1
|
Liang S, Wang X, Zhu X. Insights from pharmacovigilance and pharmacodynamics on cardiovascular safety signals of NSAIDs. Front Pharmacol 2024; 15:1455212. [PMID: 39295938 PMCID: PMC11408209 DOI: 10.3389/fphar.2024.1455212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background and Aim Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat fever, pain, and inflammation. Concerns regarding their cardiovascular safety have been raised. However, the underlying mechanism behind these events remains unknown. We aim to investigate the cardiovascular safety signals and receptor mechanisms of NSAIDs, employing a comprehensive approach that integrates pharmacovigilance and pharmacodynamics. Methods This study utilized a pharmacovigilance-pharmacodynamic approach to evaluate the cardiovascular safety of NSAIDs and explore potential receptor mechanisms involved. Data were analyzed using the OpenVigil 2.1 web application, which grants access to the FDA Adverse Event Reporting System (FAERS) database, in conjunction with the BindingDB database, which provides target information on the pharmacodynamic properties of NSAIDs. Disproportionality analysis employing the Empirical Bayes Geometric Mean (EBGM) and Reporting Odds Ratio (ROR) methods was conducted to identify signals for reporting cardiovascular-related adverse drug events (ADEs) associated with 13 NSAIDs. This analysis encompassed three System Organ Classes (SOCs) associated with the cardiovascular system: blood and lymphatic system disorders, cardiac disorders, and vascular disorders. The primary targets were identified through the receptor-NSAID interaction network. Ordinary least squares (OLS) regression models explored the relationship between pharmacovigilance signals and receptor occupancy rate. Results A total of 201,231 reports of cardiovascular-related ADEs were identified among the 13 NSAIDs. Dizziness, anemia, and hypertension were the most frequently reported Preferred Terms (PTs). Overall, nimesulide and parecoxib exhibited the strongest signal strengths of ADEs at SOC levels related to the cardiovascular system. On the other hand, our data presented naproxen and diclofenac as drugs of comparatively low signal strength. Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) were identified as central targets. OLS regression analysis revealed that the normalized occupancy rate for either COX-1 or COX-2 was significantly inversely correlated with the log-transformed signal measures for blood and lymphatic system disorders and vascular disorders, and positively correlated with cardiac disorders and vascular disorders, respectively. This suggests that higher COX-2 receptor occupancy is associated with an increased cardiovascular risk from NSAIDs. Conclusion Cardiovascular safety of NSAIDs may depend on pharmacodynamic properties, specifically, the percentage of the occupied cyclooxygenase isoenzymes. More studies are needed to explore these relations and improve the prescription process.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xianying Wang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xiuqing Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Xiong W, Xia J, Peng X, Tan Y, Chen W, Zhou M, Yang C, Wang W. Novel therapeutic role of Ganoderma Polysaccharides in a septic mouse model - The key role of macrophages. Heliyon 2024; 10:e26732. [PMID: 38449666 PMCID: PMC10915390 DOI: 10.1016/j.heliyon.2024.e26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.
