2C expression significantly suppressed the malignant phenotypes of HNSCC cells in vitro. The bioinformatic analysis indicated that UBE2C may be involved in head and neck tumorigenesis through the mediation of important pathways such as ubiquitin mediated proteolysis, proteasome, and cell cycle. In conclusion, our results suggest that UBE2C is consistently upregulated in many human solid tumors. It promotes HNSCC progression and may serve as a potential prognostic biomarker in HNSCC. Future studies are warranted to unveil the underlying molecular pathways of UBE2C in HNSCC.
Collapse
Affiliation(s)
- Zhenning Jin
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Li Cui
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Xiangdong Xu
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Yutian Zhao
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Fariba Younai
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Diana Messadi
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Shen Hu
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Shi X, Wang B, Chen X, Zheng Y, Ding Y, Wang C. Upregulation of ubiquitin-conjugating enzyme E2Z is associated with human hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 523:25-32. [PMID: 31831168 DOI: 10.1016/j.bbrc.2019.11.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
UBE2Z, a member of ubiquitin-conjugating enzymes, has been reported to participate in multiple biological processes. However, its roles in hepatocellular carcinoma (HCC) remain undiscovered. This study aimed at investigating the functions of UBE2Z in HCC. Firstly, we evaluated UBE2Z expression in HCC and identified associations among UBE2Z expression, clinicopathological features, copy number alterations, DNA methylation, and survival of patients using data from the Cancer Genome Atlas (TCGA). As a result, UBE2Z was remarkably overexpressed in HCC tissues relative to normal liver tissues (P < 0.05). High UBE2Z expression was significantly correlated with age, advanced TNM stage, histological grade, vascular invasion, elevated serum alpha-fetoprotein expression (AFP), worse overall survival (OS) and disease-free survival (DFS) of HCC patients (all P < 0.05). Besides, data mining in UCSC Xena Browser showed that UBE2Z DNA amplification which was significantly associated with its expression was common (108 out of 364) in HCC, and that the level of UBE2Z DNA methylation was negatively associated with its expression (Pearson's correlation = -0.4, P < 0.0001). After analyzing the datasets from TCGA, we further confirmed the up-regulation of UBE2Z in 60 HCC tissues and several HCC cell lines. Finally, functional assays were performed and showed that knockdown UBE2Z using small interfering RNA (siRNA) could significantly restrain tumor cell proliferation and suppress cell migration and cell invasion through repressing the expression of MMP2 and MMP9. Meanwhile, UBE2Z knockdown could effectively reduce the expression of p-ERK, p-p38, p-JNK, p-Stat3 and p-JAK2, suggesting that UBE2Z might promote HCC progression by targeting ERK and stat3 signaling pathway. These findings implied that UBE2Z might be considered as a prognostic biomarker in HCC and provided a potential therapeutic tumor-associated antigen for HCC.
Collapse
Affiliation(s)
- Xiaokang Shi
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoyan Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
38
|
Su J, Su B, Xia H, Liu F, Zhao X, Li J, Zhang J, Shi Y, Zeng Y, Zeng X, Ling H, Wu Y, Su Q. RORα Suppresses Epithelial-to-Mesenchymal Transition and Invasion in Human Gastric Cancer Cells via the Wnt/β-Catenin Pathway. Front Oncol 2019; 9:1344. [PMID: 31867273 PMCID: PMC6909819 DOI: 10.3389/fonc.2019.01344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Retinoid-related orphan receptor alpha (RORα) is involved in tumor development. However, the mechanisms underlying RORα inhibiting epithelial-to-mesenchymal transition (EMT) and invasion are poorly understood in gastric cancer (GC). This study revealed that the decreased expression of RORα is associated with GC development, progression, and prognosis. RORα suppressed cell proliferation, EMT, and invasion in GC cells through inhibition of the Wnt/β-catenin pathway. RORα overexpression resulted in the decreased Wnt1 expression and the increased RORα interaction with β-catenin, which could lead to the decreased intranuclear β-catenin and p-β-catenin levels, concomitant with downregulated T-cell factor-4 (TCF-4) expression and the promoter activity of c-Myc. The inhibition