1
|
Yang Q, Wang W, Cheng D, Wang Y, Han Y, Huang J, Peng X. Non-coding RNA in exosomes: Regulating bone metastasis of lung cancer and its clinical application prospect. Transl Oncol 2024; 46:102002. [PMID: 38797017 PMCID: PMC11153237 DOI: 10.1016/j.tranon.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is a highly prevalent malignancy with poor prognosis and rapid progression. It most frequently metastasizes to the bone, where it can pose a severe threat to the patient's survival. Once metastasized, the disease is often incurable and can result in severe complications such as hypercalcemia, bone pain, fractures, spinal cord compression, and subsequent paralysis. Exosomes are bilayer vesicle nanoparticles secreted by most of the extracellular vesicles, which can be found in almost all organisms and play an essential role in intercellular communication. Through their ability to regulate related bone cells, exosomes carry bioactive molecules, including proteins, lipids, and non-coding RNAs (ncRNAs), that can be extremely important in bone remodeling. Studies have been conducted on the role play by proteins, lncRNA, and microRNA-all ncRNAs-carried by exosomes in the bone metastases of lung cancer. In this review, the latest progress of the regulatory mechanism of ncRNAs carried by exosomes in lung cancer bone metastasis has been reviewed. The clinical use of exosomes as a promising biomarker, drug transporter, and therapeutic target was highlighted to offer a novel diagnostic and treatment approach for patients with lung cancer bone metastases.
Collapse
Affiliation(s)
- Qing Yang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dezhou Cheng
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yiling Wang
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yukun Han
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Jinbai Huang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China.
| |
Collapse
|
2
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Wang X, Han J, Liu Y, Hu J, Li M, Chen X, Xu L. miR-17-5p and miR-4443 Promote Esophageal Squamous Cell Carcinoma Development by Targeting TIMP2. Front Oncol 2021; 11:605894. [PMID: 34778021 PMCID: PMC8579081 DOI: 10.3389/fonc.2021.605894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in the world with a high mortality rate. The mechanism about ESCC development and whether miRNAs play a critical role remains unclear and needs carefully elucidated. Materials and Methods High-throughput miRNA sequencing was used to identify the different expression miRNAs between the ESCC tissues and paired adjacent normal tissues. Next, both CCK-8, Transwell and apotosis assay were used to evaluate the role of miRNA in ESCCcells. In addition, we used bioinformatic tools to predict the potential target of the miRNAs and verified by Western Blot. The function of miRNA-target network was further identified in xenograft mice model. Results In ESCC, we identified two miRNAs, miR-17-5p and miR-4443, were significantly upregulated in ESCC tissues than adjacent normal tissues. TIMP2 was proved to be the direct target of both two miRNAs. The miR-17-5p/4443- TIMP2 axis was shown to promote the tumor progression in vitro and in vivo experiments. Conclusions This study highlights two oncomiRs, miR-17-5p and miR-4443, and its potential role in ESCC progression by regulating TIMP2 expression, suggesting miR-17-5p and miR-4443 may serve as a novel molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jiayi Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yatian Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
4
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Zhang X, Lu J, Zhang Q, Luo Q, Liu B. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol Res 2021; 54:11. [PMID: 33757583 PMCID: PMC7986494 DOI: 10.1186/s40659-021-00335-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Atherosclerosis (AS) is the most common type in cardiovascular disease. Due to its complex pathogenesis, the exact etiology of AS is unclear. circRNA has been shown to play an essential role in most diseases. However, the underlying mechanism of circRNA in AS has been not understood clearly. Methods Quantitative Real-Time PCR assay was used to detect the expression of circRSF1, miR-135b-5p and histone deacetylase 1 (HDAC1). Western blot was applied to the measure of protein expression of HDAC1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), cleaved-caspase-3, vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule-1 (ICAM1) and E-selectin. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Dual luciferase reporter assay and RIP assay was used to determine the relationship among circRSF1, miR-135b-5p and HDAC1. Besides, an ELISA assay was performed to measure the levels of IL-1β, IL-6, TNF-α and IL-8. Results In this study, ox-LDL inhibited circRSF1 and HDAC1 expression while upregulated miR-135b-5p expression in Human umbilical vein endothelial cells (HUVECs). Importantly, ox-LDL could inhibit HUVECs growth. Moreover, promotion of circRSF1 or inhibition of miR-135b-5p induced cell proliferation while inhibited apoptosis and inflammation of ox-LDL-treated HUVECs, which was reversed by upregulating miR-135b-5p or downregulating HDCA1 in ox-LDL-treated HUVECs. More than that, we verified that circRSF1 directly targeted miR-135b-5p and HDAC1 was a target mRNA of miR-135b-5p in HUVECs. Conclusion CircRSF1 regulated ox-LDL-induced vascular endothelial cell proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in AS, providing new perspectives and methods for the treatment and diagnosis of AS.
