1
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
2
|
He G, Wang W, Zhou Y, Zhao G, Liao J. Ampholytic ion-exchange magnetic beads: a promising tool for selecting short fragments in circulating cell-free DNA analysis. Front Oncol 2024; 14:1397680. [PMID: 38779084 PMCID: PMC11109406 DOI: 10.3389/fonc.2024.1397680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Objective For liquid biopsy of cancer, the extraction of circulating cell-free DNA (cfDNA) from plasma is required. We evaluated the efficacy of use of magnetic submicron particles coated with abundant small zwitterions (MSP-ZEWBs) for extracting short fragments of cfDNA. Methods We developed and optimized an MSP-ZEWB-based cfDNA extraction method using ampholytic ion-exchange materials and compared its results with those using a control kit. We measured the cfDNA concentration by quantitative polymerase-chain-reaction and using the Qubit method and analyzed cfDNA fragmentation patterns using a bioanalyzer. Results The fragment size of cfDNA isolated from glycine hydrochloric acid at a pH of 2.2 exhibited a better alignment with the DNA marker. The highest DNA intensity was observed at the final concentration of 0.8% polyethylene glycol 8000. The intensity of cfDNA decreased significantly when isolated from plasma with DNA marker using MSP-ZEWBs with an adsorption buffer containing guanidine hydrochloride or isothiocyanoguanidine. All fragments were successfully extracted using MSP-ZEWBs from both plasma and phosphate-buffered saline. Notably, the intensity of short cfDNA fragments isolated using MSP-ZEWBs remained consistent for recovery of long DNA fragments. indicating a potential selective of small fragments. Conclusion The extraction of plasma cfDNA with MSP-ZEWBs requires no protein denaturation, shows resistance to cells remaining in plasma, and demonstrates higher overall efficiency and better reproducibility than other extraction methods. Use of MSP-ZEWBs may greatly enhance liquid biopsy of cancers through the analysis of plasma cfDNA in clinical practice.
Collapse
Affiliation(s)
- Gan He
- Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Weixuan Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongxia Zhou
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Center Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Guowei Zhao
- Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Liao
- Center Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Geriatric Disease Clinical Research Center, Chongqing, China
| |
Collapse
|
3
|
Han S, Song M, Wang J, Huang Y, Li Z, Yang A, Sui C, Zhang Z, Qiao J, Yang J. Intelligent identification system of gastric stromal tumors based on blood biopsy indicators. BMC Med Inform Decis Mak 2023; 23:214. [PMID: 37833709 PMCID: PMC10576280 DOI: 10.1186/s12911-023-02324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The most prevalent mesenchymal-derived gastrointestinal cancers are gastric stromal tumors (GSTs), which have the highest incidence (60-70%) of all gastrointestinal stromal tumors (GISTs). However, simple and effective diagnostic and screening methods for GST remain a great challenge at home and abroad. This study aimed to build a GST early warning system based on a combination of machine learning algorithms and routine blood, biochemical and tumour marker indicators. METHODS In total, 697 complete samples were collected from four hospitals in Gansu Province, including 42 blood indicators from 318 pretreatment GST patients, 180 samples of gastric polyps and 199 healthy individuals. In this study, three algorithms, gradient boosting machine (GBM), random forest (RF), and logistic regression (LR), were chosen to build GST prediction models for comparison. The performance and stability of the models were evaluated using two different validation techniques: 5-fold cross-validation and external validation. The DeLong test assesses significant differences in AUC values by comparing different ROC curves, the variance and covariance of the AUC value. RESULTS The AUC values of both the GBM and RF models were higher than those of the LR model, and this difference was statistically significant (P < 0.05). The GBM model was considered to be the optimal model, as a larger area was enclosed by the ROC curve, and the axes indicated robust model classification performance according to the accepted model discriminant. Finally, the integration of 8 top-ranked blood indices was proven to be able to distinguish GST from gastric polyps and healthy people with sensitivity, specificity and area under the curve of 0.941, 0.807 and 0.951 for the cross-validation set, respectively. CONCLUSION The GBM demonstrated powerful classification performance and was able to rapidly distinguish GST patients from gastric polyps and healthy individuals. This identification system not only provides an innovative strategy for the diagnosis of GST but also enables the exploration of hidden associations between blood parameters and GST for subsequent studies on the prevention and disease surveillance management of GST. The GST discrimination system is available online for free testing of doctors and high-risk groups at https://jzlyc.gsyy.cn/bear/mobile/index.html .
Collapse
Affiliation(s)
- Shangjun Han
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Meijuan Song
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jiarui Wang
- Department of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yalong Huang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Zuxi Li
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Aijia Yang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Changsheng Sui
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Zeping Zhang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jiling Qiao
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jing Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
4
|
Causin RL, Sussuchi da Silva L, Leal LF, Possati-Resende JC, Evangelista AF, Matsushita GM, Scapulatempo-Neto C, Tavares Guerreiro Fregnani JH, Antônio de Oliveira M, Musselwhite LW, Chiquitelli Marques MM, Reis RM. The digital expression profile of BMP7, CDKN2C, HIST1H3G, and PKMYT1 genes improves high-grade cervical lesion detection in liquid-based cytology. Cancer Cytopathol 2023; 131:454-464. [PMID: 37069588 DOI: 10.1002/cncy.22704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Some studies reported that differential gene expression could be used as a biomarker for high-grade cervical lesion identification. The aim was to evaluate the gene expression profile of cervical intraepithelial neoplasia (CIN) to identify a gene expression signature of CIN2+ in liquid-based cytology (LBC) samples. METHODS LBC samples (n = 85) obtained from women who underwent colposcopy were included with benign (n = 13), CIN1 (n = 26), CIN2 (n = 16), and CIN3 (n = 30) diagnoses. After RNA isolation, gene expression profiling was performed using the nCounter PanCancer Pathways, which consists of 730 cancer-related genes. The genes identified were in silico expression evaluated using the UALCAN database. An accurate prediction model to discriminate CIN2+ from RESULTS This study identified a gene expression profile that significantly differentiates CIN2+ cases from CONCLUSION A gene expression profile that may be helpful in the identification of patients with CIN2+ was identified. This approach could be used together with currently used LBC in a clinical setting, allowing the identification of patients with high risk of CIN2+.