of Wnt/β-catenin pathway was coupled with the reduced expression of Axin, c-Myc, and c-Jun. RORα downregulated vimentin and Snail and upregulated E-cadherin protein levels in vitro and in vivo. Inversely, knockdown of RORα attenuated its inhibitory effects on Wnt/β-catenin pathway and its downstream gene expression, facilitating cell proliferation, EMT, migration, and invasion in GC cells. Therefore, RORα could play a crucial role in repressing GC cell proliferation, EMT, and invasion via downregulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jian Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bo Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Key Laboratory for Pharmacoproteomics of Hunan Provincial University, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Hong Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Fang Liu
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - XiaoHong Zhao
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Gynaecology, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Juan Li
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Gastroenterology, Loudi Center Hospital, Loudi, China
| | - JiZhen Zhang
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology, Affiliated Hospital, Jinggangshan University, Ji'an, China
| | - Ying Shi
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology and Pathophysiology, Xiamen Medical College, Xiamen, China
| | - Ying Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Hui Ling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - YouHua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
39
|
Wang X, Yin L, Yang L, Zheng Y, Liu S, Yang J, Cui H, Wang H. Silencing ubiquitin-conjugating enzyme 2C inhibits proliferation and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. FEBS J 2019; 286:4889-4909. [PMID: 31715067 DOI: 10.1111/febs.15134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) is a core ubiquitin-conjugating enzyme in the ubiquitin-proteasome system that promotes cell cycle progression. Previous studies have indicated that UBE2C mediates tumorigenesis and progression in various cancers, but its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This study elucidated the function of UBE2C in PDAC tumorigenesis and progression by determining UBE2C expression via real-time qPCR, western blotting and immunohistochemistry. The associations between UBE2C expression and clinicopathological characteristics and survival were assessed using a tissue microarray based on a multicentre PDAC cohort. We found that UBE2C was strongly expressed in PDAC patient tissues and was negatively associated with clinical stage, lymph node metastasis, perineural invasion and survival (all P < 0.05). Multivariate analysis revealed that high UBE2C expression is an independent risk factor for PDAC (P = 0.001). In the PDAC cell lines CFPAC-1 and Panc-1, silencing UBE2C suppressed cell proliferation by inducing G1/S arrest mediated by downregulation of cyclin D1. Furthermore, UBE2C knockdown decreased the migration of PDAC cells in vitro by downregulating epithelial-mesenchymal transition (EMT). RNA-seq analysis showed that upon silencing UBE2C in CFPAC-1 cells, cyclin D1 and vimentin were downregulated by approximately 3.5-fold and 2.6-fold, respectively, and the major enriched pathways were related to cell cycle progression. Experiments on tumour-bearing mice injected with CFPAC-1 cells indicated that UBE2C depletion significantly inhibits tumour growth in vivo. These results suggest that UBE2C is involved in the development and progression of PDAC by regulating cell proliferation and EMT. UBE2C is a novel potential therapeutic target for pancreatic cancer. DATABASE: Data are available in the GEO database under accession number GSE137172.
Collapse
Affiliation(s)
- Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangyu Yin
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ludi Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yao Zheng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Songsong Liu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jiali Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
40
|