Collapse
Affiliation(s)
- Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China
| | - Junying Lu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qinghua Zhang
- Respiratory and Critical Illness Department, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China.
| |
Collapse
|
6
|
Liu J, Chen Z, Li W. Machine Learning for Building Immune Genetic Model in Hepatocellular Carcinoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:6676537. [PMID: 33790969 PMCID: PMC7994091 DOI: 10.1155/2021/6676537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC and tried to construct an immune-risk model for patient evaluation. METHODS RNA sequencing profiles of HCC patients were collected from the cancer genome Atlas (TCGA), international cancer genome consortium (ICGC), and gene expression omnibus (GEO) databases (GSE14520). Differentially expressed immune genes, derived from ImmPort database and MSigDB signaling pathway lists, between tumor and normal tissues were analyzed with Limma package in R environment. Univariate Cox regression was performed to find survival-related immune genes in TCGA dataset, and in further random forest algorithm analysis, significantly changed immune genes were used to generate a multivariate Cox model to calculate the corresponding immune-risk score. The model was examined in the other two datasets with recipient operation curve (ROC) and survival analysis. Risk effects of immune-risk score and clinical characteristics of patients were individually evaluated, and significant factors were then used to generate a nomogram. RESULTS There were 52 downregulated and 259 upregulated immune genes between tumor and relatively normal tissues, and the final immune-risk model (based on SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV and MAP4K2) can better differentiate patients into high and low immune-risk subpopulations, in which high score patients showed worse outcomes after resection (p < 0.05). The differentially enriched pathways between the two groups were mainly about cell proliferation and cytokine production, and calculated immune-risk score was also highly correlated with immune infiltration levels. The nomogram, constructed with immune-risk score and tumor stages, showed high accuracy and clinical benefits in prediction of 1-, 3- and 5-year overall survival, which is useful in clinical practice. CONCLUSION The immune-risk model, based on expression of SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2, can better differentiate patients into high and low immune-risk groups. Combined nomogram, using immune-risk score and tumor stages, could make accurate prediction of 1-, 3- and 5-year survival in HCC patients.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
7
|
Wang Q, Liu S, Han Z. miR-339-3p regulated acute pancreatitis induced by caerulein through targeting TNF receptor-associated factor 3 in AR42J cells. Open Life Sci 2020; 15:912-922. [PMID: 33817278 PMCID: PMC7874543 DOI: 10.1515/biol-2020-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease with high morbidity and mortality. The regulation mechanism of miRNA is involved in the production and development of various diseases, but the regulation mechanism of miRNA in AP is still not fully elucidated. The expression of miR-339-3p was detected using quantitative real-time PCR. The levels of TNF-α, IL-1β, and IL-6 were detected using enzyme-linked immunosorbent assay. Cell apoptosis was measured using flow cytometry. The protein expressions of TNF receptor-associated factor 3 (TRAF3), Bcl-2, C-caspase 3, Bax, p-p38, and p38 were measured using western blot. Luciferase reporter assay and RNA immunoprecipitation assay were applied to ensure that miR-399-3p targeted TRAF3. Caerulein promoted the expression of TNF-α, IL-1β, and IL-6, enhanced the expression of C-caspase 3 and Bax while inhibited Bcl-2 protein expression. Meanwhile, caerulein also reduced the expression of miR-339-3p and induced the expression of TRAF3 in rat pancreatic acinar cells. miR-399-3p transfection inhibited the levels of TNF-α, IL-1β, and IL-6 and C-caspase 3 and Bax protein expression as well as suppressed cell apoptosis, while increased Bcl-2 protein expression in caerulein-induced AP. TRAF3 has been verified as a target of miR-339-3p. Interestingly, the reduction of miR-399-3p inhibited the p38 pathway, which was impaired by the upregulation of TRAF3. In addition, the suppression effects of miR-339-3p on cell inflammation and apoptosis in caerulein-induced AP were reversed by enhancing TRAF3 expression. In this study, in vitro model of AP was characterized by strong inflammation and cell apoptosis. We have first demonstrated the regulatory network of miR-339-3p and TRAF3. Overexpression of miR-339-3p inhibited cell inflammation and cell apoptosis in caerulein-induced AP through modulating TRAF3 expression via the p38 pathway, providing a new therapeutic target in the treatment of AP.