Collapse
Affiliation(s)
| | | | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | | | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Connal S, Cameron JM, Sala A, Brennan PM, Palmer DS, Palmer JD, Perlow H, Baker MJ. Liquid biopsies: the future of cancer early detection. J Transl Med 2023; 21:118. [PMID: 36774504 PMCID: PMC9922467 DOI: 10.1186/s12967-023-03960-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Cancer is a worldwide pandemic. The burden it imposes grows steadily on a global scale causing emotional, physical, and financial strains on individuals, families, and health care systems. Despite being the second leading cause of death worldwide, many cancers do not have screening programs and many people with a high risk of developing cancer fail to follow the advised medical screening regime due to the nature of the available screening tests and other challenges with compliance. Moreover, many liquid biopsy strategies being developed for early detection of cancer lack the sensitivity required to detect early-stage cancers. Early detection is key for improved quality of life, survival, and to reduce the financial burden of cancer treatments which are greater at later stage detection. This review examines the current liquid biopsy market, focusing in particular on the strengths and drawbacks of techniques in achieving early cancer detection. We explore the clinical utility of liquid biopsy technologies for the earlier detection of solid cancers, with a focus on how a combination of various spectroscopic and -omic methodologies may pave the way for more efficient cancer diagnostics.
Collapse
Affiliation(s)
- Siobhan Connal
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK
| | - James M Cameron
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Alexandra Sala
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, 49 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4BS, UK
| | - David S Palmer
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Haley Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew J Baker
- Dxcover Ltd., Royal College Building, 204 George Street, Glasgow, G1 1XW, UK.
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G11XL, UK.
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
6
|
Chen L, Yang J, Xu G, Wu Y. Potential Value and Application of Liquid Biopsy in Tumor, Neurodegeneration, and Muscle Degenerative Diseases. Methods Mol Biol 2023; 2695:317-335. [PMID: 37450129 DOI: 10.1007/978-1-0716-3346-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy provides a promising alternative for the detection of disease-specific markers due to its superior noninvasive and original tissue representativeness. Liquid biopsies have a wide range of health and disease applications involving components ranging from circulating cells to acellular nucleic acid molecules and other metabolites. Here, we review the different components of liquid biopsy and investigate the most advanced noninvasive methods for detecting these components as well as their existing problems and trends. In particular, we emphasize the importance of analyzing liquid biopsy data from extracellular vesicles and small nucleic acids in neurological and muscle degeneration, with the aim of using this technique to enhance personalized healthcare. Although previous reviews have focused on cancer, this review mainly emphasizes the potential application of extracellular vesicles and microRNAs in liquid biopsy in neurodegeneration and muscle degeneration.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Jun Yang
- Jianghan University Library, Wuhan, Hubei, People's Republic of China
| | - Guodong Xu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Bahado-Singh RO, Radhakrishna U, Gordevičius J, Aydas B, Yilmaz A, Jafar F, Imam K, Maddens M, Challapalli K, Metpally RP, Berrettini WH, Crist RC, Graham SF, Vishweswaraiah S. Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells 2022; 11:1744. [PMID: 35681440 PMCID: PMC9179874 DOI: 10.3390/cells11111744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949−0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95−1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Juozas Gordevičius
- Vugene, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA;
| | - Buket Aydas
- Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI 48226, USA;
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Faryal Jafar
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Khaled Imam
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Michael Maddens
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Kshetra Challapalli
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
| | - Wade H. Berrettini
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| |
Collapse
|
8
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
9
|
Glyn T, Purcell R. Circulating Bacterial DNA: A New Paradigm for Cancer Diagnostics. Front Med (Lausanne) 2022; 9:831096. [PMID: 35445046 PMCID: PMC9013860 DOI: 10.3389/fmed.2022.831096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free DNA applications for screening, diagnosis and treatment monitoring are increasingly being developed for a range of different cancers. While most of these applications investigate circulating tumor DNA (ctDNA) or methylation profiles of ctDNA, circulating bacterial DNA (cbDNA) has also been detected in plasma and serum samples from cancer patients. Recent publications have the detection of cbDNA in studies of breast, gastric, colorectal, hepatocellular and ovarian cancers. In several cases, distinction between patients and healthy controls was possible, based on cbDNA profiles, in addition to potential prognostic value. A large pan-cancer study demonstrated the feasibility of cbDNA to distinguish between four types of cancer and healthy controls, even in patients with early-stage disease. While improvements in, and standardization of laboratory and bioinformatics analyses are needed, and the clinical relevance of cbDNA yet to be ascertained for each cancer type, cbDNA analysis presents an exciting prospect for future liquid biopsy screening and diagnostics in cancer.
Collapse
Affiliation(s)
- Tamara Glyn
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| |
Collapse
|
10
|
Takada Y, Shibuta T, Hatano M, Sato K, Koga M, Ishibashi A, Harada T, Hisatomi T, Shimura H, Fukushima N, Leecharoenkiat K, Chamnanchanunt S, Svasti S, Fucharoen S, Umemura T. Pre-Analytical Modification of Serum miRNAs: Diagnostic Reliability of Serum miRNAs in Hemolytic Diseases. J Clin Med 2021; 10:jcm10215045. [PMID: 34768564 PMCID: PMC8584813 DOI: 10.3390/jcm10215045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Circulating microRNAs (miRNAs) are useful biomarkers of hemolysis. Since blood cells are the main origins of circulating miRNAs, we evaluated blood cell-related pre-analytical modification of the miRNA signatures during blood drawing and serum processing. The levels of miRNA before and after ex vivo blood drawing were analyzed with the reverse transcriptase-based polymerase chain reaction method. Furthermore, the changes of miRNA signatures caused by different time-lag between blood drawing and serum preparation by 24 h were evaluated. Finally, we compared the miRNA levels between leftover samples and samples of hemolytic diseases. Blood drawing procedure induced increments of red blood cell (RBC)-related miRNAs (miR-451a, miR-486) about 2-fold. One hour standing of blood samples before serum separation induced almost the same increases in RBC-related miRNAs. To test the clinical usefulness of miR-451a as a biomarker of hemolytic diseases, we analyzed miRNAs of samples from 10 normal subjects, 30 leftover samples in the clinical laboratory, and 20 samples from patients with hemolytic diseases. Serum miR-451a significantly increased in patients with hemolytic anemia more than the levels of pre-analytical modification. In conclusion, the pre-analytical modification of serum miRNAs did not disturb the usefulness of RBC-derived miRNAs as biomarkers of hemolytic diseases.
