1
|
Nudelman A, Shenoy A, Allouche-Arnon H, Fisler M, Rosenhek-Goldian I, Dayan L, Abou Karam P, Porat Z, Solomonov I, Regev-Rudzki N, Bar-Shir A, Sagi I. Proteolytic Vesicles Derived from Salmonella enterica Serovar Typhimurium-Infected Macrophages: Enhancing MMP-9-Mediated Invasion and EV Accumulation. Biomedicines 2024; 12:434. [PMID: 38398037 PMCID: PMC10886541 DOI: 10.3390/biomedicines12020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.
Collapse
Affiliation(s)
- Alon Nudelman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Anjana Shenoy
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Michal Fisler
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Lior Dayan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| |
Collapse
|
2
|
Targeting the TLR4/NF-κΒ Axis and NLRP1/3 Inflammasomes by Rosuvastatin: A Role in Impeding Ovariectomy-Induced Cognitive Decline Neuropathology in Rats. Mol Neurobiol 2022; 59:4562-4577. [PMID: 35578102 DOI: 10.1007/s12035-022-02852-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 01/29/2023]
Abstract
Postmenopausal hormone-related cognitive decline has gained an immense interest to explore the underlying mechanisms and potential therapies. The current work aimed to study the possible beneficial effect of rosuvastatin (ROS) on the cognitive decline induced by ovariectomy in rats. Four groups were used as follows: control group, control + rosuvastatin, ovariectomy, and ovariectomy + rosuvastatin. After sham operation or ovariectomy, rats were given saline or oral dosages of ROS (2 mg/kg) every day for 30 days. The cognitive functions were assessed using the Morris water maze paradigm, Y-maze test, and new object recognition test. After rat killing, TLR4, caspase-8, and NLRP mRNA expression and protein levels of ASC, AIM2, caspase-1, NLRP1, and PKR were measured in hippocampus. This was complemented by the estimation of tissue content of NF-κΒ, IL-1β, and IL-18 and serum lipid profile quantification. Rosuvastatin showed a promising potential for halting the cognitive impairments induced by estrogen decline through interfering with the TLR4/NF-κΒ/NLRP1/3 axis and inflammasomes activation and the subsequent pyroptosis. This was complemented by the amendment in the deranged lipid profile. Rosuvastatin may exert a beneficial role in attenuating the inflammatory and apoptotic signaling mechanisms associated with postmenopausal cognitive decline. Further investigations are needed to unveil the relationship between deranged plasma lipids and cognitive function.
Collapse
|
3
|
Pussinen PJ, Kopra E, Pietiäinen M, Lehto M, Zaric S, Paju S, Salminen A. Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontol 2000 2022; 89:19-40. [PMID: 35244966 PMCID: PMC9314839 DOI: 10.1111/prd.12433] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipopolysaccharide is a virulence factor of gram-negative bacteria with a crucial importance to the bacterial surface integrity. From the host's perspective, lipopolysaccharide plays a role in both local and systemic inflammation, activates both innate and adaptive immunity, and can trigger inflammation either directly (as a microbe-associated molecular pattern) or indirectly (by inducing the generation of nonmicrobial, danger-associated molecular patterns). Translocation of lipopolysaccharide into the circulation causes endotoxemia, which is typically measured as the biological activity of lipopolysaccharide to induce coagulation of an aqueous extract of blood cells of the assay. Apparently healthy subjects have a low circulating lipopolysaccharide activity, since it is neutralized and cleared rapidly. However, chronic endotoxemia is involved in the pathogenesis of many inflammation-driven conditions, especially cardiometabolic disorders. These include atherosclerotic cardiovascular diseases, obesity, liver diseases, diabetes, and metabolic syndrome, where endotoxemia has been recognized as a risk factor. The main source of endotoxemia is thought to be the gut microbiota. However, the oral dysbiosis in periodontitis, which is typically enriched with gram-negative bacterial species, may also contribute to endotoxemia. As endotoxemia is associated with an increased risk of cardiometabolic disorders, lipopolysaccharide could be considered as a molecular link between periodontal microbiota and cardiometabolic diseases.