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, The Yijishan Hospital of Wannan Medical College, Room 505, Unit 3, Building 1, Yiyuan Community, No. 109, Tuanjie West Rd, 241001, Wuhu, Anhui, China
| | - Shaofeng Liu
- Department of Gastroenterology, The Yijishan Hospital of Wannan Medical College, Room 505, Unit 3, Building 1, Yiyuan Community, No. 109, Tuanjie West Rd, 241001, Wuhu, Anhui, China
| | - Zhen Han
- Department of Gastroenterology, The Yijishan Hospital of Wannan Medical College, Room 505, Unit 3, Building 1, Yiyuan Community, No. 109, Tuanjie West Rd, 241001, Wuhu, Anhui, China
| |
Collapse
|
8
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
9
|
Du X, Wang S, Liu X, He T, Lin X, Wu S, Wang D, Li J, Huang W, Yang H. MiR-1307-5p targeting TRAF3 upregulates the MAPK/NF-κB pathway and promotes lung adenocarcinoma proliferation. Cancer Cell Int 2020; 20:502. [PMID: 33061854 PMCID: PMC7552495 DOI: 10.1186/s12935-020-01595-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) includes lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). MicroRNA (miRNA) plays an important role in the regulation of post-transcriptional gene expression in animals and plants, especially in lung adenocarcinoma. METHODS MiR-1307-5p is an miRNA with significant differences screened by the second generation of high-throughput sequencing in the early stage of our research group. In the current study, a series of in vitro and in vivo experiments were carried out. MiR-1307-5p mimic, miR-1307-5p inhibitor, and NC were transfected into A549 and H1299 lung adenocarcinoma cells. The correlation between miR-1307-5p and clinicopathological features in pathological samples was analyzed using a lung adenocarcinoma tissue microarray, and miR-1307-5p expression was detected by qPCR. CCK-8, EdU, colony formation, scratch test, and Transwell assays were used to observe cell proliferation and migration. Double luciferase assay, western blot, qPCR, and immunohistochemistry were employed in confirming the target relationship between miR-1307-5p and TRAF3. Western blotting was used to analyze the relationship between miR-1307-5p and the NF-κB/MAPK pathway. Finally, the effect of miR-1307-5p on tumor growth was studied using a subcutaneous tumorigenesis model in nude mice. RESULTS Increased miR-1307-5p expression was significantly related to decreased overall survival rate of lung adenocarcinoma patients, revealing miR-1307-5p as a potential oncogene in lung adenocarcinoma. MiR-1307-5p mimic significantly promoted while miR-1307-5p inhibitor reduced the growth and proliferation of A549 and H1299 cells. MiR-1307-5p overexpression significantly enhanced the migration ability while miR-1307-5p inhibition reduced the migration ability of A549 and H1299 cells. Target binding of miR-1307-5p to TRAF3 was confirmed by double luciferase assay, western blot, qPCR, and immunohistochemistry. miR-1307-5p caused degradation of TRAF3 mRNA and protein. MiR-1307-5p targeted TRAF3 and activated the NF-κB/MAPK pathway. TRAF3 colocalized with p65 and the localization of TRAF3 and p65 changed in each treatment group. Tumor volume of the lv-miR-1307-5p group was significantly larger than that of the lv-NC group, and that of the lv-miR-1307-5p-inhibitor group was significantly smaller than that of the lv-NC group. CONCLUSION In conclusion, miR-1307-5p targets TRAF3 and activates the NF-κB/MAPK pathway to promote proliferation in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xinyue Du
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Shuangmiao Wang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingyan Liu
- Dongguan Scientific Research Center, Guangdong Medical University, Zhanjiang, China