Collapse
Affiliation(s)
- Yukichi Takada
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Tatsuki Shibuta
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Mayu Hatano
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Kenichi Sato
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Mari Koga
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | - Ayaka Ishibashi
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | - Tetsuhiro Harada
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | | | - Hanae Shimura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Noriyasu Fukushima
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Kamonlak Leecharoenkiat
- Department of Clinical Microscope, Faculty of Medical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | | | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73130, Thailand; (S.S.); (S.F.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73130, Thailand; (S.S.); (S.F.)
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
- Correspondence: ; Tel.: +81-0944-89-2000
| |
Collapse
|
11
|
Bu J, Lee TH, Poellmann MJ, Rawding PA, Jeong W, Hong RS, Hyun SH, Eun HS, Hong S. Tri-modal liquid biopsy: Combinational analysis of circulating tumor cells, exosomes, and cell-free DNA using machine learning algorithm. Clin Transl Med 2021; 11:e499. [PMID: 34459134 PMCID: PMC8335965 DOI: 10.1002/ctm2.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tae Hee Lee
- Research Institute for Future Medical ScienceChungnam National University Sejong Hospital (CNUSH)SejongRepublic of Korea
- Department of Senior HealthcareBK21 Plus ProgramGraduated SchoolEulji UniversityDaejeonRepublic of Korea
| | - Michael J. Poellmann
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Piper A. Rawding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Woo‐Jin Jeong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biological Sciences and BioengineeringInha UniversityIncheonRepublic of Korea
| | - Rachel S. Hong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sung Hee Hyun
- Department of Senior HealthcareBK21 Plus ProgramGraduated SchoolEulji UniversityDaejeonRepublic of Korea
| | - Hyuk Soo Eun
- Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Yonsei Frontier Lab and Department of PharmacyYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
13
|
Cardiomyocyte-Specific Circulating Cell-Free Methylated DNA in Esophageal Cancer Patients Treated with Chemoradiation. GASTROINTESTINAL DISORDERS 2021; 3:100-112. [PMID: 35531260 PMCID: PMC9074856 DOI: 10.3390/gidisord3030011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thoracic high-dose radiation therapy (RT) for cancer has been associated with early and late cardiac toxicity. To assess altered rates of cardiomyocyte cell death due to RT we monitored changes in cardiomyocyte-specific, cell-free methylated DNA (cfDNA) shed into the circulation. Eleven patients with distal esophageal cancer treated with neoadjuvant chemoradiation to 50.4 Gy (RT) and concurrent carboplatin and paclitaxel were enrolled. Subjects underwent fasting blood draws prior to the initiation and after completion of RT as well as 4–6 months following RT. An island of six unmethylated CpGs in the FAM101A locus was used to identify cardiomyocyte-specific cfDNA in serum. After bisulfite treatment this specific cfDNA was quantified by amplicon sequencing at a depth of >35,000 reads/molecule. Cardiomyocyte-specific cfDNA was detectable before RT in the majority of patient samples and showed some distinct changes during the course of treatment and recovery. We propose that patient-specific cardiac damages in response to the treatment are indicated by these changes although co-morbidities may obscure treatment-specific events.
Collapse
|
14
|
Stanciu J, Tariman JD. Liquid Biopsy: A Tool for the Diagnostic and Prognostic Evaluation of Cancers. Clin J Oncol Nurs 2021; 24:19-21. [PMID: 31961840 DOI: 10.1188/20.cjon.19-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liquid biopsy is defined as the process of obtaining material for pathologic examination and analysis from body fluids. Liquid biopsy has been intensively researched for its clinical application in patients with solid malignancies, including melanoma and colon, breast, and lung cancers. This will become a standard and routine tool for the diagnostic and prognostic evaluation of all cancer types. This article provides an overview of liquid biopsy, its uses in cancer management, and its implications for nursing practice.
Collapse
|
15
|
MicroRNA Biomarkers of High-Grade Cervical Intraepithelial Neoplasia in Liquid Biopsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650966. [PMID: 33954190 PMCID: PMC8060087 DOI: 10.1155/2021/6650966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/16/2023]
Abstract
New prevention strategies are needed to detect cervical intraepithelial neoplasia (CIN). The microRNA expression analysis has already been reported as molecular biomarkers in the early detection of cervical cancer (CC) through minimally invasive samples, such as liquid biopsy, obtained through collection using liquid-based cytology (LBC). In this study, we aimed to identify molecular signatures of microRNAs in cervical precursor lesions from LBC cervical and the molecular pathways potentially associated with the CC progression. We analyzed 31 LBC cervical samples from women who underwent colposcopy. These samples were divided into two groups: the first group was composed of samples without precursor lesions of CC, considering the control group, referred to as healthy female subjects (HFS; n = 11). The second group corresponded to women diagnosed with cervical interepithelial neoplasia grade 3 (CIN 3; n = 20). We performed microRNA and gene expression profiling using the nCounter® miRNA Expression Assays (NanoString Technology) and PanCancer Pathways (NanoString Technology), respectively. A microRNA target prediction was performed by mirDIP, and molecular pathway interaction was constructed using Cytoscape. Bidirectional in silico analyses and Pearson's correlation were performed for associated the relation between genes, and miRNAs differentially expressed related cervical cancer progression were performed. We found that the expression of nine microRNAs was significantly higher, two were downregulated (miR-381-3p and miR-4531), and seven miRNAs were upregulated (miR-205-5p, miR-130a-3p, miR-3136-3p, miR-128-2-5p, let-7f-5p, miR-202-3p, and miR-323a-5p) in CIN 3 (fold change ≥ 2 and p ≤ 0.05). The miRNA expression patterns were independent of hr-HPV infection. We identified four miRNAs (miR-205-5p, miR-130a-3p, miR-4531, and miR-381-3p) that could be used as biomarkers for CIN 3 in LBC samples through multiple logistic regression analyses. We found 16 genes differentially expressed between CIN 3 and HSF samples (fold change ≥ 2 and p ≤ 0.05). We found the correlation between miR-130a-3p and CCND1(R = −0.52; p = 0.0029), miR-205-5p and EGFR (R = 0.53; p = 0.0021), and miR-4531 and SMAD2 (R = −0.54; p = 0.0016). In addition, we demonstrated the most significant pathways of the targets associated with cervical cancer progression (FDR-corrected p < 0.001). This study demonstrated that miRNA biomarkers may distinguish healthy cervix and CIN 3 and regulate important molecular pathways of carcinogenesis.