Collapse
Affiliation(s)
- Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Svetislav Zaric
- Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, UK
| | - Susanna Paju
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
5
|
Li T, Li X, Liu X, Yang J, Ma C. The elevated expression of TLR4 and MMP9 in human abdominal aortic aneurysm tissues and its implication. BMC Cardiovasc Disord 2021; 21:378. [PMID: 34348653 PMCID: PMC8336015 DOI: 10.1186/s12872-021-02193-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) and matrix metalloproteinase 9 (MMP9) have been investigated to play significant roles in the formation of abdominal aortic aneurysm (AAA). But the reports on the expression pattern of TLR4 and MMP9 in human AAA specimens were relatively scant. The aim of this study was to make a detailed analysis of TLR4 and MMP9 expression in situ and their association with clinical parameters involved in human AAA. Methods 40 AAA specimens were obtained from full-thickness aneurysmal tissues at the maximal dilation area during the open surgical repair, and 8 non-aneurysmal abdominal aortas from transplant donors served as controls. Expression of TLR4 and MMP9 protein was determined by immunohistochemistry. Results There were increased levels of TLR4 and MMP9 expression in human AAA tissues. Compared with macrophages or SMCs, lymphocytes showed a higher positive rate of TLR4 and MMP9 staining, and an elevated ratio of high MMP9 expression (all P < 0.05). There existed a significant association between TLR4 and MMP9 expression (r = 0.767, P < 0.001), and both TLR4 and MMP9 levels were statistically related to circulating CRP. Moreover, TLR4 expression in situ indicated a positive correlation with its serum level (r = 0.654, P = 0.006). Multiple analysis revealed that high TLR4 expression in situ was associated with the risk of large AAA (OR = 6.211, 95%CI = 1.226–31.480, P = 0.027), while high MMP9 expression was correlated to the presence of thrombus within AAA (OR = 5.494, 95%CI = 1.181–25.562, P = 0.030), separately compared with their low expression. Conclusions This study confirmed the overexpression of TLR4 and MMP9 in human AAA tissues, and their close relationship implying in the pathogenesis of AAA. We further provided evidence that TLR4 had a potential effect on AAA size and MMP9 could influence the occurrence of thrombus within AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xintong Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaozheng Liu
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Reisinger N, Wendner D, Schauerhuber N, Mayer E. Effect of Lipopolysaccharides (LPS) and Lipoteichoic Acid (LTA) on the Inflammatory Response in Rumen Epithelial Cells (REC) and the Impact of LPS on Claw Explants. Animals (Basel) 2021; 11:ani11072058. [PMID: 34359186 PMCID: PMC8300308 DOI: 10.3390/ani11072058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endotoxins, often referred to as lipopolysaccharides (LPS), are bacterial toxins and play an essential role in several diseases in ruminants. One of the most common disorders in dairy cows, sub-acute rumen acidosis (SARA), is associated with a substantial increase of ruminal and intestinal endotoxin load. Other potentially harmful substances, e.g., lipoteichoic acid (LTA), derived from the cell wall of Gram-positive bacteria, might play an essential role during SARA as well. Besides the potential local effect of LPS, translocation to the blood can induce a strong immune response in cattle. Furthermore, LPS might reach the claw tissue after translocation. In our study, we used a cell culture model with epithelial cells isolated from rumen tissue to assess the effects of LPS and LTA. Furthermore, we evaluated the effects of LPS on claw tissue with an explant model. LPS and LTA could induce an inflammatory response in rumen epithelial cells. However, the effect of LPS was more substantial and seen at an earlier time point compared to LTA. Furthermore, in claw explants, LPS negatively affected the separation force, an indicator for tissue integrity, which decreased with increasing LPS concentrations. Overall, our data suggest that especially endotoxins can impact local inflammatory response in the rumen. Furthermore, if endotoxins reach the claw tissue, it might affect claw health. Abstract Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.
Collapse
|
7
|
Suresh N, Subbarao HJ, Natanasabapathy V, Kishen A. Maxillary Anterior Teeth With Extensive Root Resorption Treated With Low-level Light-activated Engineered Chitosan Nanoparticles. J Endod 2021; 47:1182-1190. [DOI: 10.1016/j.joen.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
|
8
|
Ji C, Pan Y, Xu S, Yu C, Ji J, Chen M, Hu F. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-κB pathway. J Food Biochem 2021; 45:e13577. [PMID: 33729587 DOI: 10.1111/jfbc.13577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Neointima formation and atherosclerosis are the main complications after the endovascular intervention and vascular surgery, and there are no effective drugs. Propolis is a kind of resin substance produced by honeybees and has numerous health-beneficial effects. In this study, we evaluated the effects of propolis (125 and 250 mg·kg-1 ·day-1 , 6 weeks) on carotid restenosis in hypercholesterolemia rabbits. Propolis significantly ameliorated the degree of carotid restenosis, inhibited neointima hyperplasia, reduced serum lipids profile, and enhanced the anti-oxidative activities in hypercholesterolemia rabbits. Furthermore, propolis reduced the plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α (TNF-α), and inhibited the expression of CD68, TLR4, NF-κB p65, MMP-9, and TNF-α in the carotid arteries. The results indicate that propolis has a protective effect on carotid restenosis in rabbits, which is associated with regulating blood lipids, inhibiting oxidative stress and inflammation, and its anti-inflammatory activity may be related to inhibit TLR4-mediated NF-κB signaling pathway. PRACTICAL APPLICATIONS: Restenosis is a primary challenge in angioplasty and atherosclerotic treatment. Hyperlipidemia can induce inflammation and accelerate the formation of restenosis. Recently, natural products have been widely used to prevent intimal hyperplasia of common cardiovascular diseases. Propolis is currently a popular functional food, but the role of propolis on carotid restenosis after angioplasty and its underlying mechanism remains unclear. This study showed that propolis inhibits the effect of carotid restenosis in hypercholesterolemia rabbits. The results of this study may provide a basis for propolis to prevent and treat vascular restenosis.
Collapse
Affiliation(s)
- Chao Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Yongming Pan
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Xu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Yu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Minli Chen
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Moin ASM, Sathyapalan T, Atkin SL, Butler AE. Pro-fibrotic M2 macrophage markers may increase the risk for COVID19 in type 2 diabetes with obesity. Metabolism 2020; 112:154374. [PMID: 32949593 PMCID: PMC7510340 DOI: 10.1016/j.metabol.2020.154374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK.
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain.
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Abstract
Toll-like receptors are transmembrane proteins which sense and transmit infectious and inflammatory responses to the cells expressing them. Therapeutic strategies for the blockade of excessive Toll-like receptor signaling are being actively pursued for several diseases. Recently, Sparstolonin B, isolated from Chinese herb, which suppresses selectively Toll-like receptors has been studied in various inflammatory models. The objective of this review is to summarize the current literature regarding the use of Sparstolonin B in various in vitro and in vivo studies and to provide an overview regarding the potential use of this agent in different inflammatory diseases. Additionally, the current knowledge regarding the role of Toll-like receptors in inflammatory disease and the usage of various Toll-like receptor antagonists will be summarized. Based on our review, we believe Sparstolonin B could serve as a potential therapeutic agent for treatment of Toll-like receptor-mediated inflammatory disorders.