Collapse
Affiliation(s)
- Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wansong Chen
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Minghua Zhou
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| |
Collapse
|
3
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
4
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
5
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Jiang Y, Shen X, Zhi F, Wen Z, Gao Y, Xu J, Yang B, Bai Y. An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications. Cell Death Discov 2023; 9:266. [PMID: 37500645 PMCID: PMC10374529 DOI: 10.1038/s41420-023-01558-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Arsenic trioxide is a first-line treatment drug for acute promyelocytic leukemia, which is also effective for other kinds of leukemia. Its side effects, however, limit its clinical application, especially for patients with complex leukemia symptoms. Combination therapy can effectively alleviate these problems. This review summarizes the research progress on the combination of arsenic trioxide with anticancer drugs, vitamin and vitamin analogs, plant products, and other kinds of drugs in the treatment of leukemia. Additionally, the new progress in arsenic trioxide-induced cardiotoxicity was summarized. This review aims to provide new insights for the rational clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengchao Wen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
7
|
Fang L, Zhao Q, Guo C, Guo D, Li Z, Xu J, Guo C, Sang T, Wang Y, Chen J, Chen C, Chen R, Wu J, Wang X. Removing the sporoderm from the sporoderm-broken spores of Ganoderma lucidum improves the anticancer and immune-regulatory activity of the water-soluble polysaccharide. Front Nutr 2022; 9:1006127. [PMID: 36185644 PMCID: PMC9524850 DOI: 10.3389/fnut.2022.1006127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plant-derived polysaccharides have demonstrated promising anti-cancer effects via immune-regulatory activity. The aim of the current study was to compare the chemical property and the anticancer effects of polysaccharides extracted from the sporoderm-removed spores of the medicinal mushroom Ganoderma lucidum (RSGLP), which removed the sporoderm completely, with polysaccharides extracted from the sporoderm-broken spores of G. lucidum (BSGLP). We found that RSGLP has a higher extraction yield than BSGLP. HPGPC and GC-MS results revealed that both RSGLP and BSGLP are heteropolysaccharides, but RSGLP had a higher molecular weight and a different ratio of monosaccharide composition than BSGLP. MTT and flow cytometry results demonstrated that RSGLP exhibited much higher dose-efficacy in inhibiting cell viability and inducing apoptosis than BSGLP in 8 cancer cell lines representing colon (HCT116 and HT29), liver (HepG2 and Huh-7), breast (MDA-MB-231 and MCF-7), and lung cancers (NCI-H460 and A549). Furthermore, RSGLP is more effective in inhibiting HCT116 and NCI-H460 xenograft tumor growth and inhibiting tumor-induced splenomegaly than BSGLP in nude mice, suggesting a better effect on regulating immunity of RSGLP. Next, we found that RSGLP is more potent in inhibiting the level of serum inflammatory cytokines in nude mice, and in inhibiting the activation of macrophage RAW264.7 and the expression of the inflammatory mediators IL-1β, TNF-α, iNOS, and COX-2 in vitro. This is the first study to compare the chemical properties, anti-cancer, and immune-regulatory effects of RSGLP and BSGLP using multiple cancer cell lines. Our results revealed that the sporoderm-removed spores of G. lucidum (RSGL) and RSGLP may serve as new anticancer agents for their promising immune-regulatory activity.
Collapse
Affiliation(s)
- Liu Fang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Zhao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiling Guo
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dandan Guo
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenhao Li
- Zhejiang Engineering Research Center of Rare Medicinal Plants, Wuyi, China
| | - Jing Xu
- Zhejiang Engineering Research Center of Rare Medicinal Plants, Wuyi, China
| | - Chengjie Guo
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Sang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajun Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaojie Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Jianjun Wu
| | - Xingya Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xingya Wang
| |
Collapse
|
8
|
Wang M, Yu F. Research Progress on the Anticancer Activities and Mechanisms of Polysaccharides From Ganoderma. Front Pharmacol 2022; 13:891171. [PMID: 35865946 PMCID: PMC9294232 DOI: 10.3389/fphar.2022.891171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer ranks as a primary reason for death worldwide. Conventional anticancer therapies can cause severe side effects, and thus natural products may be promising drug candidates for cancer therapy. Accumulating evidence has verified the prominent anticancer properties of Ganoderma polysaccharides, suggesting that Ganoderma polysaccharides may be effective chemopreventive agents of natural origin. Based on their abilities to prevent cancer development by regulating the DNA damage response, cancer cell proliferation, apoptosis, host immunity, gut microbiota and therapeutic sensitivity, there has been increasing interest in elucidating the clinical implication of Ganoderma polysaccharides in cancer therapy. In this review, we summarize recent findings pertaining to the roles of bioactive polysaccharides from Ganoderma in cancer pathogenesis, discuss the multifarious mechanisms involved and propose future directions for research. A more sophisticated understanding of the anticancer benefits of Ganoderma polysaccharides will be helpful for improving current treatments and developing novel therapeutic interventions for human malignancies.