Collapse
|
16
|
Khandelwal A, Sharma U, Barwal TS, Seam RK, Gupta M, Rana MK, Vasquez KM, Jain A. Circulating miR-320a Acts as a Tumor Suppressor and Prognostic Factor in Non-small Cell Lung Cancer. Front Oncol 2021; 11:645475. [PMID: 33833996 PMCID: PMC8021852 DOI: 10.3389/fonc.2021.645475] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulated expression profiles of microRNAs (miRNAs) have been observed in several types of cancer, including non-small cell lung cancer (NSCLC); however, the diagnostic and prognostic potential of circulating miRNAs in NSCLC remains largely undefined. Here we found that circulating miR-320a was significantly down-regulated (~5.87-fold; p < 0.0001) in NSCLC patients (n = 80) compared to matched control plasma samples from healthy subjects (n = 80). Kaplan-Meier survival analysis revealed that NSCLC patients with lower levels of circulating miR-320a had overall poorer prognosis and survival rates compared to patients with higher levels (p < 0.0001). Moreover, the diagnostic and prognostic potential of miR-320a correlated with clinicopathological characteristics such as tumor size, tumor node metastasis (TNM) stage, and lymph node metastasis. Functionally, depletion of miR-320a in human A549 lung adenocarcinoma cells induced their metastatic potential and reduced apoptosis, which was reversed by exogenous re-expression of miR-320a mimics, indicating that miR-320a has a tumor-suppressive role in NSCLC. These results were further supported by high levels of epithelial-mesenchymal transition (EMT) marker proteins (e.g., Beta-catenin, MMP9, and E-cadherin) in lung cancer cells and tissues via immunoblot and immunohistochemistry experiments. Moreover, through bioinformatics and dual-luciferase reporter assays, we demonstrated that AKT3 was a direct target of miR-320a. In addition, AKT3-associated PI3K/AKT/mTOR protein-signaling pathways were elevated with down-regulated miR-320a levels in NSCLC. These composite data indicate that circulating miR-320a may function as a tumor-suppressor miRNA with potential as a prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Akanksha Khandelwal
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, India
| | | | - Rajeev Kumar Seam
- Department of Radiation Oncology, Indira Gandhi Medical College, Shimla, India
| | - Manish Gupta
- Department of Radiation Oncology, Indira Gandhi Medical College, Shimla, India
| | - Manjit Kaur Rana
- Lab Medicine, Department of Pathology, All India Institute of Medical Sciences, Bathinda, India
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| |
Collapse
|
17
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
18
|
Steele JL, Stevens RC, Cabrera OA, Bassill GJ, Cramer SM, Guzman F, Shuber AP. Novel CRISPR-based sequence specific enrichment methods for target loci and single base mutations. PLoS One 2020; 15:e0243781. [PMID: 33362267 PMCID: PMC7757808 DOI: 10.1371/journal.pone.0243781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023] Open
Abstract
The programmable sequence specificity of CRISPR has found uses in gene editing and diagnostics. This manuscript describes an additional application of CRISPR through a family of novel DNA enrichment technologies. CAMP (CRISPR Associated Multiplexed PCR) and cCAMP (chimeric CRISPR Associated Multiplexed PCR) utilize the sequence specificity of the Cas9/sgRNA complex to target loci for the ligation of a universal adapter that is used for subsequent amplification. cTRACE (chimeric Targeting Rare Alleles with CRISPR-based Enrichment) also applies this method to use Cas9/sgRNA to target loci for the addition of universal adapters, however it has an additional selection for specific mutations through the use of an allele-specific primer. These three methods can produce multiplex PCR that significantly reduces the optimization required for every target. The methods are also not specific to any downstream analytical platform. We additionally will present a mutation specific enrichment technology that is non-amplification based and leaves the DNA in its native state: TRACE (Targeting Rare Alleles with CRISPR-based Enrichment). TRACE utilizes the Cas9/sgRNA complex to sterically protect the ends of targeted sequences from exonuclease activity which digests both the normal variant as well as any off-target sequences.
Collapse
Affiliation(s)
| | | | - Oscar A. Cabrera
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Gary J. Bassill
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Sabrina M. Cramer
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Felipe Guzman
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Anthony P. Shuber
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| |
Collapse
|
19
|
Umezu T, Tsuneyama K, Kanekura K, Hayakawa M, Tanahashi T, Kawano M, Taguchi YH, Toyoda H, Tamori A, Kuroda M, Murakami Y. Comprehensive analysis of liver and blood miRNA in precancerous conditions. Sci Rep 2020; 10:21766. [PMID: 33303811 PMCID: PMC7728755 DOI: 10.1038/s41598-020-78500-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6-12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | | | - Mitsuoki Kawano
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugokugakuen University, Okayama, 701-0197, Japan
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, 503-8502, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
20
|
Kang ASW, Bernasconi JG, Jack W, Kanavarioti A. Ready-to-use nanopore platform for the detection of any DNA/RNA oligo at attomole range using an Osmium tagged complementary probe. Sci Rep 2020; 10:19790. [PMID: 33188229 PMCID: PMC7666163 DOI: 10.1038/s41598-020-76667-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nanopores can serve as single molecule sensors. We exploited the MinION, a portable nanopore device from Oxford Nanopore Technologies, and repurposed it to detect any DNA/RNA oligo (target) in a complex mixture by conducting voltage-driven ion-channel measurements. The detection and quantitation of the target is enabled by the use of a unique complementary probe. Using a validated labeling technology, probes are tagged with a bulky Osmium tag (Osmium tetroxide 2,2′-bipyridine), in a way that preserves strong hybridization between probe and target. Intact oligos traverse the MinION’s nanopore relatively quickly compared to the device’s acquisition rate, and exhibit count of events comparable to the baseline. Counts are reported by a publicly available software, OsBp_detect. Due to the presence of the bulky Osmium tag, probes traverse more slowly, produce multiple counts over the baseline, and are even detected at single digit attomole (amole) range. In the presence of the target the probe is “silenced”. Silencing is attributed to a 1:1 double stranded (ds) complex that does not fit and cannot traverse this nanopore. This ready-to-use platform can be tailored as a diagnostic test to meet the requirements for point-of-care cell-free tumor DNA (ctDNA) and microRNA (miRNA) detection and quantitation in body fluids.
