1
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Li S, Zheng J, Chai L, Lin M, Zeng R, Lu J, Bian J. Rapid and Efficient Differentiation of Rodent Neural Stem Cells into Oligodendrocyte Progenitor Cells. Dev Neurosci 2019; 41:79-93. [DOI: 10.1159/000499364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) may have beneficial effects in cell replacement therapy of neurodegenerative disease owing to their unique capability to differentiate into myelinogenic oligodendrocytes (OLs) in response to extrinsic signals. Therefore, it is of significance to establish an effective differentiation methodology to generate highly pure OPCs and OLs from some easily accessible stem cell sources. To achieve this goal, in this study, we present a rapid and efficient protocol for oligodendroglial lineage differentiation from mouse neural stem cells (NSCs), rat NSCs, or mouse embryonic stem cell-derived neuroepithelial stem cells. In a defined culture medium containing Smoothened Agonist, basic fibroblast growth factor, and platelet-derived growth factor-AA, OPCs could be generated from the above stem cells over a time course of 4–6 days, achieving a cell purity as high as ∼90%. In particular, these derived OPCs showed high expandability and could further differentiate into myelin basic protein-positive OLs within 3 days or alternatively into glial fibrillary acidic protein-positive astrocytes within 7 days. Furthermore, transplantation of rodent NSC-derived OPCs into injured spinal cord indicated that it is a feasible strategy to treat spinal cord injury. Our results suggest a differentiation strategy for robust production of OPCs and OLs from rodent stem cells, which could provide an abundant OPC source for spinal cord injury.
Collapse
|
3
|
Vasaikar S, Tsipras G, Landázuri N, Costa H, Wilhelmi V, Scicluna P, Cui HL, Mohammad AA, Davoudi B, Shang M, Ananthaseshan S, Strååt K, Stragliotto G, Rahbar A, Wong KT, Tegner J, Yaiw KC, Söderberg-Naucler C. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target? BMC Cancer 2018; 18:154. [PMID: 29409474 PMCID: PMC5801893 DOI: 10.1186/s12885-018-4012-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/22/2018] [Indexed: 01/07/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment. Methods Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells. Results By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer. Conclusions ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4012-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhas Vasaikar
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giorgos Tsipras
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Landázuri
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Costa
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Vanessa Wilhelmi
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Patrick Scicluna
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Huanhuan L Cui
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Abdul-Aleem Mohammad
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Belghis Davoudi
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Mingmei Shang
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharan Ananthaseshan
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Klas Strååt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Afsar Rahbar
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Kum Thong Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Jesper Tegner
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division (BESE), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Koon-Chu Yaiw
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Cecilia Söderberg-Naucler
- Cell and Molecular Immunology, Experimental Cardiovascular Unit, Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Pessina S, Cantini G, Kapetis D, Cazzato E, Di Ianni N, Finocchiaro G, Pellegatta S. The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncoimmunology 2016; 5:e1108513. [PMID: 27467914 PMCID: PMC4910710 DOI: 10.1080/2162402x.2015.1108513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 10/24/2022] Open
Abstract
Abcc3, a member of the ATP-binding cassette transporter superfamily, plays a role in multidrug resistance. Here, we found that Abcc3 is highly expressed in blood-derived NK cells but not in CD8(+) T cells. In GL261 glioma-bearing mice treated with the alkylating agent temozolomide (TMZ) for 5 d, an early increased frequency of NK cells was observed. We also found that Abcc3 is strongly upregulated and functionally active in NK cells from mice treated with TMZ compared to controls. We demonstrate that Abcc3 is critical for NK cell survival during TMZ administration; more importantly, Akt, involved in lymphocyte survival, is phosphorylated only in NK cells expressing Abcc3. The resistance of NK cells to chemotherapy was accompanied by increased migration and homing in the brain at early time points. Cytotoxicity, evaluated by IFNγ production and specific lytic activity against GL261 cells, increased peripherally in the later phases, after conclusion of TMZ treatment. Intra-tumor increase of the NK effector subset as well as in IFNγ, granzymes and perforin-1 expression, were found early and persisted over time, correlating with a profound modulation on glioma microenvironment induced by TMZ. Our findings reveal an important involvement of Abcc3 in NK cell resistance to chemotherapy and have important clinical implications for patients treated with chemo-immunotherapy.
Collapse
Affiliation(s)
| | | | - Dimos Kapetis
- Unit of Bioinformatics, Fondazione I.R.C.C.S. Istituto Neurologico C Besta, Milan, Italy
| | | | | | | | | |
Collapse
|