Collapse
|
9
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|
10
|
Jin Y, Jung SN, Lim MA, Oh C, Piao Y, Kim HJ, Liu L, Kang YE, Chang JW, Won HR, Song K, Koo BS. Transcriptional Regulation of GDF15 by EGR1 Promotes Head and Neck Cancer Progression through a Positive Feedback Loop. Int J Mol Sci 2021; 22:ijms222011151. [PMID: 34681812 PMCID: PMC8538541 DOI: 10.3390/ijms222011151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β (TGF-β) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15–EGR1 signaling axis may be a good target in HNC patients.
Collapse
Affiliation(s)
- Yanli Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yudan Piao
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Lihua Liu
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Korea;
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Kunho Song
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
- Correspondence: ; Tel.: +82-42-280-7690
| |
Collapse
|
11
|
Practical Application of "About Herbs" Website: Herbs and Dietary Supplement Use in Oncology Settings. ACTA ACUST UNITED AC 2020; 25:357-366. [PMID: 31567464 DOI: 10.1097/ppo.0000000000000403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Integrative Medicine Service at Memorial Sloan Kettering Cancer Center developed and maintains About Herbs (www.aboutherbs.com), which provides summaries of research data including purported uses, adverse effects, and herb-drug interactions for about 284 dietary supplements. Using Google Analytics, we found the website registered more than 26,317,000 hits since November 2002. The 10 most searched-for herbs/supplements of 2018 are chaga mushroom, turmeric, ashwagandha, reishi mushroom, graviola, Active Hexose-Correlated Compound, boswellia, dandelion, green tea, and Coriolus versicolor. Here we discuss their safety, herb-drug interactions, and appropriate uses in the oncology setting, based on literature searches in PubMed. Over the past 16 years, the evidence for use of these supplements is based mostly on preclinical findings, with few well-designed studies and limited trials conducted in cancer patients. It is important to familiarize health care professionals about popular supplements, so patients can be informed to make decisions that maximize benefits and minimize risks.
Collapse
|
12
|
Ganoderma lucidum Polysaccharide (GLP) Inhibited the Progression of Oral Squamous Cell Carcinoma via the miR-188/BCL9/β-Catenin Pathway. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7472314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective. The effects of Ganoderma lucidum polysaccharide (GLP) on the proliferation and migration of oral squamous cell carcinoma (OSCC) cells (HSC-3) were investigated in this study. Methods. Oral squamous cell carcinoma (OSCC) cells (HSC-3) were cultured in vitro and were treated with different concentrations of GLP. CCK-8 assay and scratch assay were then used to detect the inhibitory effect of GLP on these cells. qRT-PCR and western blot were used to measure the expression changes of the genes involved in the miR-188 and β-catenin signaling pathways. Results. GLP had significant cytotoxicity to HSC-3 cells and was capable of inhibiting the proliferation and migration of HSC-3 cells. GLP upregulated the expression of miR-188 in HSC-3 cells and via which inhibited the proliferation and migration of HSC-3 cells. In addition, miR-188 inhibited the activation of the β-catenin signaling pathway through its target BCL9. Conclusions. GLP inhibited the proliferation and migration of OSCC cells (HSC-3) by regulating the miR-188/BCL9/β-catenin signaling pathway. The results in this study provided a theoretical basis for the treatment of OSCC with GLP.
