1
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
2
|
Hsu TW, Wang WY, Chen A, Chiu CF, Liao PH, Chen HA, Su CM, Shen SC, Tsai KY, Wang TH, Su YH. Nrf2-mediated adenylosuccinate lyase promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma cells through ferroptosis escape. J Cell Physiol 2024; 239:e31416. [PMID: 39164986 DOI: 10.1002/jcp.31416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Pancreatic cancer has one of the highest fatality rates and the poorest prognosis among all cancer types worldwide. Gemcitabine is a commonly used first-line therapeutic drug for pancreatic cancer; however, the rapid development of resistance to gemcitabine treatment has been observed in numerous patients with pancreatic cancer, and this phenomenon limits the survival benefit of gemcitabine. Adenylosuccinate lyase (ADSL) is a crucial enzyme that serves dual functions in de novo purine biosynthesis, and it has been demonstrated to be associated with clinical aggressiveness, prognosis, and worse patient survival for various cancer types. In the present study, we observed significantly lower ADSL levels in gemcitabine-resistant cells (PANC-1/GemR) than in parental PANC-1 cells, and the knockdown of ADSL significantly increased the gemcitabine resistance of parental PANC-1 cells. We further demonstrated that ADSL repressed the expression of CARD-recruited membrane-associated protein 3 (Carma3), which led to increased gemcitabine resistance, and that nuclear factor erythroid 2-related factor 2 (Nrf2) regulated ADSL expression in parental PANC-1 cells. These results indicate that ADSL is a candidate therapeutic target for pancreatic cancer involving gemcitabine resistance and suggest that the Nrf2/ADSL/Carma3 pathway has therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
Affiliation(s)
- Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wan-Yu Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Alvin Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Feng Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsin-An Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chiang Shen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Yen Tsai
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuan Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
4
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
5
|
Bayat A, Raad M, Sharafshah A, Ahmadvand M, Aminian H. Identification of miR-195-5p as a novel prognostic biomarker for colorectal cancer. Mol Biol Rep 2022; 49:6453-6457. [PMID: 35587844 DOI: 10.1007/s11033-022-07462-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent evidence indicated that transcription patterns of microRNAs could be used as promising biomarkers for numerous cancers. It is stated that miR-195-5p could be used as a tumor suppressor in colorectal cancer (CRC). The purpose of the current work was to explore the transcription level of miR-195-5p and its clinical relevance in CRC patients. METHODS AND RESULTS We used quantitative real-time polymerase chain reaction (qRT-PCR) to assess the tumor tissue sample of 140 CRC cases compared with normal adjacent tissue for the transcription of miR-195-5p and the clinicopathological relevance was statistically evaluated. We showed that tumor tissue miR-195-5p transcription was statistically downregulated in patients with CRC (median expression value 0.23, range 0.03-6.62) compared to normal adjacent tissue (median expression value 0.98, range 0.092-29.6, p < 0.001). The median transcription of miR-195-5p divided the CRC patients into miR-195-5p low-transcription (miR-195-5plow) and miR-195-5p high-transcription (miR-195-5phigh) groups. Furthermore, low miR-195-5p transcription level was statistically related with TNM stage, lymph node metastasis and tumor differentiation in CRC patients (all p-value < 0.05). Moreover, our results indicated that CRC cases with a decreased transcription level of miR-195-5p displayed a statistically shorter overall survival (OS) (p = 0.001) compared to higher miR-195-5p transcription. CONCLUSION In conclusion, the finding proposes that miR-195-5p might be a valuable biomarker and a prognostic factor for CRC in the future.
Collapse
Affiliation(s)
- Amir Bayat
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, Isfahan, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Alireza Sharafshah
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, Isfahan, Iran
- Cellular and Molecular Research Center, School of Medicine Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Mohammad Ahmadvand
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Aminian
- Department of Biology, Faculty of Science, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
6
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
7
|
Chang TY, Wu CT, Sheu ML, Yang RS, Liu SH. CARMA3 Promotes Colorectal Cancer Cell Motility and Cancer Stemness via YAP-Mediated NF-κB Activation. Cancers (Basel) 2021; 13:cancers13235946. [PMID: 34885061 PMCID: PMC8657120 DOI: 10.3390/cancers13235946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary CARMA3 is overexpressed in most cancers, and its expression is positively associated with poor prognosis. In this study, we evaluated the detailed mechanisms of CARMA3-mediated CRC metastasis. We found that overexpression of CARMA3 induced the expression of YAP and NF-κB activation, then elicited EMT induction to enhance cell migration and invasion. We demonstrate for the first time that YAP is a critical downstream regulator of CARMA3 in CRC. Our findings reveal a regulation axis between CARMA3 and Hippo oncoprotein YAP and further support the potential role of CARMA3 in the metastasis and cancer stemness of CRC. Abstract CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan;
- Master Program for Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| |
Collapse
|
8
|
Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. Long non-coding RNA AGAP2-AS1 is up regulated in colorectal cancer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:829-844. [PMID: 34308771 DOI: 10.1080/15257770.2021.1956530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has indicated that, aberrant lncRNA expression plays essential roles in the colorectal cancer (CRC) tumorigenesis. AGAP2-AS1 is upregulated in some cancers, however, its involvement in the CRC tumorigenesis in the population of North-West of Iran has remained unknown. In this study, we evaluated its deregulation in CRC microarray datasets, colon cell lines, CRC tumor, adenomatous colorectal polyps and their paired normal tissues. The results showed that AGAP2-AS1 is upregulated in CRC and might be considered as a potential biomarker for CRC development. Moreover, our results suggest AGAP2-AS1 promoted CRC progression by sponging the hsa-miR-15/16 family and upregulation of their targets.