Zhong S, Bai Y, Wu B, Ge J, Jiang S, Li W, Wang X, Ren J, Xu H, Chen Y, Zhao G. Selected by gene co-expression network and molecular docking analyses, ENMD-2076 is highly effective in glioblastoma-bearing rats. Aging (Albany NY) 2019; 11:9738-9766. [PMID: 31706255 PMCID: PMC6874459 DOI: 10.18632/aging.102422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Background: Glioblastoma is the most common type of malignant brain tumor. Bioinformatics technology and structure biology were effectively and systematically used to identify specific targets in malignant tumors and screen potential drugs. Results: GBM patients have higher AURKA and KDR mRNA expression compared with normal samples. Then, we identified a small molecular compound, ENMD-2076, could effectively inhibit Aurora kinase A and VEGFR-2 (encoded by KDR) activities. ENMD-2076 is predicted without toxic properties and also has absorption and gratifying brain/blood barrier penetration ability. Further results demonstrated that ENMD-2076 could significantly inhibit GBM cell lines proliferation and vitality, it also suppressed GBM cells migration and invasion. ENMD-2076 induced glioblastoma cell cycle arrest in G2-M phase and apoptosis by inhibiting PI3K/AKT/mTOR signaling pathways. Additionally, ENMD-2076 prolonged the median survival time of tumor-bearing rats and restrained growth rate of tumor volume in vivo. Conclusions: Our findings reveal that ENMD-2076 is a promising drug in dealing with glioblastoma and have a perspective application. Methods: We show that AURKA and KDR genes are hub driver genes in glioblastoma with bioinformatics technology including WGCNA analysis, PPI network, GO, KEGG analysis and GSEA analysis. After identifying a compound via virtual screening analysis, further experiments were carried out to examine the anti-glioblastoma activities of the compound in vivo and in vitro.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Bioinformatics, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Bo Wu
- Clinical College, Jilin University, Changchun, China.,Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, China
| | - Shanshan Jiang
- Institute of Zoology, China Academy of Science, Beijing, China
| | - Weihang Li
- Clinical College, Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Junan Ren
- Clinical College, Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Gong Y, Wang D, Lin L, Dai J, Yu L. The expression of ubiquitin-conjugating enzyme E2C and KAI1 in ovarian carcinoma and their clinical significance. Medicine (Baltimore) 2019; 98:e17896. [PMID: 31725636 PMCID: PMC6867754 DOI: 10.1097/md.0000000000017896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) is considered to play an important role in the tumorigenesis of many cancers and promote cell cycle progression. Kangai 1 (KAI1) is considered as a suppressor gene of tumor metastasis. However, the clinicopathological significance and their each relationship of UBE2C and KAI1 in epithelial ovarian carcinoma (EOC) are not widely reported. The purpose of this study is to detect the expression of UBE2C and KAI1 in EOC and their clinical significance.The expression of UBE2C and KAI1 in 180 cases of EOC tissues, 60 cases of normal ovarian epithelial tissues, and 60 cases of ovarian benign tumor tissues were detected by immunohistochemistry. Patients data were also collected.Positive expression of UBE2C in EOC (38.9%) was significantly higher than that both in the normal group (0%) and benign tumors group (10.0%). Furthermore, the expression of UBE2C was positively associated with grades of differentiation, implants, lymph node metastasis (LNM), as well as the International Federation of Gynecology and Obstetrics (FIGO) stages. Positive expression of KAI1 in EOC (25.0%) was significantly lower than that both in the normal group (100%) and benign tumors group (75.0%). And the expression of KAI1 was inversely associated with grades of differentiation, implants, LNM, and FIGO stages. Kaplan-Meier survival analyses demonstrated that UBE2C positive expression for patients with EOC had unfavorably overall survival (OS) time when compared with negative UBE2C for patients. And KAI1 positive expression for patients had favorably OS time when compared with negative KAI1 for patients. Multivariate analysis showed that positive expression of UBE2C and KAI1, implants, and FIGO stages were considered as independently prognostic factors for OS in patients with EOC. Moreover, UBE2C expression was significantly higher in high grade serous adenocarcinoma (SA) when compared with low grade SA; and KAI1 expression was significantly lower in high grade SA when compared with low grade SA. High grade SA patients had higher rates of implants, LNM, and high FIGO stages when compared with low grade SA. High grade SA patients had unfavorably OS time when compared with low grade SA.UBE2C and KAI1 should be considered as potential biomarkers of EOC prognosis.