Collapse
Affiliation(s)
- Albert S W Kang
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA
| | - Janette G Bernasconi
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA
| | | | - Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA.
| |
Collapse
|
21
|
Gasparello J, Papi C, Allegretti M, Giordani E, Carboni F, Zazza S, Pescarmona E, Romania P, Giacomini P, Scapoli C, Gambari R, Finotti A. A Distinctive microRNA (miRNA) Signature in the Blood of Colorectal Cancer (CRC) Patients at Surgery. Cancers (Basel) 2020; 12:cancers12092410. [PMID: 32854257 PMCID: PMC7564483 DOI: 10.3390/cancers12092410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Liquid biopsy (LB) provides an examination of the peripheral blood of cancer patients for circulating tumor cells, cell-free nucleic acids and microRNAs (miRNAs) and is an established tool of precision medicine. Unlike most previous LB studies that focused on advanced metastatic colorectal cancer (CRC), we assessed miRNA dysregulation in blood samples obtained on the day of surgery from patients with primary CRC lesions but no clinical evidence of extra-colonic diffusion. In this study, plasma preparation included miRNAs associated to exosomes, but excluded large macrovesicles from the preparation. Methods: The miRNA profile in plasma isolated from a cohort of 35 CRC patients at the day of surgery was analyzed by Next Generation Sequencing (NGS) and further confirmed by droplet digital RT-PCR (dd-RT-PCR). Results: A miR-141-3p/miR-221-3p/miR-222-3p upregulation signature previously described in advanced CRC did not discriminate the analyzed early-CRC cohort from six tumor-free donors (Tf-D). In contrast, NGS-based miRNome analysis of a training cohort of five CRC and three tumor-free donors identified a novel, distinct nine miRNA signature comprising five up-regulated and four down-regulated miRNAs, six of which could be confirmed in the full CRC and tumor-free donor validation dataset by dd-RT-PCR. Additionally, a KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) mutant status was correlated with the plasma content of three identified miRNAs. Conclusions: When the data obtained were comparatively evaluated, at least one of the miRNAs belonging to the signature list was found to be dysregulated in 34/35 (97.1%) of our early-CRC plasma samples. The miRNA list provides diagnostic markers as well as possible molecular targets for protocols focusing on “microRNA therapeutics”.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.P.); (C.S.)
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.P.); (C.S.)
| | - Matteo Allegretti
- Oncogenomics and Epigenetics, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.A.); (E.G.); (P.R.); (P.G.)
| | - Elena Giordani
- Oncogenomics and Epigenetics, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.A.); (E.G.); (P.R.); (P.G.)
| | - Fabio Carboni
- Digestive Surgery, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.C.); (S.Z.)
| | - Settimio Zazza
- Digestive Surgery, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.C.); (S.Z.)
| | - Edoardo Pescarmona
- Pathology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Paolo Romania
- Oncogenomics and Epigenetics, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.A.); (E.G.); (P.R.); (P.G.)
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.A.); (E.G.); (P.R.); (P.G.)
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.P.); (C.S.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.P.); (C.S.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.P.); (C.S.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| |
Collapse
|
22
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
23
|
Palmieri V, Di Pietro L, Perini G, Barba M, Parolini O, De Spirito M, Lattanzi W, Papi M. Graphene Oxide Nano-Concentrators Selectively Modulate RNA Trapping According to Metal Cations in Solution. Front Bioeng Biotechnol 2020; 8:421. [PMID: 32523936 PMCID: PMC7261913 DOI: 10.3389/fbioe.2020.00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in nanotechnology, graphene nanomaterials are being translated to applications in the fields of biosensing, medicine, and diagnostics, with unprecedented power. Graphene is a carbon allotrope derived from graphite exfoliation made of an extremely thin honeycomb of sp2 hybridized carbons. In comparison with the bulk materials, graphene and its water-soluble derivative graphene oxide have a smaller size suitable for diagnostic platform miniaturization as well as high surface area and consequently loading of a large number of biological probes. In this work, we propose a nanotechnological method for concentrating total RNA solution and/or enriching small RNA molecules. To this aim, we exploited the unique trapping effects of GO nanoflakes in the presence of divalent cations (i.e., calcium and magnesium) that make it flocculate and precipitate, forming complex meshes that are positively charged. Here, we demonstrated that GO traps can concentrate nucleic acids in the presence of divalent cations and that small RNAs can be selectively released from GO-magnesium traps. GO nano-concentrators will allow better analytical performance with samples available in small amounts and will increase the sensitivity of sequencing platforms by short RNA selection.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marta Barba
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Wanda Lattanzi
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
24
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
25
|
Miranda-Castro R, Palchetti I, de-los-Santos-Álvarez N. The Translational Potential of Electrochemical DNA-Based Liquid Biopsy. Front Chem 2020; 8:143. [PMID: 32266206 PMCID: PMC7099045 DOI: 10.3389/fchem.2020.00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Latest technological advancement has tremendously expanded the knowledge on the composition of body fluids and the cancer-associated changes, which has fueled the replacement of invasive biopsies with liquid biopsies by using appropriate specific receptors. DNA emerges as a versatile analytical reagent in electrochemical devices for hybridization-based or aptamer-based recognition of all kind of biomarkers. In this mini review, we briefly introduce the current affordable targets (tumor-derived nucleic acids, circulating tumor cells and exosomes) in body fluids, and then we provide an overview of selected electrochemical methods already applied in clinical samples by dividing them into three large categories according to sample type: red (blood), yellow (urine), and white (saliva and sweat) diagnostics. This review focuses on the hurdles of the complex matrices rather than a comprehensive and detailed revision of the format schemes of DNA-based electrochemical sensing. This diverse perspective compiles some challenges that are often forgotten and critically underlines real sample analysis or clinical validation assays. Finally, the needs and trends to reach the market are briefly outlined.