Collapse
|
13
|
Wang W, Gou X, Xue H, Liu K. Ganoderan (GDN) Regulates The Growth, Motility And Apoptosis Of Non-Small Cell Lung Cancer Cells Through ERK Signaling Pathway In Vitro And In Vivo. Onco Targets Ther 2019; 12:8821-8832. [PMID: 31695437 PMCID: PMC6821078 DOI: 10.2147/ott.s221161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lung cancer is the most common malignant tumor worldwide. About 90% of lung cancers are considered non-small cell lung cancer (NSCLC). Ganoderan (GDN) is one of the components of Ganoderma lucidum polysaccharides. Ganoderan A (GDNA), Ganoderan B (GDNB) and Ganoderan C (GDNC) were three polysaccharides isolated from the Ganoderma lucidum fruiting body. Methods Cell growth was measured by Cell Counting kit-8 and colony formation assay, while cell motility was measured by transwell assay and wound healing assay. Apoptosis was measured by flow cytometry analysis and TUNEL staining, and protein expression was detected by Western blotting and immunohistochemistry. Results Previous studies have shown that GDNB has the effects of hyperglycemic and kidney protection. However, the role of GDNB in tumors is currently unknown. This study elaborated the role of GDNB in NSCLC and its underlying molecular mechanisms. The results exerted that GDNB inhibited the growth of H510A and A549 cells by suppressing the expression of ki67 and PCNA. Besides, transwell assay and wound healing assay showed that GDNB inhibited invasion and migration of H510A and A549 cells in a concentration-dependent manner. Moreover, Western blotting also showed that GDNB downregulated the levels of N-cadherin, vimentin and Snail in H510A and A549 cells in a dose-dependent manner, while it upregulated the level of E-cadherin. Additionally, GDNB also promoted apoptosis of H510A and A549 cells by regulating the expression of Bcl-2, Bax, cleaved caspase 3 and cleaved PARP. Animal experiments revealed that GDNB inhibited tumor growth and metastasis, and induced apoptosis of tumor cells in vivo. Mechanically, GDNB suppressed the expression of Ras and c-Myc, and decreased the phosphorylation levels of MEK1/2 and ERK1/2. Conclusion Collectively, all data suggest that GDNB regulates the growth, motility and apoptosis of non-small cell lung cancer cells through ERK signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Xiaohui Gou
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Hua Xue
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| | - Kai Liu
- Department of Thoracic Surgery, The Central Hospital of Xianyang, Xianyang City, Shaanxi 712000, People's Republic of China
| |
Collapse
|
14
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
15
|
Pan H, Wang Y, Na K, Wang Y, Wang L, Li Z, Guo C, Guo D, Wang X. Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death Dis 2019; 10:456. [PMID: 31186406 PMCID: PMC6560101 DOI: 10.1038/s41419-019-1653-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Targeting autophagy may serve as a promising strategy for cancer therapy. Ganoderma lucidum polysaccharide (GLP) has been shown to exert promising anti-cancer effects. However, the underlying mechanisms remain elusive. Whether GLP regulates autophagy in cancer has never been reported. In this study, GLP induced the initiation of autophagy in colorectal cancer (CRC) HT-29 and HCT116 cells, as evidenced by enhanced level of LC3-II protein, GFP-LC3 puncta, and increased formation of double membrane vacuoles. However, GLP treatment caused marked increase of p62 expression. Addition of late stage autophagy inhibitor, chloroquine (CQ), further enhanced LC3-II and p62 level, as well as increased autophagosome accumulation, suggesting a blockage of autophagic flux by GLP in CRC cells. We then found GLP blocked autophagosome and lysosome fusion as determined by mRFP-GFP-LC3 colocalization analysis. Mechanistic study revealed that GLP-induced disruption of autophagosome-lysosome fusion is due to reduced lysosome acidification and lysosomal cathepsin activities. Cell viability and flow cytometry assays revealed that GLP-induced autophagosome accumulation is responsible for GLP-induced apoptosis in CRC cells. In line with this, inhibition of autophagy initiation by 3-methyladenine (3-MA), an early stage autophagy inhibitor, attenuated GLP-induced apoptosis. In contrast, suppression of autophagy at late stage by CQ enhanced the anti-cancer effect of GLP. Furthermore, we demonstrated that GLP-induced autophagosome accumulation and apoptosis is mediated via MAPK/ERK activation. Finally, GLP inhibited tumor growth and also inhibited autophagic flux in vivo. These results unveil new molecular mechanism underlying anti-cancer effects of GLP, suggesting that GLP is a potent autophagy inhibitor and might be useful in anticancer therapy.