Collapse
Affiliation(s)
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University
- Department of Pathology, Bengbu Medical University, Anhui, China
| | - Lu Lin
- Department of Gynaecology and Obstetrics
| | - Junjun Dai
- Department of Gynaecology and Obstetrics
| | - Lan Yu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University
- Department of Pathology, Bengbu Medical University, Anhui, China
| |
Collapse
|
42
|
Alafate W, Zuo J, Deng Z, Guo X, Wu W, Zhang W, Xie W, Wang M, Wang J. Combined elevation of AURKB and UBE2C predicts severe outcomes and therapy resistance in glioma. Pathol Res Pract 2019; 215:152557. [DOI: 10.1016/j.prp.2019.152557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
|
43
|
Wang K, Chen Y, Zhao Z, Feng M, Zhang S. Identification of potential core genes and miRNAs in testicular seminoma via bioinformatics analysis. Mol Med Rep 2019; 20:4013-4022. [PMID: 31545448 PMCID: PMC6797975 DOI: 10.3892/mmr.2019.10684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Testicular seminoma is one of the most common tumours in the field of urology, and its aetiology is still unclear. The aim of the present study was to identify the factors responsible for the development of testicular cancer and to investigate whether mutations in these genes were primarily congenital or acquired. To identify the key genes and miRNAs linked to testicular seminoma, as well as their potential molecular mechanisms, the GSE15220, GSE1818 and GSE59520 microarray datasets were analysed. A total of 5,195 and 1,163 differentially expressed genes (DEGs) were identified after analysing the GSE15220 and GSE1818 datasets, respectively. Among them, 287 genes were common between the two datasets. Of these, 110 were upregulated and 177 were downregulated. Five differentially expressed microRNAs (miRs; DEMs) that were downregulated in seminoma were identified after analysing the GSE59520 dataset. Following protein-protein interaction network and Gene Ontology analysis, the five nodes with the highest degrees were screened as hub genes. Among them, the high expression of hub genes, such as protein tyrosine phosphatase receptor type C (PTPRC), was associated with worse overall survival. We also predicted the potential target genes of the DEMs. DNA topoisomerase II α (TOP2A), marker of proliferation Ki-67 (MKI67), PTPRC and ubiquitin conjugating enzyme E2 C were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. In addition, hsa-miR-650 and hsa-miR-665 were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. Additionally, TOP2A and MKI67 were strongly associated with the target genes hsa-miR-650 and hsa-miR-665, respectively. We proposed that the hub genes reported in the present study may have a certain impact on cellular proliferation and migration in testicular seminoma. The roles of these hub genes in seminoma may provide novel insight to improve the diagnosis and treatment of patients with seminoma.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Zhao
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Meiying Feng
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
44
|
Dai X, Ma B, Jiang P, Xu Z, Kong X, Sun X. Tenacigenin B Has Anti-Tumor Effect in Lymphoma by In Vitro and In Vivo Study. Med Sci Monit 2019; 25:6563-6573. [PMID: 31473762 PMCID: PMC6738005 DOI: 10.12659/msm.916461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to examine the effects and mechanisms of tenacigenin B in lymphoma treatment by in vitro and in vivo experiment. Material/Methods Raji cells were treated by difference methods. Measuring the cell proliferation of difference groups was done by MTT assay; cell apoptosis and cell cycle of difference groups were evaluated by flow cytometer; relative mRNA expression was evaluated by real-time polymerase chain reaction (RT-PCR), and relative protein expressions were measured by western blot assay in an in vitro study. In an in vivo study, we used a nude mice model to explore the anti-tumor effects and mechanism of tenacigenin B. Cell apoptosis was measured by TUNEL assay; relative protein expressions were evaluated by immunohistochemistry assay, and relative mRNA expression was evaluated by RT-PCR. In addition, the blood components of difference groups were measured. Results Compared with the Normal control group, the cell proliferation rate was significantly downregulated, with cell apoptosis significantly increasing with G1 phase in the Drug group and the si-Aurora-A group (P<0.05, respectively). The PTEN, PI3K, AKT, P53, and P21 mRNA and protein expressions of the Drug group, the si-Aurora-A group, and the si-Aurora-A+Drug group were significantly different (P<0.01, respectively), The tumor volume and weight of the Drug group, the si-Aurora-A group, and the si-Aurora-A+Drug group were significantly suppressed compared with the Normal group (P<0.01, respectively). The positive apoptosis cell number in the Drug group, the si-Aurora-A group, and si-Aurora-A+Drug group were increased compared with that of Normal group (P<0.01, respectively). Conclusions Tenacigenin B had anti-tumor effects on lymphoma via regulation of Aurora-A in vitro and in vivo.