Collapse
|
11
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
12
|
Guo T, Hou D, Yu D. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Mol Med Rep 2019; 20:4415-4424. [PMID: 31545495 PMCID: PMC6797989 DOI: 10.3892/mmr.2019.10696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
Intracranial aneurysm (IA) is a cerebrovascular disease with a high mortality rate. The pathogenesis of IA remains unclear and the treatment limited. The purpose of the present study was to identify the key genes expressed in IAs and provide the basis for further research and treatment. The raw dataset GSE75436 was downloaded from Gene Expression Omnibus, including 15 IA samples and 15 matched superficial temporal artery (STA) samples. Then, differentially expressed genes (DEGs) were identified using the limma package in R software. Hierarchical clustering analysis was performed on the DEGs using the gplot2 package in R. Database for Annotation, Visualization, and Integrated Discovery (DAVID) online tools were used to perform gene ontology (GO) functional enrichment analysis. DAVID and gene set enrichment analysis were separately used to perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The intersections of the two results were selected as common KEGG pathways. Protein-protein interaction (PPI) analysis among the DEGs involved in the common KEGG pathways was performed using Search Tool for the Retrieval of Interacting Genes online tools, and visualized with Cytoscape software. A total of 782 DEGs were identified, comprising 392 upregulated and 390 downregulated DEGs. Hierarchical clustering demonstrated that the DEGs could precisely distinguish the IAs from the STAs. The GO enrichment analysis demonstrated that the upregulated DEGs were mainly involved in the inflammatory response and the management of extracellular matrix, and the downregulated DEGs were mainly involved in the process of vascular smooth muscle contraction. The KEGG pathway enrichment analysis demonstrated that the common pathways were ‘leishmaniasis’, ‘Toll-like receptor signaling pathway’ and ‘vascular smooth muscle contraction’. In the PPI network, tumor necrosis factor (TNF), interleukin 8 and Toll-like receptor 4 had the highest degrees; they were associated with the inflammatory response. The Toll-like receptor signaling pathway and TNF gene may serve as targets for future research and treatment.
Collapse
Affiliation(s)
- Tie Guo
- Department of Neurology, Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Dan Hou
- Department of Neurology, Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Dan Yu
- Department of Neurology, Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| |
Collapse
|
13
|
Gonciarz W, Krupa A, Hinc K, Obuchowski M, Moran AP, Gajewski A, Chmiela M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One 2019; 14:e0220636. [PMID: 31390383 PMCID: PMC6685636 DOI: 10.1371/journal.pone.0220636] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. Aim To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. Methods We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). Results Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. Conclusions H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
- * E-mail:
| |
Collapse
|
14
|
Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 2019; 41:349-360. [PMID: 31056982 DOI: 10.1080/08923973.2019.1608560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a common neurotrosis disorder of the central nervous system (CNS), which has dramatic consequences on the integrity of damaged tissue. In this study, we investigated the neuroprotective effect and anti-inflammatory actions of osthole, a natural coumarin derivative, in both in vivo and in vitro TBI models. We first prepared a mouse model of cortical stab wound brain injury, investigated the capacity for osthole to prevent secondary brain injury and further examined the underlying mechanism. We revealed that osthole significantly improved the neurological function, increased the number of neurons beside injured site. Additionally, osthole treatment reduced the expression of microglia and glial scar, lowered the level of the proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and blocked the activation of nuclear factor kappa B (NF-κB). Furthermore, the protective effect of osthole was also examined in SH-SY5Y cells subjected to scratch injury. Treatment of osthole prominently suppressed cell apoptosis and inflammatory factors release by blocking injury-induced IκB-α phosphorylation and NF-κB translocation, and upregulated the IκB-α which functions in the NF-κB signaling pathway of SH-SY5Y cells. However, NF-κB signaling pathway was inhibited by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, the anti-inflammatory effect of osthole was abolished. In conclusion, our findings demonstrated that osthole attenuated inflammatory response by inhibiting the NF-κB pathway in TBI.
Collapse
Affiliation(s)
- Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingjia Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yang Xia
- b Department of Engineering , University of Oxford , Oxford , UK
| | - Xicai Liang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingnan Ni
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jingxian Yang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
15
|
Li T, Jing JJ, Yang J, Sun LP, Gong YH, Xin SJ, Yuan Y. Serum levels of matrix metalloproteinase 9 and toll-like receptor 4 in acute aortic dissection: a case-control study. BMC Cardiovasc Disord 2018; 18:219. [PMID: 30497388 PMCID: PMC6267890 DOI: 10.1186/s12872-018-0958-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background Matrix metalloproteinase 9 (MMP9) and Toll-like receptor 4 (TLR4) play important roles in aortic pathophysiology. However, there is lacking research on serum TLR4 levels in acute aortic dissection (AAD) patients, and the performance of serum MMP9 and TLR4 for the diagnosis of AAD is still unknown. This study aimed to evaluate the serum levels of MMP9 and TLR4 in AAD patients, identify their associations with circulating C-reactive protein (CRP) and D-dimer, which are well-known classical biomarkers of AAD, and further explore the potential diagnostic role of MMP9 and TLR4 in AAD. Methods Serum levels of MMP9 and TLR4 were measured by enzyme-linked immunosorbent assay (ELISA) in 88 AAD patients and 88 controls. The clinical test related information was collected from patients’ electronic medical records. Results Serum MMP9 and TLR4 levels were significantly higher in AAD patients than those in healthy controls in the general and stratified comparisons. Either serum MMP9 or TLR4 was independently associated with the risk of AAD (all p < 0.001). There was a positive significant association between serum MMP9 and TLR4 (r = 0.518, p < 0.001). Both MMP9 and TLR4 levels were statistically correlated with circulating CRP, but not D-dimer. Based on receiver-operating characteristic (ROC) analysis, the area under the curves (AUCs) of MMP9 and TLR4 alone for the diagnosis of AAD were 0.810 and 0.799 with optimal cut-off points of 379.47 ng/ml and 7.83 ng/ml, respectively. Moreover, a combination of serum MMP9 and TLR4 increased the AUC to 0.89 with a sensitivity of 60.2% and specificity of 94.3%. Conclusions Serum MMP9 and TLR4 could be potential biomarkers for identifying AAD, while the combined diagnostic value was higher in safely ruling out AAD.