Collapse
Affiliation(s)
- Rebeca Miranda-Castro
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ilaria Palchetti
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Florence, Italy
| | - Noemí de-los-Santos-Álvarez
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
26
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
27
|
Delmonico L, Obenauer JC, Qureshi F, Alves G, Costa MASM, Martin KJ, Fournier MV. A Novel Panel of 80 RNA Biomarkers with Differential Expression in Multiple Human Solid Tumors against Healthy Blood Samples. Int J Mol Sci 2019; 20:ijms20194894. [PMID: 31581693 PMCID: PMC6802086 DOI: 10.3390/ijms20194894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to identify genes with higher expression in solid tumor cells by comparing human tumor biopsies with healthy blood samples using both in silico statistical analysis and experimental validations. This approach resulted in a novel panel of 80 RNA biomarkers with high discrimination power to detect circulating tumor cells in blood samples. To identify the 80 RNA biomarkers, Affymetrix HG-U133 plus 2.0 microarrays datasets were used to compare breast tumor tissue biopsies and breast cancer cell lines with blood samples from patients with conditions other than cancer. A total of 859 samples were analyzed at the discovery stage, consisting of 417 mammary tumors, 41 breast lines, and 401 control samples. To confirm this discovery, external datasets of eight types of tumors were used, and experimental validation studies (NanoString n-counter gene expression assay) were performed, totaling 5028 samples analyzed. In these analyses, the 80 biomarkers showed higher expression in all solid tumors analyzed relative to healthy blood samples. Experimental validation studies using NanoString assay confirmed the results were not dependent of the gene expression platform. A panel of 80 RNA biomarkers was described here, with the potential to detect solid tumor cells present in the blood of multiple tumor types.
Collapse
Affiliation(s)
- Lucas Delmonico
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| | | | - Fatir Qureshi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| | | | | | | |
Collapse
|
28
|
Gasparello J, Papi C, Zurlo M, Corradini R, Gambari R, Finotti A. Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS One 2019; 14:e0221923. [PMID: 31509554 PMCID: PMC6738603 DOI: 10.1371/journal.pone.0221923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Practical laboratory classes teaching molecular pharmacology approaches employed in the development of therapeutic strategies are of great interest for students of courses in Biotechnology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational Oncology. Unfortunately, in most cases the technology to be transferred to learning students is complex and requires multi-step approaches. In this respect, simple and straightforward experimental protocols might be of great interest. This study was aimed at presenting a laboratory exercise focusing (a) on a very challenging therapeutic strategy, i.e. microRNA therapeutics, and (b) on the employment of biomolecules of great interest in applied biology and pharmacology, i.e. peptide nucleic acids (PNAs). The aims of the practical laboratory were to determine: (a) the possible PNA-mediated arrest in RT-qPCR, to be eventually used to demonstrate PNA targeting of selected miRNAs; (b) the possible lack of activity on mutated PNA sequences; (c) the effects (if any) on the amplification of other unrelated miRNA sequences. The results which can be obtained support the following conclusions: PNA-mediated arrest in RT-qPCR can be analyzed in a easy way; mutated PNA sequences are completely inactive; the effects of the employed PNAs are specific and no inhibitory effect occurs on other unrelated miRNA sequences. This activity is simple (cell culture, RNA extraction, RT-qPCR are all well-established technologies), fast (starting from isolated and characterized RNA, few hours are just necessary), highly reproducible (therefore easily employed by even untrained students). On the other hand, these laboratory lessons require some facilities, the most critical being the availability of instruments for PCR. While this might be a problem in the case these instruments are not available, we would like to underline that determination of the presence or of a lack of amplified product can be also obtained using standard analytical approaches based on agarose gel electrophoresis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy
- * E-mail:
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Causin RL, Pessôa-Pereira D, Souza KCB, Evangelista AF, Reis RMV, Fregnani JHTG, Marques MMC. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol Lett 2019; 18:4753-4761. [PMID: 31611985 PMCID: PMC6781752 DOI: 10.3892/ol.2019.10824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Screening for cervical cancer by cytology has been effective in reducing the worldwide incidence and mortality rates of this disease. However, a number of studies have demonstrated that the sensitivity of conventional cervical cytology may be too low for detection of cervical intraepithelial neoplasias (CIN). Therefore, it is important to incorporate more sensitive molecular diagnostic tests that could substantially improve the detection rates and accuracy for identifying CIN lesions. MicroRNAs (miRNAs) are a class of small non-coding RNAs with the potential to provide robust non-invasive cancer biomarkers for detecting CIN lesions in liquid-based cervical cytology (LBC) samples. At present, there is no consensus on which are the best housekeeping genes for miRNA normalization in LBC. The present study aimed to identify housekeeping genes with consistent and reproducible performance for normalization of reverse transcription-quantitative PCR (RT-qPCR) expression analysis of miRNA using LBC samples. The present study firstly selected six potential candidate housekeeping genes based on a systematic literature evaluation. Subsequently, the expression levels of microRNAs U6, RNU-44, RNU-47, RNU-48, RNU-49 and hsa-miR-16 were measured in 40 LBC samples using RT-qPCR. The stability of each potential housekeeping gene was assessed using the NormFinder algorithm. The results revealed that U6 and RNU-49 were the most stable genes among all candidates requiring fewer amplification cycles and smaller variation across the sample set. However, RNU-44, RNU-47, RNU-48 and hsa-miR-16 stability exceeded the recommended housekeeping value suitable for normalization. The findings revealed that U6 may be a reliable housekeeping gene for normalization of miRNA RT-qPCR expression analysis using LBC samples.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | | | - Rui Manuel Vieira Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| |
Collapse
|
30
|
Jandl B, Sedghiniya S, Carstens A, Astakhova K. Peptide-Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS OMEGA 2019; 4:13889-13895. [PMID: 31497706 PMCID: PMC6714519 DOI: 10.1021/acsomega.9b01586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/02/2019] [Indexed: 05/30/2023]
Abstract
Cancer is a major health risk in the modern society that requires rapid, reliable, and inexpensive diagnostics. Because of the low abundance of cancer DNA in biofluids, current detection methods require DNA amplification. The amplification can be challenging; it provides only relative quantification and extends time and cost of an assay. Herein, we report a new oligonucleotide hybridization platform for amplification-free detection of human cancer DNA. Using a large PEG-capture probe allows rapid separation of the bound (mutant) versus unbound (wild type) DNA. Next, a supramolecular hydrogel forming peptide attached to a detection oligonucleotide probe serves as a signal amplification tool. Having screened multiple short peptides and fluorophores, we identified the system P1 + cyanine 3.5 that allows for sensitive quantitative detection of mutation L858R in EGFR oncogene. The peptide-fluorophore-based assay provides absolute target DNA quantification at the detection limit of 20 ng cancer DNA versus >500 ng for Cy3.5-labeled oligonucleotide in only 1 hour.