Collapse
Affiliation(s)
- Xingbin Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Bangyun Ma
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Pengjun Jiang
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zuqiong Xu
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xiangtu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuemei Sun
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
45
|
Hao P, Kang B, Li Y, Hao W, Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol Med Rep 2019; 20:1212-1220. [PMID: 31173226 PMCID: PMC6625406 DOI: 10.3892/mmr.2019.10322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor globally. The overall survival of patients with RCC is poor; one important factor is tumor heterogeneity. Ubiquitin-conjugating enzyme E2T (UBE2T) has been reported to act as an oncogene in various types of cancer; however, its role in RCC has yet to be investigated. In the present study, UBE2T was demonstrated via reverse transcription-quantitative PCR analysis to be significantly upregulated in RCC samples and cell lines compared with in normal tissue and cells. Additionally, UBE2T expression was significantly associated with late tumor stage and high grade in patients with RCC, and patients with high UBE2T expression exhibited poor prognosis compared with patients with low expression. Following knockdown of UBE2T in 786-O cells using RNA interference technology, the proliferation and colony formation of cells were inhibited as determined by an MTT assay and crystal violet staining, respectively; however, the migration and invasion of 786-O cells were not affected, as determined by wound-healing assay and Transwell assays, respectively. Xenograft RCC tumor growth in vivo was also significantly suppressed. The expression levels of two mesenchymal cell markers, N-cadherin and vimentin, were reduced following UBE2T knockdown, whereas E-cadherin and fibronectin levels were increased as determined by western blotting, indicating that epithelial-mesenchymal transition was suppressed. In addition, the phosphorylation levels of PI3K, Akt and mTOR were notably decreased following UBE2T knockdown, but were increased when UBE2T was overexpressed. Wortmannin, an Akt inhibitor, reversed the UBE2T overexpression-induced increase in the phosphorylation of PI3K, Akt and mTOR. Similarly, the UBE2T overexpression-induced promotion of 786-O cell proliferation was also attenuated by wortmannin. In conclusion, UBE2T promoted the proliferation of RCC cells by regulating PI3K/Akt signaling, suggesting it may be a novel target for the treatment of patients with RCC.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Department of Central Sterile Supply, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yapeng Li
- Department of Medical Record, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Wenqi Hao
- Distinguished Physician Class, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
46
|
UBE2C functions as a potential oncogene by enhancing cell proliferation, migration, invasion, and drug resistance in hepatocellular carcinoma cells. Biosci Rep 2019; 39:BSR20182384. [PMID: 30914455 PMCID: PMC6470407 DOI: 10.1042/bsr20182384] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recently, ubiquitin-conjugating enzyme E2C (UBE2C) has been reported to be overexpressed in human cancers and act as a potential oncogene. However, little is known about the functional roles of UBE2C in HCC progression. In the present study, analysis of UBE2C mRNA expression in The Cancer Genome Atlas (TCGA) dataset reveals that significantly higher UBE2C mRNA levels was found in HCC tissues and associated with higher HCC grade. Elevated UBE2C mRNA levels in HCC indicated worsened survival probabilities. Through performing loss-of-function assays, we demonstrated that knockdown of UBE2C expression obviously suppressed proliferation, migration, and invasion of HCC cells in vitro Moreover, HCC cells with UBE2C knockdown showed higher sensitivity for the treatment of chemotherapeutic drug, including adriamycin (ADR) and 5-fluorouracil (5-FU). Silencing of UBE2C also increased the sensitivity of HCC cells to sorafenib, an approved treatment for patients with advanced-stage HCC. Our findings strongly suggest that UBE2C emerges as a marker for prognosis in HCC, and blocking UBE2C may be a novel strategy for HCC therapies.
Collapse
|
47
|
Shen R, Wu T, Huang P, Shao Q, Chen M. The clinicopathological significance of ubiquitin-conjugating enzyme E2C, leucine-rich repeated-containing G protein-coupled receptor, WW domain-containing oxidoreductase, and vasculogenic mimicry in invasive breast carcinoma. Medicine (Baltimore) 2019; 98:e15232. [PMID: 31008954 PMCID: PMC6494285 DOI: 10.1097/md.0000000000015232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C), a crucial part of the ubiquitin-conjugating enzyme complex, is reported to promote progression of various cancers. Leucine-rich repeated-containing G protein-coupled receptor (LGR5), a biomarker of cancer stem cells, is reported to be responsible for the initiation and progression of cancers. WW domain-containing oxidoreductase (WWOX), a suppressor of tumor, is reported to inhibit initiation and progression of cancers. Vasculogenic mimicry (VM), a new blood supply pattern, is associated with progression of cancers. However, the clinicopathological significance of UBE2C, LGR5, WWOX, and VM in invasive breast carcinoma (IBC) remains elusive. The aim of this study is to investigate the positive rate of UBE2C, LGR5, WWOX, and VM in IBC and their clinical significance.Positive rates of UBE2C, LGR5, WWOX, and VM in 247 whole IBC samples were detected through immunohistochemistry. Patients data (including clinical, demography, follow-up) were collected.Levels of UBE2C, LGR5, VM, and microvessel density (MVD) were significantly higher, and level of WWOX was significantly lower in IBC specimens when compared with normal mammary gland tissues. Levels of UBE2C, LGR5, VM, and MVD were all positively associated with tumor stages, lymph node metastasis (LNM) stages, tumor grades, and tumor-node-metastasis (TNM) stages, and unfavorably with patients' overall survival (OS) and disease-free survival (DFS). Level of WWOX was negatively associated with tumor stages, LNM stages, grades, and TNM stages, and favorably with patients' OS and DFS. Multivariate analysis indicated that levels of UBE2C, LGR5, VM, MVD, and WWOX, as well as TNM stages were independently prognostic factors for OS and DFS in patients with IBC.UBE2C, LGR5, VM, MVD, and WWOX may be considered as promising indicator of IBC prognosis.