Collapse
Affiliation(s)
- Tan Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China.,Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yue-Hua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Shi-Jie Xin
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
16
|
Sherwani MA, Yang K, Jani A, Abed RA, Taufique AK, Dosunmu TG, Yusuf N. Protective Effect of Baicalin Against TLR4-mediated UVA-induced Skin Inflammation. Photochem Photobiol 2018; 95:605-611. [PMID: 30246296 DOI: 10.1111/php.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 01/18/2023]
Abstract
UVA irradiation is known to cause photoaging via production of reactive oxygen species (ROS) and activation of inflammatory processes. Previously, we have demonstrated that baicalin, a plant-derived flavonoid possessing both antioxidant and anti-inflammatory activity, protects mouse keratinocytes against damage from UVB irradiation. However, the role of baicalin in vivo has not been well studied, particularly in the setting of UVA irradiation. To explore the protective effects and mechanisms of baicalin treatment in mice after UVA irradiation, mice were exposed to acute and chronic doses of UVA irradiation with or without baicalin or vehicle. Skin samples were collected for histological staining, RNA isolation, flow cytometry and protein extraction. Our results demonstrate the protective effect of baicalin against UVA-induced oxidative damage and inflammation in mouse skin. These effects are likely mediated via the TLR4 pathway, which may serve as a target for photochemoprevention against skin inflammation.
Collapse
Affiliation(s)
- Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin Yang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Aditi Jani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Reham A Abed
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Abdul Karim Taufique
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Tolulope Gid Dosunmu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Anjum SA, Lawrence H, Holland JP, Kirby JA, Deehan DJ, Tyson-Capper AJ. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells. Oncotarget 2018; 7:76471-76478. [PMID: 27835611 PMCID: PMC5363524 DOI: 10.18632/oncotarget.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022] Open
Abstract
Cobalt-containing metal-on-metal hip replacements are associated with adverse reactions to metal debris (ARMD), including inflammatory pseudotumours, osteolysis, and aseptic implant loosening. The exact cellular and molecular mechanisms leading to these responses are unknown. Cobaltions (Co2+) activate human Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to Gram negative bacterial lipopolysaccharide (LPS). We investigated the effect of Co2+-mediated TLR4 activation on human microvascular endothelial cells (HMEC-1), focusing on the secretion of key inflammatory cytokines and expression of adhesion molecules. We also studied the role of TLR4 in Co2+-mediated adhesion molecule expression in MonoMac 6 macrophages. We show that Co2+ increases secretion of inflammatory cytokines, including IL-6 and IL-8, in HMEC-1. The effects are TLR4-dependent as they can be prevented with a small molecule TLR4 antagonist. Increased TLR4-dependent expression of intercellular adhesion molecule 1 (ICAM1) was also observed in endothelial cells and macrophages. Furthermore, we demonstrate for the first time that Co2+ activation of TLR4 upregulates secretion of a soluble adhesion molecule, sICAM-1, in both endothelial cells and macrophages. Although sICAM-1 can be generated through activity of matrix metalloproteinase-9 (MMP-9), we did not find any changes in MMP9 expression following Co2+ stimulation. In summary we show that Co2+ can induce endothelial inflammation via activation of TLR4. We also identify a role for TLR4 in Co2+-mediated changes in adhesion molecule expression. Finally, sICAM-1 is a novel target for further investigation in ARMD studies.