Collapse
Affiliation(s)
- Bernhard Jandl
- Department
of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kgs Lyngby, Denmark
- Institute
of Applied Synthetic Chemistry, TU Wien
(Vienna University of Technology), Getreidemarkt 9, 1060 Wien, Austria
| | - Sima Sedghiniya
- Department
of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kgs Lyngby, Denmark
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14155-6455, Iran
| | - Annika Carstens
- Department
of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kgs Lyngby, Denmark
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Kira Astakhova
- Department
of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
31
|
Campanella A, De Summa S, Tommasi S. Exhaled breath condensate biomarkers for lung cancer. J Breath Res 2019; 13:044002. [PMID: 31282387 DOI: 10.1088/1752-7163/ab2f9f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the main cause of cancer incidence and mortality worldwide and the identification of clinically useful biomarkers for lung cancer detection at both early and metastatic stage is a pressing medical need. Although many improvements have been made in the treatment and in the early screening of this cancer, most diagnosis are made at a late stage, when a lot of genetic and epigenetic changes have occurred. A promising source of biomarkers reflective of the pathogenesis of lung cancer is exhaled breath condensate (EBC), a biological fluid and a natural matrix of the respiratory tract. Molecules such as DNAs, RNAs, proteins, metabolites and volatile compounds are present in EBC, and their presence/absence or their variation in concentrations can be used as biomarkers. The aims of this review are to briefly describe exhaled breath composition, firstly, and then to document some of the EBC candidate biomarkers for lung cancer by dividing them according to their origin (genome, transcriptome, epigenome, metabolome, proteome and microbiota) in order to demonstrate the potential use of EBC as a helpful tool in cancer diagnostics, molecular profiling, therapy monitoring and screening of high risk individuals.
Collapse
Affiliation(s)
- Annalisa Campanella
- Pharmacogenetics and Molecular Diagnostic Unit, IRCCS Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | | | | |
Collapse
|
32
|
Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019; 7:570. [PMID: 31448267 PMCID: PMC6695566 DOI: 10.3389/fchem.2019.00570] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Biomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples. Firstly, we critically discuss unsolved problems and issues in capturing and analyzing biomarkers. Secondly, we highlight current challenges which need to be resolved in applying SPR biosensors into clinical practice. Then, we mainly focus on applications of SPR-based platforms that process a patient sample aiming to detect and quantify biomarkers as a minimally invasive liquid biopsy tool for cancer patients appearing over the last 5 years. Finally, we describe the analytical performances of selected SPR biosensor assays and their significant advantages in terms of high sensitivity and specificity as well as accuracy and workflow simplicity.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
33
|
Chiu KP, Yu AL. Application of cell-free DNA sequencing in characterization of bloodborne microbes and the study of microbe-disease interactions. PeerJ 2019; 7:e7426. [PMID: 31404440 PMCID: PMC6688590 DOI: 10.7717/peerj.7426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/07/2019] [Indexed: 12/29/2022] Open
Abstract
It is an important issue whether microorganisms can live harmoniously with normal cells in the cardiovascular system. The answer to the question will have enormous impact on medical microbiology. To address the issue, it is essential to identify and characterize the bloodborne microbes in an efficient and comprehensive manner. Due to microbial sequence complexity and the composition of significant number of unknown microbial species in the circulatory system, traditional approaches using cell culture, PCR, or microarray are not suitable for the purpose. Recent reports indicate that cell-free DNA (cfDNA) sequencing using next-generation sequencing (NGS) or single-molecule sequencing (SMS), together with bioinformatics approaches, possesses a strong potential enabling us to distinguish microbial species at the nucleotide level. Multiple studies using microbial cfDNA sequencing to identify microbes for septic patients have shown strong agreement with cell culture. Similar approaches have also been applied to reveal previously unidentified microorganisms or to demonstrate the feasibility of comprehensive assessment of bloodborne microorganisms for healthy and/or diseased individuals. SMS using either SMRT (single-molecule real-time) sequencing or Nanopore sequencing are providing new momentum to reinforce this line of investigation. Taken together, microbial cfDNA sequencing provides a novel opportunity allowing us to further understand the involvement of bloodborne microbes in development of diseases. Similar approaches should also be applicable to the study of metagenomics for sufficient and comprehensive analysis of microbial species living in various environments. This article reviews this line of research and discuss the methodological approaches that have been developed, or are likely to be developed in the future, which may have strong potential to facilitate cfDNA- and cfRNA-based studies of cancer and acute/chronic diseases, in the hope that a better understanding of the hidden microbes in the circulatory system will improve diagnosis, prevention and treatment of problematic diseases.
Collapse
Affiliation(s)
- Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Departent of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Alice L Yu
- Department of Pediatrics, University of California, San Diego, San Diego, United States of America.,Institute of Stem Cell and Translational Cancer Research, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
34
|
Fotheringham S, Mozolowski GA, Murray EMA, Kerr DJ. Challenges and solutions in patient treatment strategies for stage II colon cancer. Gastroenterol Rep (Oxf) 2019; 7:151-161. [PMID: 31217978 PMCID: PMC6573795 DOI: 10.1093/gastro/goz006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer remains one of the most common cancers worldwide and, despite improvements in treatment options for late-stage metastatic cancer, there are still questions surrounding how best to treat early-stage disease patients. Some recent advances have been made in the staging of cancer and improving the risk assessment of strategies for patient treatment. A number of high-risk features have been proposed that may help to stratify stage II cancer patients into groups that will truly benefit from adjuvant chemotherapy. Diagnostic tests are becoming available to measure these biomarkers, utilizing both currently available and novel technologies. This review will describe the challenges in treatment decisions for early-stage colon cancer and how personalized medicine can assist clinicians in making the best treatment choices for patients with stage II colon cancer in particular.