Collapse
Affiliation(s)
- Rong Shen
- Department of Pathology, Zhenjiang First People's Hospital, Affiliated to Jiangsu University
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Wu
- Department of Pathology, Zhenjiang First People's Hospital, Affiliated to Jiangsu University
| | - Pan Huang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qixiang Shao
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Miao Chen
- Department of Pathology, Zhenjiang First People's Hospital, Affiliated to Jiangsu University
| |
Collapse
|
48
|
UBE2C Induces Cisplatin Resistance via ZEB1/2-Dependent Upregulation of ABCG2 and ERCC1 in NSCLC Cells. JOURNAL OF ONCOLOGY 2019; 2019:8607859. [PMID: 30693031 PMCID: PMC6333017 DOI: 10.1155/2019/8607859] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Objectives Cisplatin (DDP) is one of the most commonly used chemotherapeutic drugs for several cancers, including non-small-cell lung cancer (NSCLC). However, resistance to DDP eventually develops, limiting its further application. New therapy targets are urgently needed to reverse DDP resistance. Methods The mRNA expression of UBE2C, ZEB1/2, ABCG2, and ERCC1 was analyzed by reverse transcription-polymerase chain reaction. The protein levels of these molecules were analyzed by Western blotting and immunofluorescent staining. Cell proliferation was detected by CCK8 and MTT assays. Cell migration and invasion were analyzed by wound healing assay and Transwell assays. Promoter activities and gene transcription were analyzed by luciferase reporter assay. Results In this study, we examined the effect of UBE2C and ZEB1/2 expression levels in DDP-resistant cells of NSCLC. We confirmed that aberrant expression of UBE2C and ZEB1/2 plays a critical role in repressing the DDP sensitivity to NSCLC cells. Additionally, knockdown of UBE2C significantly sensitized resistant cells to DDP by repressing the expression of ZEB1/2. Mechanistic investigations indicated that UBE2C transcriptionally regulated ZEB1/2 by accelerating promoter activity. This study revealed that ZEB1/2 promotes the epithelial mesenchymal transition and expression of ABCG2 and ERCC1 to participate in UBE2C-mediated NSCLC DDP-resistant cell progression, metastasis, and invasion. Conclusion UBE2C may be a novel therapy target for NSCLC for sensitizing cells to the chemotherapeutic agent DDP.