Collapse
Affiliation(s)
- Sami A Anjum
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Lawrence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - James P Holland
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - John A Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David J Deehan
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | | |
Collapse
|
18
|
Rai V, Agrawal DK. The role of damage- and pathogen-associated molecular patterns in inflammation-mediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol 2017; 95:1245-1253. [PMID: 28746820 DOI: 10.1139/cjpp-2016-0664] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease resulting in the formation of the atherosclerotic plaque. Plaque formation starts with the inflammation in fatty streaks and progresses through atheroma, atheromatous plaque, and fibroatheroma leading to development of stable plaque. Hypercholesterolemia, dyslipidemia, and hyperglycemia are the risk factors for atherosclerosis. Inflammation, infection with viruses and bacteria, and dysregulation in the endothelial and vascular smooth muscle cells leads to advanced plaque formation. Death of the cells in the intima due to inflammation results in secretion of damage-associated molecular patterns (DAMPs) such as high mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), alarmins (S100A8, S100A9, S100A12, and oxidized low-density lipoproteins), and infection with pathogens leads to secretion of pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides, lipoteichoic acids, and peptidoglycans. DAMPs and PAMPs further activate the inflammatory surface receptors such as TREM-1 and toll-like receptors and downstream signaling kinases and transcription factors leading to increased secretion of pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, IL-6, and interferon-γ and matrix metalloproteinases (MMPs). These mediators and cytokines along with MMPs render the plaque vulnerable for rupture leading to ischemic events. In this review, we have discussed the role of DAMPs and PAMPs in association with inflammation-mediated plaque vulnerability.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.,Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Balistreri CR, Ruvolo G, Lio D, Madonna R. Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature". J Mol Cell Cardiol 2017; 110:38-53. [PMID: 28668304 DOI: 10.1016/j.yjmcc.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4 signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4 signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Rosalinda Madonna
- Heart Failure Research, Texas Heart Institute, St. Luke's Episcopal Hospital, Houston, TX, United States; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, TX, United States; Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences "G. D'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
20
|
Sakura T, Morioka T, Shioi A, Kakutani Y, Miki Y, Yamazaki Y, Motoyama K, Mori K, Fukumoto S, Shoji T, Emoto M, Inaba M. Lipopolysaccharide-binding protein is associated with arterial stiffness in patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol 2017; 16:62. [PMID: 28486964 PMCID: PMC5424398 DOI: 10.1186/s12933-017-0545-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS. Recent evidence indicates the association of circulating LBP levels with obesity, diabetes, and cardiovascular diseases. In this study, we aimed to investigate the relationship between serum LBP levels and arterial stiffness in patients with type 2 diabetes. METHODS A total of 196 patients with type 2 diabetes, including 101 men and 95 women, were enrolled in this cross-sectional study. Fasting serum LBP levels were determined by enzyme-linked immunosorbent assay. Arterial stiffness was assessed by measuring the aortic pulse wave velocity (PWV). RESULTS The mean values of serum LBP and aortic PWV were 18.2 μg/mL and 1194 cm/s, respectively. Serum LBP levels were positively correlated with body mass index, triglycerides, high-sensitivity C-reactive protein, and insulin resistance index and were negatively correlated with high-density lipoprotein cholesterol. They were, however, not significantly correlated with aortic PWV in univariate analyses. Multivariate analysis revealed that serum LBP levels were independently and positively associated with aortic PWV (β = 0.135, p = 0.026) after adjusting for age, sex, body mass index, albumin, high-sensitivity C-reactive protein, and other cardiovascular risk factors. Further analyses revealed that the impact of serum LBP levels on aortic PWV was modified by sex, and the association between serum LBP levels and aortic PWV was found to be significant only in men. CONCLUSIONS Serum LBP levels are associated with arterial stiffness, independent of obesity and traditional cardiovascular risk factors, especially in men with type 2 diabetes. This study indicates a potential role of the LPS/LBP-induced innate immunity in the development and progression of arterial stiffness in type 2 diabetes.
Collapse
Affiliation(s)
- Takeshi Sakura
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Atsushi Shioi
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuya Miki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koka Motoyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
21
|
Dey G, Bharti R, Ojha PK, Pal I, Rajesh Y, Banerjee I, Banik P, Parida S, Parekh A, Sen R, Mandal M. Therapeutic implication of 'Iturin A' for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cell Signal 2017; 35:24-36. [PMID: 28347875 DOI: 10.1016/j.cellsig.2017.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
Tumor angiogenesis and invasion are deregulated biological processes that drive multistage transformation of tumors from a benign to a life-threatening malignant state activating multiple signaling pathways including MD-2/TLR4/NF-κB. Development of potential inhibitors of this signaling is emerging area for discovery of novel cancer therapeutics. In the current investigation, we identified Iturin A (A lipopeptide molecule from Bacillus megaterium) as a potent inhibitor of angiogenesis and cancer invasion by various in vitro and in vivo methods. Iturin A was found to suppress VEGF, a powerful inducer of angiogenesis and key player in tumor invasion, as confirmed by ELISA, western blot and real time PCR. Iturin A inhibited endothelial tube arrangement, blood capillary formation, endothelial sprouting and vascular growth inside the matrigel. In addition, Iturin A inhibited MMP-2/9 expression in MDA-MB-231 and HUVEC cells. Cancer invasion, migration and colony forming ability were significantly hampered by Iturin A. Expressions of MD-2/TLR4 and its downstream MyD88, IKK-α and NF-κB were also reduced in treated MDA-MB-231 and HUVEC cells. Western blot and immunofluorescence study showed that nuclear accumulation of NF-κB was hampered by Iturin A. MD-2 siRNA or plasmid further confirmed the efficacy of Iturin A by suppressing MD-2/TLR4 signaling pathway. The in silico docking study showed that the Iturin A interacted well with the MD-2 in MD-2/TLR4 receptor complex. Conclusively, inhibition of MD-2/TLR4 complex with Iturin A offered strategic advancement in cancer therapy.
Collapse
Affiliation(s)
- Goutam Dey
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rashmi Bharti
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ipsita Pal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Y Rajesh
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Indranil Banerjee
- Division of Nuclear Medicine, Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Payel Banik
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sheetal Parida
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Aditya Parekh
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
22
|
Li G, Zou X, Zhu Y, Zhang J, Zhou L, Wang D, Li B, Chen Z. Expression and Influence of Matrix Metalloproteinase–9/Tissue Inhibitor of Metalloproteinase–1 and Vascular Endothelial Growth Factor in Diabetic Foot Ulcers. INT J LOW EXTR WOUND 2017; 16:6-13. [PMID: 28682675 DOI: 10.1177/1534734617696728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A high matrix metalloproteinase–9/tissue inhibitor of metalloproteinase–1 (MMP9/TIMP1) ratio is associated with poor ulcer healing, yet how the ratio of MMP9/TIMP1 changes in diabetic foot ulcers (DFUs) with infection and how these changes may affect wound healing remain unclear. Therefore, the objective of this investigation was to explore relationships among the MMP9/TIMP1 ratio, infection, and DFUs. After being informed of the details of this study, 32 patients signed consent forms. Skin biopsies were performed for all patients. Wound tissues were obtained from all patients with wounds, and healthy skin samples were collected from patients without wounds during orthopedic surgery. Microbial cultures were obtained using the samples from diabetic patients with wounds. All patients were divided into 4 groups according to colony-forming units (CFUs) per gram of tissue (>1 × 106 or <1 × 106): group A (diabetic wounds with high quantities of bacteria), group B (diabetic wounds with low quantities of bacteria), group C (diabetic patients without wounds), and group D (nondiabetic patients with wounds). In addition, the biopsies were evaluated by both reverse transcription–quantitative polymerase chain reaction and Western blotting to assess the levels of MMP9, TIMP1, and vascular endothelial growth factor (VEGF). The results show that for both mRNA and protein, expression of MMP9 (fold change 1.14 ± 0.12 vs 0.60 ± 0.08 vs 0.39±0.09 vs 0.13 ± 0.06, P < .01) decreased, whereas that of TIMP1 (1.01 ± 0.09 vs 2.86 ± 0.85 vs 4.88 ± 0.83 vs 7.29 ± 1.55, P < .01) and VEGF (1.01 ± 0.22 vs 3.55 ± 0.97 vs 5.72 ± 0.55 vs 6.92 ± 1.55, P < .01) increased from group A to group D. These results suggest that an increase in the MMP9/TIMP1 ratio in infected DFUs may induce a decrease in VEGF expression.