| | - Tao He
- Department of Biology, School of Basic Medical Sciences of Guangdong Medical University, Guangzhou, China
| | - Xiangui Lin
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Simin Wu
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Dan Wang
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jiao Li
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C, Wei M, Liu T, Li L, Liu L. N 6-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis 2020; 11:836. [PMID: 33037176 PMCID: PMC7547657 DOI: 10.1038/s41419-020-03049-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
N6-methyladenosine (m6A) is the most common epigenetic RNA modification with essential roles in cancer progression. However, roles of m6A and its regulator METTL3 on non-coding RNA in gastric cancer are unknown. In this study, we found elevated levels of m6A and METTL3 in gastric cancer. Increased METTL3 expression indicated poor outcomes of patients and high malignancy in vitro and in vivo. Mechanically, m6A facilitated processing of pri-miR-17-92 into the miR-17-92 cluster through an m6A/DGCR8-dependent mechanism. The m6A modification that mediated this process occurred on the A879 locus of pri-miR-17-92. The miR-17-92 cluster activated the AKT/mTOR pathway by targeting PTEN or TMEM127. Compared with those with low levels of METTL3, METTL3-high tumors showed preferred sensitivity to an mTOR inhibitor, everolimus. These results reveal a perspective on epigenetic regulations of non-coding RNA in gastric cancer progression and provide a theoretical rationale for use of everolimus in the treatment of m6A/METTL3-high gastric cancer.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zeyi Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lanbo Li
- Animal Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
11
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
12
|
Liang L, Li L. Down-Regulation of circNRIP1 Promotes the Apoptosis and Inhibits the Migration and Invasion of Gastric Cancer Cells by miR-182/ROCK1 Axis. Onco Targets Ther 2020; 13:6279-6288. [PMID: 32636647 PMCID: PMC7335292 DOI: 10.2147/ott.s221633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aim Circular RNAs (circRNAs) play important roles in the progression of human cancers. circRNA nuclear receptor interacting protein 1 (circNRIP1) has been reported to play as an oncogene in gastric cancer. However, the mechanism underlying circNRIP1 in gastric cancer progression is far from understood. Patients and Methods Forty-five gastric cancer patients were recruited and overall survival of patients was analyzed. Gastric cancer cell lines MGC-803 and AGS cells were cultured for study in vitro. The expression levels of circNRIP1, microRNA (miR)-182 and rho-associated protein kinase 1 (ROCK1) were detected by quantitative real-time polymerase chain reaction or Western blot. Cell migration, invasion, cell cycle distribution and apoptosis were determined by transwell, flow cytometry and Western blot assays, respectively. The target association between miR-182 and circNRIP1 or ROCK1 was assessed by luciferase reporter assay and RNA immunoprecipitation. Results circNRIP1 expression was enhanced in gastric cancer tissues and cells and high expression of circNRIP1 indicated poor survival of patients. Knockdown of circNRIP1 suppressed cell migration and invasion, arrested cell cycle at G0-G1 phase and promoted apoptosis in gastric cancer cells. miR-182 was a target of circNRIP1 and its deficiency reversed the effect of circNRIP1 silence on cell migration, invasion, cell cycle distribution and apoptosis in gastric cancer cells. Moreover, ROCK1 was validated as a target of miR-182 and competitively regulated by circNRIP1. Conclusion Silence of circNRIP1 inhibited progression of gastric cancer by increasing miR-182 and decreasing ROCK1, providing a novel target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Lu Liang
- Department of Oncology, Shangqiu First People's Hospital, Shangqiu, Henan Province 476100, People's Republic of China
| | - Lu Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan Province 476100, People's Republic of China
| |
Collapse
|
13
|
Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, Suzuki K, Tam CHT, Tabara Y, Kwak SH, Takeuchi F, Long J, Lim VJY, Chai JF, Chen CH, Nakatochi M, Yao J, Choi HS, Iyengar AK, Perrin HJ, Brotman SM, van de Bunt M, Gloyn AL, Below JE, Boehnke M, Bowden DW, Chambers JC, Mahajan A, McCarthy MI, Ng MCY, Petty LE, Zhang W, Morris AP, Adair LS, Akiyama M, Bian Z, Chan JCN, Chang LC, Chee ML, Chen YDI, Chen YT, Chen Z, Chuang LM, Du S, Gordon-Larsen P, Gross M, Guo X, Guo Y, Han S, Howard AG, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Isono M, Jang HM, Jiang G, Jonas JB, Kamatani Y, Katsuya T, Kawaguchi T, Khor CC, Kohara K, Lee MS, Lee NR, Li L, Liu J, Luk AO, Lv J, Okada Y, Pereira MA, Sabanayagam C, Shi J, Shin DM, So WY, Takahashi A, Tomlinson B, Tsai FJ, van Dam RM, Xiang YB, Yamamoto K, Yamauchi T, Yoon K, Yu C, Yuan JM, Zhang L, Zheng W, Igase M, Cho YS, Rotter JI, Wang YX, Sheu WHH, Yokota M, Wu JY, Cheng CY, Wong TY, Shu XO, Kato N, Park KS, Tai ES, Matsuda F, Koh WP, Ma RCW, Maeda S, Millwood IY, Lee J, Kadowaki T, Walters RG, Kim BJ, Mohlke KL, Sim X. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582:240-245. [PMID: 32499647 PMCID: PMC7292783 DOI: 10.1038/s41586-020-2263-3] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Ken Suzuki
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victor J Y Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Masahiro Nakatochi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hyeok Sun Choi
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J Perrin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Stanford University, Stanford, CA, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical Analysis, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Annie-Green Howard
- Department of Biostatistics, Carolina Population Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Katsuhiko Kohara
- Department of Regional Resource Management, Ehime University Faculty of Collaborative Regional Innovation, Ehime, Japan
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R Lee
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Andrea O Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jinxiu Shi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dong Mun Shin
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Atsushi Takahashi
- Laboratory for Statistical and Translational Genetics, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyungheon Yoon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoon Shin Cho
- Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, UCLA School of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wayne H H Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Juyoung Lee
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
14
|
The MiR-17-92 Gene Cluster is a Blood-Based Marker for Cancer Detection in Non-Small-Cell Lung Cancer. Am J Med Sci 2020; 360:248-260. [PMID: 32466856 PMCID: PMC7211762 DOI: 10.1016/j.amjms.2020.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Background Lung cancer is one of the most malignant cancers threatening human health. The miR-17-92 gene cluster is a highly conserved oncogene cluster encoding 6 miRNAs: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a and miR-92a. This study explored whether these miRNAs can be used as diagnostic markers for non-small-cell lung cancer (NSCLC). Methods Serum samples were collected from healthy subjects (n = 23) and NSCLC patients at various stages (n = 74). Serum RNA was extracted by the TRIzol-glycogen method, and cDNA libraries were constructed by reverse transcription. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of the 6 miRNAs. Results The expression levels of the 6 miRNAs varied in different stages of NSCLC. Thus, 2 receiver operating characteristic (ROC) curves, that is, normal subjects and stage I-III patients and normal subjects and stage IV patients, of each miRNA were established to determine the interval of normal ΔCt values. The 2 areas under the curve (AUCs) of each miRNA were investigated (miR-17: 0.8097 and 1.000; miR-18a: 0.7388 and 0.9907; miR-19a/19b: 0.8451 and 0.5104; miR-20a: 0.8975 and 1.000; miR-92a: 0.8097 and 0.8342). In addition, a high positive correlation was discovered between miR-17 and miR-20a expression. Combining these 2 miRNAs can improve the screening effect of NSCLC. Conclusion The miR-17-92 gene cluster can likely serve as a diagnostic marker in NSCLC.