Collapse
|
49
|
Roy S, Hooiveld GJ, Seehawer M, Caruso S, Heinzmann F, Schneider AT, Frank AK, Cardenas DV, Sonntag R, Luedde M, Trautwein C, Stein I, Pikarsky E, Loosen S, Tacke F, Ringelhan M, Avsaroglu SK, Goga A, Buendia MA, Vucur M, Heikenwalder M, Zucman-Rossi J, Zender L, Roderburg C, Luedde T. microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis. Gastroenterology 2018; 155:1951-1966.e26. [PMID: 30165047 PMCID: PMC6279541 DOI: 10.1053/j.gastro.2018.08.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS We performed an integrated analysis to identify microRNAs (miRNAs) and messenger RNAs (mRNAs) with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues. METHODS We analyzed miRNA and mRNA expression profiles of liver tissues from mice with diethylnitrosamine-induced hepatocarcinogenesis, conditional expression of lymphotoxin alpha and lymphotoxin beta, or inducible expression of a Myc transgene (Tet-O-Myc mice), as well as male C57BL/6 mice (controls). miRNA mimics were expressed and miRNAs and mRNAs were knocked down in human (Huh7, Hep3B, JHH2) hepatoma cell lines; cells were analyzed for viability, proliferation, apoptosis, migration, and invasion. Cells were grown as xenograft tumors in nude mice and analyzed. We combined in silico target gene prediction with mRNA profiles from all 3 mouse models. We quantified miRNA levels in 146 fresh-frozen tissues from patients (125 HCCs, 17 matched nontumor tissues, and 4 liver samples from patients without cancer) and published human data sets and tested correlations with patient survival times using Kaplan-Meier curves and the log-rank test. Levels of NUSAP1 mRNA were quantified in 237 HCCs and 5 nontumor liver samples using the TaqMan assay. RESULTS Levels of the miRNA 193a-5p (MIR193A-5p) were reduced in liver tumors from all 3 mouse tumor models and in human HCC samples, compared with nontumor liver tissues. Expression of a MIR193A-5p mimic in hepatoma cells reduced proliferation, survival, migration, and invasion and their growth as xenograft tumors in nude mice. We found nucleolar and spindle-associated protein 1 (NUSAP1) to be a target of MIR193A-5p; HCC cells and tissues with low levels of MIR193A-5p had increased expression of NUSAP1. Increased levels of NUSAP1 in HCC samples correlated with shorter survival times of patients. Knockdown of NUSAP1 in Huh7 cells reduced proliferation, survival, migration, and growth as xenograft tumors in nude mice. Hydrodynamic tail-vein injections of a small hairpin RNA against NUSAP1 reduced growth of Akt1-Myc-induced tumors in mice. CONCLUSIONS MIR193A-5p appears to prevent liver tumorigenesis by reducing levels of NUSAP1. Levels of MIR193A-5p are reduced in mouse and human HCC cells and tissues, leading to increased levels of NUSAP1, associated with shorter survival times of patients. Integrated analyses of miRNAs and mRNAs in tumors from mouse models can lead to identification of therapeutic targets in humans. The currently reported miRNA and mRNA profiling data have been submitted to the Gene Expression Omnibus (super-series accession number GSE102418).
Collapse
Affiliation(s)
- Sanchari Roy
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology,Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Guido J. Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Marco Seehawer
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Stefano Caruso
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Florian Heinzmann
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | - Anna K. Frank
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | | | - Roland Sonntag
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Mark Luedde
- Department of Cardiology, University Hospital Kiel, 25105 Kiel, Germany
| | | | - Ilan Stein
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Sven Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Marc Ringelhan
- Technische Universität München, Ismaningerstr. 22, 81675 München
| | - Seda Kilinc Avsaroglu
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Marie-Annick Buendia
- Inserm Unit U1193, University Paris-Sud, Paul Brousse Hospital, Villejuif, France
| | - Mihael Vucur
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Germany
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany,Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, Aachen Germany; Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany.
| |
Collapse
|
50
|
Zhou X, Wang P, Zhao H. The Association Between AURKA Gene rs2273535 Polymorphism and Gastric Cancer Risk in a Chinese Population. Front Physiol 2018; 9:1124. [PMID: 30174615 PMCID: PMC6108025 DOI: 10.3389/fphys.2018.01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
The Aurora kinase A (AURKA) gene is frequently amplified and overexpressed in gastric cancer (GC). The overexpression of AURKA promotes inflammation and tumorigenesis in GC. We performed co-expression analysis to identify genes associated with AURKA and speculated its function through the COXPRESdb and STRING databases. We also conducted a hospital-based case-control study involving 385 GC cases and 470 controls in a Chinese population to evaluate the role of AURKA gene rs2273535 polymorphism in the risk of GC. Genotyping was performed using a custom-by-design 48-Plex single nucleotide polymorphism (SNP) Scan™ Kit. Co-expression analysis indicated that the overexpression of AURKA may be associated with poor prognosis of GC. In addition, TT genotypes of rs2273535 polymorphism increased the risk of GC by 72% compared to the AA genotypes. This significant correlation was also observed in the allelic and dominant models. The stratified analysis suggested that TT+AT genotypes showed positive correlation with the risk of GC among female, age <55 years group and non-smokers compared to AA genotypes. In conclusion, AURKA plays an important role in the development of GC. Larger studies with more diverse ethnic populations are needed to confirm these results.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pengli Wang
- Department of General Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Zhao
- Department of General Surgery, Third Affiliated Hospital of Nantong University, Wuxi, China
| |
Collapse
|