Collapse
Affiliation(s)
- Gongchi Li
- Wuhan Union Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Zou
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youpeng Zhu
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zhou
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Wang
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghui Li
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenbing Chen
- Wuhan Union Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Feng C, Bai M, Yu NZ, Wang XJ, Liu Z. MicroRNA-181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4. J Cell Mol Med 2016; 21:278-285. [PMID: 27641447 PMCID: PMC5264133 DOI: 10.1111/jcmm.12963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023] Open
Abstract
Our study aims to explore the role of microRNA‐181b (miR‐181b) and TLR in the regulation of cell proliferation of human epidermal keratinocytes (HEKs) in psoriasis. Twenty‐eight patients diagnosed with psoriasis vulgaris were selected as a case group with their lesional and non‐lesional skin tissues collected. A control group consisted of 20 patients who underwent plastic surgery with their healthy skin tissues collected. Real‐time quantitative fluorescence polymerase chain reaction (RT‐qPCR), in situ hybridization and immunohistochemistry were used to detect the expressions of miR‐181b and TLR4 in HEKs of healthy skin, psoriatic lesional skin and non‐lesional skin respectively. The 3′ untranslated region (3′UTR) of TLR4 combined with miR‐181b was verified by a dual‐luciferase reporter assay. Western blotting and bromodeoxyuridine were applied for corresponding detection of TLR4 expression and cell mitosis. The expression of miR‐181b in HEKs of psoriatic lesional skin was less than healthy skin and psoriatic non‐lesional skin. In psoriatic lesional and non‐lesional skin, TLR4‐positive cell rates and the number of positive cells per square millimetre were higher than healthy skin. The dual‐luciferase reporter assay verified that miR‐181b targets TLR4. HEKs transfected with miR‐181b mimics had decreased expression of TLR4, along with the decrease of mitotic indexes and Brdu labelling indexes. However, HEKs transfected with miR‐181b inhibitors showed increased TLR4 expression, mitotic indexes and Brdu labelling indexes. HEKs transfected with both miR‐181b inhibitors and siTLR4 had decreased mitotic indexes and Brdu labelling indexes. These results indicate that miR‐181b can negatively regulate the proliferation of HEKs in psoriasis by targeting TLR4.
Collapse
Affiliation(s)
- Cheng Feng
- Aesthetic Plastic Department of Peking Union Medical Collage Hospital, Beijing, China
| | - Ming Bai
- Aesthetic Plastic Department of Peking Union Medical Collage Hospital, Beijing, China
| | - Nan-Ze Yu
- Aesthetic Plastic Department of Peking Union Medical Collage Hospital, Beijing, China
| | - Xiao-Jun Wang
- Aesthetic Plastic Department of Peking Union Medical Collage Hospital, Beijing, China
| | - Zeng Liu
- Aesthetic Plastic Department of Peking Union Medical Collage Hospital, Beijing, China
| |
Collapse
|
24
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
25
|
Organic acid component from Taraxacum mongolicum Hand.-Mazz alleviates inflammatory injury in lipopolysaccharide-induced acute tracheobronchitis of ICR mice through TLR4/NF-κB signaling pathway. Int Immunopharmacol 2016; 34:92-100. [PMID: 26930562 DOI: 10.1016/j.intimp.2016.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Inflammation plays an important role in the pathogenesis of acute tracheobronchitis. Taraxacum mongolicum Hand.-Mazz (TMHM) is a dietic herb for heat-clearing and detoxifying functions as well as swell-reducing and mass-resolving effect in Traditional Chinese Medicine. Studies have shown that its major ingredient organic acid component (OAC) possesses favorable anti-inflammatory activity. However, the protective effect of OAC from TMHM (TMHM-OAC) on inflammatory injury of acute tracheobronchitis and its possible mechanism remains poorly understood. In this study, HPLC-DAD was used to analyze the components of TMHM-OAC. Lipopolysaccharide of 1mg/ml was used to induce respiratory inflammation in ICR mice at the dose of 5mg/kg by intratracheally aerosol administration. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of inflammation factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide in serum and supernatant of trachea tissue. Western blotting (WB) and Immunohistochemistry analysis (IHC) were conducted in parallel to determine TNF-α, IL-6, inducible nitric oxide synthase (iNOS), Toll-like receptors 4(TLR4) protein expressions and nuclear factor-kappa B p65 (NF-κB p65) phosphorylation. Hematoxylin-Eosin staining (HE) was applied to evaluate pathological lesions of trachea tissue. Experimental results showed that TMHM-OAC significantly reduced the levels of the TNF-α, IL-6 and NO in serum and supernatant of tracheal of LPS-induced ICR mice. The protein expression levels of TNF-α, IL-6 and iNOS in tracheal tissue were also down-regulated significantly by the treatment of TMHM-OAC. Moreover, TMHM-OAC downregulated phosphorylation of NF-κB p65 and protein expression of TLR4. Our results indicated that TMHM-OAC could improve LPS-induced histopathological damage of tracheal tissues through the regulation of TLR4/NF-κB signaling pathway and could be beneficial for the treatment of acute tracheobronchitis.