Collapse
Affiliation(s)
- Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parviz Asadi
- Medical Science Division, Imam Sajjad Hospital, Islamic Azad university, Tabriz, Iran
| |
Collapse
|
9
|
All-Trans Retinoic Acid Enhances Chemosensitivity to 5-FU by Targeting miR-378c/E2F7 Axis in Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5338934. [PMID: 34335757 PMCID: PMC8318767 DOI: 10.1155/2021/5338934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Colorectal carcinoma (CRC), a life-threatening malignancy, has been found to present resistance to 5-fluorouracil (5-FU) and cause a poor prognosis for patients. Previous studies have proved that all-trans retinoic acid (ATRA) could inhibit the development of CRC cells. In addition, miR-378c was discovered to exert a vital role in various cancers. In this study, we utilized MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), transwell assay, and flow cytometry to confirm that ATRA was able to enhance the inhibitory effects of 5-FU on HCT116 cells effectively by promoting cell apoptosis. Then, ENCORI database (http://starbase.sysu.edu.cn/) was employed to predict that miR-378c was downregulated dramatically in CRC and E2F7 was the direct target of miR-378c. QRT-PCR (quantitative real-time polymerase chain reaction) was conducted to verify that the expression level of miR-378c was decreased while E2F7 expression was upregulated in CRC tissues compared with para-carcinoma tissues. Additionally, treatment of 5-FU combined with ATRA could increase miR-378c expression, whereas it decreased the expression of E2F7. Dual-Luciferase Reporter assay results revealed that miR-378c could regulate the load of E2F7 by binding to its 3′UTR directly. Furthermore, miR-378c inhibitor or vector with E2F7 partially counteracted the effects of 5-FU combined with ATRA on viability, migration, invasion, and apoptosis of HCT116 cells. In conclusion, our study aims to confirm that ATRA enhances chemosensitivity to 5-FU of patients with CRC and expound the potential molecular mechanisms.
Collapse
|
10
|
He J, Qiu Z, Zhang H, Gao Z, Jiang Y, Li Z, Kong C, Man X. MicroRNA‑16‑5p/BIMP1/NF‑κB axis regulates autophagy to exert a tumor‑suppressive effect on bladder cancer. Mol Med Rep 2021; 24:576. [PMID: 34132358 PMCID: PMC8223104 DOI: 10.3892/mmr.2021.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the second most common urological disease worldwide. Previous studies have reported that microRNA (miR)-16-5p is associated with the development of BC, but whether miR-16-5p regulates BC cell autophagy remains unknown. Thus, the aim of the present study was to investigate this issue. miR-16-5p expression in BC cells was assessed by reverse transcription-quantitative PCR. Cell viability and apoptosis were detected via Cell Counting Kit-8 and flow cytometry assays, respectively. For cell autophagy detection, autophagic flux was detected using a mCherry-green fluorescent protein-microtubule-associated proteins 1A/1B light chain 3B (LC3) puncta formation assay, followed by determination of autophagy-related protein markers. The targeting relationship between miR-16-5p and caspase recruitment domain family member 10 (BIMP1) was confirmed using a dual-luciferase reporter assay, followed by detection of the BIMP1/NF-κB signaling pathway. The results showed that miR-16-5p overexpression inhibited cell viability, whereas miR-16-5p knockdown promoted cell viability in BC. Furthermore, miR-16-5p overexpression induced autophagy, which was accompanied by increased autophagic flux and expression of the autophagy-related proteins LC3-II and beclin 1, as well as decreased p62 expression, whereas miR-16-5p silencing led to an inhibition of autophagy in BC cells. Moreover, autophagy inhibitor 3-methyladenine treatment inhibited cell autophagy and apoptosis in miR-16-5p-overexpressing cells. Mechanistic studies demonstrated that miR-16-5p could inhibit the BIMP1/NF-κB signaling pathway and this inhibition was achieved by directly targeting BIMP1. Furthermore, it was found that blockade of the BIMP1/NF-κB signaling pathway inversed the inhibitory effects of miR-16-5p knockdown on autophagy in BC cells. In vivo experiments further verified the tumor-suppressive effect on BC of the miR-16-5p/BIMP1/NF-κB axis. Therefore, the results of the present study indicated that miR-16-5p promotes autophagy of BC cells via the BIMP1/NF-κB signaling pathway, and an improved understanding of miR-16-5p function may provide therapeutic targets for clinical intervention in this disease.