Collapse
Affiliation(s)
- Susan Fotheringham
- Oxford Cancer Biomarkers Limited, The Magdalen Centre, The Oxford Science Park, Robert Robinson Avenue, Oxford, UK
| | - Guy A Mozolowski
- Oxford Cancer Biomarkers Limited, The Magdalen Centre, The Oxford Science Park, Robert Robinson Avenue, Oxford, UK
| | - Eleanor M A Murray
- The Medical School, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - David J Kerr
- Oxford Cancer Biomarkers Limited, The Magdalen Centre, The Oxford Science Park, Robert Robinson Avenue, Oxford, UK
- Nuffield Department of Clinical Laboratory Sciences, Level 4 Academic Block, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
35
|
Milani R, Brognara E, Fabbri E, Manicardi A, Corradini R, Finotti A, Gasparello J, Borgatti M, Cosenza LC, Lampronti I, Dechecchi MC, Cabrini G, Gambari R. Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apoptosis in temozolomide‑resistant T98G glioma cells. Int J Oncol 2019; 55:59-68. [PMID: 31180529 PMCID: PMC6561624 DOI: 10.3892/ijo.2019.4810] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the effects of the combined treatment of two peptide nucleic acids (PNAs), directed against microRNAs involved in caspase‑3 mRNA regulation (miR‑155‑5p and miR‑221‑3p) in the temozolomide (TMZ)‑resistant T98G glioma cell line. These PNAs were conjugated with an octaarginine tail in order to obtain an efficient delivery to treated cells. The effects of singularly administered PNAs or a combined treatment with both PNAs were examined on apoptosis, with the aim to determine whether reversion of the drug‑resistance phenotype was obtained. Specificity of the PNA‑mediated effects was analyzed by reverse transcription‑quantitative polymerase‑chain reaction, which demonstrated that the effects of R8‑PNA‑a155 and R8-PNA-a221 anti‑miR PNAs were specific. Furthermore, the results obtained confirmed that both PNAs induced apoptosis when used on the temozolomide‑resistant T98G glioma cell line. Notably, co‑administration of both anti‑miR‑155 and anti‑miR‑221 PNAs was associated with an increased proapoptotic activity. In addition, TMZ further increased the induction of apoptosis in T98G cells co‑treated with anti‑miR‑155 and anti‑miR‑221 PNAs.
Collapse
Affiliation(s)
- Roberta Milani
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Eleonora Brognara
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I‑143214 Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I‑143214 Parma, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| | | | - Giulio Cabrini
- Laboratory of Molecular Pathology, University‑Hospital of Verona, I‑37126 Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I‑144121 Ferrara, Italy
| |
Collapse
|
36
|
Guerrero-Preston R, Lawson F, Rodriguez-Torres S, Noordhuis MG, Pirini F, Manuel L, Valle BL, Hadar T, Rivera B, Folawiyo O, Baez A, Marchionni L, Koch WM, Westra WH, Kim YJ, Eshleman JR, Sidransky D. JAK3 Variant, Immune Signatures, DNA Methylation, and Social Determinants Linked to Survival Racial Disparities in Head and Neck Cancer Patients. Cancer Prev Res (Phila) 2019; 12:255-270. [PMID: 30777857 DOI: 10.1158/1940-6207.capr-17-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 10/30/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
To inform novel personalized medicine approaches for race and socioeconomic disparities in head and neck cancer, we examined germline and somatic mutations, immune signatures, and epigenetic alterations linked to neighborhood determinants of health in Black and non-Latino White (NLW) patients with head and neck cancer. Cox proportional hazards revealed that Black patients with squamous cell carcinoma of head and neck (HNSCC) with PAX5 (P = 0.06) and PAX1 (P = 0.017) promoter methylation had worse survival than NLW patients, after controlling for education, zipcode, and tumor-node-metastasis stage (n = 118). We also found that promoter methylation of PAX1 and PAX5 (n = 78), was correlated with neighborhood characteristics at the zip-code level (P < 0.05). Analyses also showed differences in the frequency of TP53 mutations (n = 32) and tumor-infiltrating lymphocyte (TIL) counts (n = 24), and the presence of a specific C → A germline mutation in JAK3, chr19:17954215 (protein P132T), in Black patients with HNSCC (n = 73; P < 0.05), when compared with NLW (n = 37) patients. TIL counts are associated (P = 0.035) with long-term (>5 years), when compared with short-term survival (<2 years). We show bio-social determinants of health associated with survival in Black patients with HNSCC, which together with racial differences shown in germline mutations, somatic mutations, and TIL counts, suggests that contextual factors may significantly inform precision oncology services for diverse populations.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland. .,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Fahcina Lawson
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Sebastian Rodriguez-Torres
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Maartje G Noordhuis
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Manuel
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Blanca L Valle
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Tal Hadar
- Breast Health Unit, Department of General Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Bianca Rivera
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Adriana Baez
- Department of Otolaryngology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - William H Westra
- Department of Pathology, The Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Young J Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Khatri I, Ganguly K, Sharma S, Carmicheal J, Kaur S, Batra SK, Bhasin MK. Systems Biology Approach to Identify Novel Genomic Determinants for Pancreatic Cancer Pathogenesis. Sci Rep 2019; 9:123. [PMID: 30644396 PMCID: PMC6333820 DOI: 10.1038/s41598-018-36328-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a 5-year survival rate of <8%. Its dismal prognosis stems from inefficient therapeutic modalities owing to the lack of understanding about pancreatic cancer pathogenesis. Considering the molecular complexity and heterogeneity of PDAC, identification of novel molecular contributors involved in PDAC onset and progression using global "omics" analysis will pave the way to improved strategies for disease prevention and therapeutic targeting. Meta-analysis of multiple miRNA microarray datasets containing healthy controls (HC), chronic pancreatitis (CP) and PDAC cases, identified 13 miRNAs involved in the progression of PDAC. These miRNAs showed dysregulation in both tissue as well as blood samples, along with progressive decrease in expression from HC to CP to PDAC. Gene-miRNA interaction analysis further elucidated 5 miRNAs (29a/b, 27a, 130b and 148a) that are significantly downregulated in conjunction with concomitant upregulation of their target genes throughout PDAC progression. Among these, miRNA-29a/b targeted genes were found to be most significantly altered in comparative profiling of HC, CP and PDAC, indicating its involvement in malignant evolution. Further, pathway analysis suggested direct involvement of miRNA-29a/b in downregulating the key pathways associated with PDAC development and metastasis including focal adhesion signaling and extracellular matrix organization. Our systems biology data analysis, in combination with real-time PCR validation indicates direct functional involvement of miRNA-29a in PDAC progression and is a potential prognostic marker and therapeutic candidate for patients with progressive disease.
Collapse
Affiliation(s)
- Indu Khatri
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|