Collapse
|
26
|
Gao H, Wang J. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway. Mol Med Rep 2015; 13:1827-32. [PMID: 26707811 DOI: 10.3892/mmr.2015.4703] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
Abstract
Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hui Gao
- Department of Hematology, Dongying People's Hospital of Shandong, Dongying, Shandong 257091, P.R. China
| | - Jianrong Wang
- Department of Obstetrics, Dongying People's Hospital of Shandong, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
27
|
Gargiulo S, Gamba P, Testa G, Rossin D, Biasi F, Poli G, Leonarduzzi G. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell 2015; 14:569-81. [PMID: 25757594 PMCID: PMC4531071 DOI: 10.1111/acel.12322] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 01/22/2023] Open
Abstract
It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll-like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low-density lipoproteins, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high-risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27-OH and HNE were found to enhance cell release of IL-8, IL-1β, and TNF-α and to upregulate matrix metalloproteinase-9 (MMP-9) via TLR4/NF-κB-dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP-9 upregulation, thus enhancing the release of this matrix-degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP-9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF-κB downstream signaling.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Daniela Rossin
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| |
Collapse
|
28
|
Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Front Microbiol 2015; 6:671. [PMID: 26175728 PMCID: PMC4485310 DOI: 10.3389/fmicb.2015.00671] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
Inflammation and metabolic abnormalities are linked to each other. At present, pathogenic inflammatory response was recognized as a major player in metabolic diseases. In humans, intestinal microflora could significantly influence the development of metabolic diseases including atherosclerosis. Commensal bacteria were shown to activate inflammatory pathways through altering lipid metabolism in adipocytes, macrophages, and vascular cells, inducing insulin resistance, and producing trimethylamine-N-oxide. However, gut microbiota could also play the atheroprotective role associated with anthocyanin metabolism and administration of probiotics and their components. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis.
Collapse
Affiliation(s)
- Dmitry A. Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children’s Health, MoscowRussia
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FLUSA
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, MoscowRussia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSWAustralia
- School of Medicine, University of Western Sydney, Campbelltown, NSWAustralia
| | - Emil Kozarov
- Department of Oral and Diagnostic Sciences, Columbia University, New York, NYUSA
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, MoscowRussia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, MoscowRussia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, MoscowRussia
- Institute for Atherosclerosis, Skolkovo Innovation Center, MoscowRussia
- Department of Biophysics, Biological Faculty, Moscow State University, MoscowRussia
| |
Collapse
|
29
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
30
|
Lim S, Park S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 2014; 47:1-7. [PMID: 24388105 PMCID: PMC4163848 DOI: 10.5483/bmbrep.2014.47.1.285] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.
Collapse
Affiliation(s)
| | - Sungha Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine; Cardiovascular Research Institute, Yonsei University College of Medicine; Division of Cardiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
31
|
Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 2014; 35:8002-14. [DOI: 10.1016/j.biomaterials.2014.05.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
|
32
|
Toona sinensis inhibits LPS-induced inflammation and migration in vascular smooth muscle cells via suppression of reactive oxygen species and NF-κB signaling pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:901315. [PMID: 24723997 PMCID: PMC3960752 DOI: 10.1155/2014/901315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
Abstract
Toona sinensis is one of the most popular vegetarian cuisines in Taiwan and it has been shown to possess antioxidant, antiangiogenic, and anticancer properties. In this study, we investigated the antiatherosclerotic potential of aqueous leaf extracts from Toona sinensis (TS; 25–100 μg/mL) and its major bioactive compound, gallic acid (GA; 5 μg/mL), in LPS-treated rat aortic smooth muscle (A7r5) cells. We found that pretreatment with noncytotoxic concentrations of TS and GA significantly inhibited inflammatory NO and PGE2 production by downregulating their precursors, iNOS and COX-2, respectively, in LPS-treated A7r5 cells. Furthermore, TS and GA inhibited LPS-induced intracellular ROS and their corresponding mediator, p47phox. Notably, TS and GA pretreatment significantly inhibited LPS-induced migration in transwell assays. Gelatin zymography and western blotting demonstrated that treatment with TS and GA suppressed the activity or expression of MMP-9, MMP-2, and t-PA. Additionally, TS and GA significantly inhibited LPS-induced VEGF, PDGF, and VCAM-1 expression. Further investigation revealed that the inhibition of iNOS/COX-2, MMPs, growth factors, and adhesion molecules was associated with the suppression of NF-κB activation and MAPK (ERK1/2, JNK1/2, and p38) phosphorylation. Thus, Toona sinensis may be useful for the prevention of atherosclerosis.