Collapse
|
15
|
Cheng X, Ander BP, Jickling GC, Zhan X, Hull H, Sharp FR, Stamova B. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J Cereb Blood Flow Metab 2020; 40:775-786. [PMID: 30966854 PMCID: PMC7168793 DOI: 10.1177/0271678x19839501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
Previous studies showed changes in mRNA levels in whole blood of rats and humans, and in miRNA in whole blood of rats following intracerebral hemorrhage (ICH). Thus, this study assessed miRNA and their putative mRNA targets in whole blood of humans following ICH. Whole transcriptome profiling identified altered miRNA and mRNA levels in ICH patients compared to matched controls. Target mRNAs of the differentially expressed miRNAs were identified, and functional analysis of the miRNA-mRNA targets was performed. Twenty-nine miRNAs (22 down, 7 up) and 250 target mRNAs (136 up, 114 down), and 7 small nucleolar RNA changed expression after ICH compared to controls (FDR < 0.05, and fold change ≥ |1.2|). These included Let7i, miR-146a-5p, miR210-5p, miR-93-5p, miR-221, miR-874, miR-17-3p, miR-378a-5p, miR-532-5p, mir-4707, miR-4450, mir-1183, Let-7d-3p, miR-3937, miR-4288, miR-4741, miR-92a-1-3p, miR-4514, mir-4658, mir-3689d-1, miR-4760-3p, and mir-3183. Pathway analysis showed regulated miRNAs/mRNAs were associated with toll-like receptor, natural killer cell, focal adhesion, TGF-β, phagosome, JAK-STAT, cytokine-cytokine receptor, chemokine, apoptosis, vascular smooth muscle, and RNA degradation signaling. Many of these pathways have been implicated in ICH. The differentially expressed miRNA and their putative mRNA targets and associated pathways may provide diagnostic biomarkers as well as point to therapeutic targets for ICH treatments in humans.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
16
|
Wu X, Tian H, Xue L, Wang L. SIRT6 abrogation promotes adrenocortical carcinoma through activation of NF-κB signaling. Mol Cell Biochem 2019; 458:1-10. [PMID: 30989475 DOI: 10.1007/s11010-019-03525-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
As an uncommon malignancy in the adrenal gland, adrenocortical carcinoma (ACC) is characterized by thorny diagnosis and poor clinical outcome, necessitating innovative treatment strategies. Sirtuin 6 (SIRT6), a tumor suppressor, modulates aerobic glycolysis of malignant cells and has an impact on tumorigenesis. This study focused on investigating SIRT6 expression in ACC and how it generates cancer phenotypes. SIRT6 expression was inhibited in ACC tissues according to western blotting, real-time polymerase chain reaction, and immunohistochemistry. MTT assay, TUNEL assay, and flow cytometry were performed to evaluate the contribution of SIRT6 to cell invasion, proliferation, death, and migration. It was shown that SIRT6 knockdown promoted cell invasion, proliferation, and migration, and inhibited cell death. Moreover, it was found that SIRT6 knockdown upregulated TLR4 and reinforced phosphorylation of the nuclear transcription factor-kappa B (NF-κB) subunit p65 as well as inhibitor of nuclear factor kappa-B kinase. Additionally, SIRT6 knockdown significantly enhanced expression of calcitonin gene-related peptide as well as transient receptor potential vanilloid subtype 1. It also reinforced reactive oxygen species generation. Overall, our research findings demonstrate that SIRT6 serves as a tumor suppressor via regulation of the NF-κB pathway, which could offer an innovative strategy to treat ACC.
Collapse
Affiliation(s)
- Xueyi Wu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Long Xue
- Department of Intensive Medicine, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| | - Lizhi Wang
- Department of Eugenics, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| |
Collapse
|