Collapse
Affiliation(s)
- Haitao Pan
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Yujie Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Kun Na
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Institute of Rare Medicine Plant, 12, Huanglong 3rd Road, 321200, Wuyi, Zhejiang, China
| | - Chengjie Guo
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Dandan Guo
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China
| | - Xingya Wang
- Department of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Ganoderma lucidum Extract Reduces the Motility of Breast Cancer Cells Mediated by the RAC⁻Lamellipodin Axis. Nutrients 2019; 11:nu11051116. [PMID: 31109134 PMCID: PMC6567024 DOI: 10.3390/nu11051116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death among women worldwide. The main cause of BC morbidity and mortality is the invasiveness capacity of cancer cells that may lead to metastasis. Here, we aimed to investigate the therapeutic efficacy of Ganoderma lucidum extract (GLE)—a medicinal mushroom with anticancer properties—on BC motility via the Rac/Lamellipodin pathway. GLE treatment effects were tested on MDA-MB-231 breast cancer cells. The effects were tested on cell viability, migration and invasion. Pulldowns, immunoblotting, and immunofluorescence were used to measure Rac activity and the expression of proteins involved in cell migration and in lamellipodia formation, respectively. As a result, GLE suppressed BC cell viability, migration, and invasion capacity. GLE impaired Rac activity, as well as downregulated Lamellipodin, ENA/VASP, p-FAK (Tyr925), Cdc42, and c-Myc expression. Lamellipodia formation was significantly reduced by GLE. In conclusion, we demonstrate that GLE reduces Rac activity and downregulates signaling molecules involved in lamellipodia formation. These novel findings serve as basis for further studies to elucidate the potential of GLE as a therapeutic agent regulating the Rac/Lamellipodin pathway in BC metastasis.
Collapse
|
17
|
Zhang QH, Hu QX, Xie D, Chang B, Miao HG, Wang YG, Liu DZ, Li XD. Ganoderma lucidum Exerts an Anticancer Effect on Human Osteosarcoma Cells via Suppressing the Wnt/β-Catenin Signaling Pathway. Integr Cancer Ther 2019; 18:1534735419890917. [PMID: 31855073 PMCID: PMC6923688 DOI: 10.1177/1534735419890917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Current treatment of osteosarcoma is limited in part by side effects and low tolerability, problems generally avoided with traditional Chinese medicine. Ganoderma lucidum, a traditional Chinese medicine with antitumor effects, offers a potential alternative, but little is known about its molecular mechanisms in osteosarcoma cells. Objective: To investigate the effect of G lucidum on osteosarcoma cells and its mechanism. Methods: Osteosarcoma MG63 and U2-OS cells were treated with G lucidum, followed by assays for cell proliferation (Cell Counting Kit-8), colony formation, and apoptosis (Alexa Fluor 647-Annexin V/propidium iodide, flow cytometry). Migration and invasion of cells were assessed by wound healing and Transwell invasion assays, and the effect of G lucidum on Wnt/β-catenin signal transduction was studied by real-time quantitative polymerase chain reaction, western blot, and dual-luciferase assay. Results:G lucidum inhibited the proliferation, migration, and invasion, and induced apoptosis of human osteosarcoma MG63 and U2-OS cells. Dual-luciferase assay showed that G lucidum suppressed the transcriptional activity of T-cell factor/lymphocyte enhancer factor in the Wnt/β-catenin signaling pathway. Moreover, G lucidum blocked Wnt/β-catenin signaling by inhibiting the Wnt co-receptor LRP5 and Wnt-related target genes, such as β-catenin, cyclin D1, C-Myc, MMP-2, and MMP-9. At the same time, when Wnt/β-catenin was inhibited, the expression of E-cadherin was upregulated. Conclusions: Our results suggest that G lucidum broadly suppresses osteosarcoma cell growth by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qi-Hao Zhang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qin-Xiao Hu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Da Xie
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Bo Chang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Hou-Guang Miao
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Yun-Guo Wang
- The Second Hospital of Tianjin Medical
University, Tianjin, People’s Republic of China
| | - De-Zhong Liu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| | - Xue-Dong Li
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| |
Collapse
|