Collapse
|
33
|
Loh SH, Lee CY, Tsai YT, Shih SJ, Chen LW, Cheng TH, Chang CY, Tsai CS. Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells. PLoS One 2014; 9:e90273. [PMID: 24587308 PMCID: PMC3931831 DOI: 10.1371/journal.pone.0090273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/31/2014] [Indexed: 12/25/2022] Open
Abstract
Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Shih-Hurng Loh
- Department of Pharmacology, National Defense Medical Center, Taipei City, Taiwan
- * E-mail:
| | - Chung-Yi Lee
- Department of Cardiovascular Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Cardiovascular Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Shou-Jou Shih
- Department of Pharmacology, National Defense Medical Center, Taipei City, Taiwan
| | - Li-Wei Chen
- Department of Pharmacology, National Defense Medical Center, Taipei City, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chung-Yi Chang
- Department of General Surgery, Cheng-Hsieng General Hospital, Taipei, Taiwan
| | - Chein-Sung Tsai
- Department of Cardiovascular Surgery, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Button EB, Mitchell AS, Domingos MM, Chung JHJ, Bradley RM, Hashemi A, Marvyn PM, Patterson AC, Stark KD, Quadrilatero J, Duncan RE. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids 2014; 49:305-16. [PMID: 24473753 DOI: 10.1007/s11745-014-3882-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a component of age-related neurodegenerative diseases and cognitive decline. Saturated (SFA) and monounsaturated (MUFA) fatty acids are bioactive molecules that may play different extrinsic and intrinsic roles in neuroinflammation, serving as exogenous ligands for cellular receptors, or endogenous components of cell structural, energetic and signaling pathways. We determined the fatty acyl profile of BV2 microglial cells before and after acute activation with lipopolysaccharide (LPS). We also investigated the effect of SFA and MUFA pretreatment on the production of an invasive, neurotoxic phenotype in BV2 cells. Acute activation of BV2 microglia resulted in an increase in the relative content of SFA (12:0, 16:0, 18:0, 20:0, 22:0, and 24:0 increased significantly), and a relative decrease in the content of MUFA (16:1n7, 18:1n7, 18:1n9, 20:1n9, 24:1n9 decreased significantly). In agreement, the major stearoyl-CoA desaturase (SCD) isoform in BV2 cells, SCD2, was significantly down-regulated by LPS. We next treated cells with SFA (16:0 or 18:0) or MUFA (16:1n7 or 18:1n9), and found that levels of secreted IL6 were increased, as was secreted MMP9-mediated proteolytic activity. To test the functional significance, we treated SH-SY5Y neuronal cells with conditioned medium from BV2 cells pretreated with fatty acids, and found a small but significant induction of cell death. Our findings suggest differential intrinsic roles for SFA and MUFA in activated microglial cells, but similar extrinsic roles for these fatty acid species in inducing activation. Expansion of SFA is important during microglial cell activation, but either supplemental SFA or MUFA may contribute to chronic low-grade neuroinflammation.
Collapse
Affiliation(s)
- Emily B Button
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang CM, Lee IT, Hsu RC, Chi PL, Hsiao LD. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicol Appl Pharmacol 2013; 272:431-42. [PMID: 23774252 DOI: 10.1016/j.taap.2013.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-l-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47(phox), p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Wang Y, He H, Li D, Zhu W, Duan K, Le Y, Liao Y, Ou Y. The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats. Mol Med Rep 2013; 7:1137-42. [PMID: 23426570 DOI: 10.3892/mmr.2013.1322] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/31/2013] [Indexed: 11/06/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), common in elderly patients, refers to a decline in cognitive function following surgery, which may persist or even evolve into Alzheimer's disease (AD). Despite great efforts, the mechanism of POCD remains unclear. In the present study, we tested the hypothesis that Toll-like receptor 4 (TLR4) on microglia contributes to POCD. Shortly after surgery, aged rats demonstrated significant deficits in memory and learning, accompanied by the activation of microglia, marked upregulation of TLR4 on microglia in the hippocampus, as well as an increased expression of two downstream factors [myeloid differentiation factor 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF)] and pro-inflammatory cytokines [including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)]. With an increase in time following surgery, the expression of TLR4 and the aforementioned factors and pro-inflammatory cytokines gradually returned to normal, as did the cognitive function of the aged rats. In conclusion, our study suggests that the activation of TLR4 signaling on microglia may act as an underlying mechanism of POCD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Anesthesiology, The Third‑Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang CM, Lee IT, Lin CC, Wang CH, Cherng WJ, Hsiao LD. c-Src-dependent MAPKs/AP-1 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Biochem Pharmacol 2013; 85:1115-23. [PMID: 23353699 DOI: 10.1016/j.bcp.2013.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
TNF-α plays a critical mediator in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression are largely unclear in the heart cells. Here, we demonstrated that in rat embryonic-heart derived H9c2 cells, TNF-α could induce MMP-9 mRNA expression associated with an increase in the secretion of MMP-9, determined by real-time PCR, zymography, and promoter activity assays. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of c-Src, EGFR, PDGFR, p110, Akt, or c-Jun. TNF-α stimulated c-Src, PDGFR, and EGFR phosphorylation, which were reduced by PP1. In addition, TNF-α-stimulated Akt phosphorylation was inhibited by PP1, AG1478, AG1296, or LY294002. We further demonstrated that TNF-α markedly stimulated p38 MAPK, p42/p44 MAPK, and JNK1/2 phosphorylation via a c-Src/EGFR, PDGFR/PI3K/Akt pathway. Finally, we showed that, in H9c2 cells, TNF-α-stimulated AP-1 promoter activity, c-Jun mRNA expression, and c-Jun phosphorylation were attenuated by PP1, AG1478, AG1296, LY294002, SB202190, SP600125, or U0126. These results suggested that TNF-α-induced MMP-9 expression is mediated through a c-Src/EGFR, PDGFR/PI3K/Akt/MAPKs/AP-1 cascade in H9c2 cells. Consequently, MMP-9 induction may contribute to cell migration and cardiovascular inflammation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|