Collapse
Affiliation(s)
- Jiani He
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongkai Qiu
- Department of Urology, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Feng J, Wei Q, Yang M, Wang X, Liu B, Li J. Development and validation of a novel miRNA classifier as a prognostic signature for stage II/III colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:747. [PMID: 34268360 PMCID: PMC8246165 DOI: 10.21037/atm-20-1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/04/2022]
Abstract
Background The TNM staging remains the gold standard for determining the prognosis of patients with colorectal cancer (CRC), which is inadequate at identifying the subset of high-risk stage II and III patients that have a high potential of developing tumor recurrence and may experience death. Emerging evidence indicates that not only microRNAs (miRNAs) play important functional role in CRC development but may serve as important disease biomarkers. In this study we aimed to develop a miRNA-based classifier as a prognostic signature for improving the clinical outcome of patients with stage II/III CRC. Methods We performed a systematic and comprehensive discovery step to identify differentially expressed miRNAs in CRC. We subsequently determined the prognostic relevance of these miRNAs in stage II/III patients using qRT-PCR and developed a miRNA-based classifier for predicting disease-free survival (DFS) in a clinical cohort (n=186). Results Based upon miRNA expression profiling studies, we identified a panel of 10 miRNAs which are consistently differentially expressed in CRC vs. normal tissues. By using cox proportional hazard models, we then developed 6-miRNA-classifier (miR-183, -20a, -21, -195, -139 and -20a) to predict prognosis in clinical cohort, that had significantly superior predictive performance compared to other clinicopathological factors, and could successfully identify high-risk stage II and III CRC patients with poor prognosis [hazard ratio (HR) =2.16; P=0.0048]. In a multivariate analysis, this miRNA-based classifier emerged as an independent prognostic signature for poor DFS. Conclusions Our miRNA-based classifier is a reliable predictive tool for determining prognosis in patents with stage II/III CRC, and might be able to identify high-risk patients that are candidates for more targeted personalized clinical management and surveillance.
Collapse
Affiliation(s)
- Junlan Feng
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, Qiu X, Xu Y, Yin JW, Hu Q, Wei WH, Chang Y, Liu L, Zhao Q. MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci 2020; 111:1528-1541. [PMID: 32073706 PMCID: PMC7226198 DOI: 10.1111/cas.14356] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to chemotherapy is a major challenge for the treatment of patients with colorectal cancer (CRC). Previous studies have found that microRNAs (miRNAs) play key roles in drug resistance; however, the role of miRNA‐373‐3p (miR‐375‐3p) in CRC remains unclear. The current study aimed to explore the potential function of miR‐375‐3p in 5‐fluorouracil (5‐FU) resistance. MicroRNA‐375‐3p was found to be widely downregulated in human CRC cell lines and tissues and to promote the sensitivity of CRC cells to 5‐FU by inducing colon cancer cell apoptosis and cycle arrest and by inhibiting cell growth, migration, and invasion in vitro. Thymidylate synthase (TYMS) was found to be a direct target of miR‐375‐3p, and TYMS knockdown exerted similar effects as miR‐375‐3p overexpression on the CRC cellular response to 5‐FU. Lipid‐coated calcium carbonate nanoparticles (NPs) were designed to cotransport 5‐FU and miR‐375‐3p into cells efficiently and rapidly and to release the drugs in a weakly acidic tumor microenvironment. The therapeutic effect of combined miR‐375 + 5‐FU/NPs was significantly higher than that of the individual treatments in mouse s.c. xenografts derived from HCT116 cells. Our results suggest that restoring miR‐375‐3p levels could be a future novel therapeutic strategy to enhance chemosensitivity to 5‐FU.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ming-Liang Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yu-Peng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wen-Jie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng-Ting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiao Qiu
- Department of Hematology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yan Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jin-Wen Yin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wan-Hui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
13
|
Peng L, He K, Cao Z, Bi L, Yu D, Wang Q, Wang J. CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Mol Med Rep 2019; 21:329-337. [PMID: 31939627 PMCID: PMC6896372 DOI: 10.3892/mmr.2019.10840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have demonstrated that the expression of CARD10 is closely associated with the occurrence of tumors, and its role is mainly to promote tumor progression by activating the transcription factor NF-κB. However, the signaling pathway in renal cancer remains unclear. The objective of the present study was to investigate the ability of caspase recruitment domain 10 (CARD10) to regulate the NF-κB signaling pathway and promote the progression of renal cell carcinoma (RCC). Expression of CARD10 in ACHN, 786-O and HK-2 cells was evaluated via western blot analysis, as was the epidermal growth factor (EGF)-induced activation of NF-κB signaling pathway-related proteins in cells. The expression of CARD10 was inhibited by CARD10 short hairpin RNA transfection. Cell cycle analysis and MTT assays were used to evaluate cell proliferation. Cell apoptosis was analyzed via flow cytometry. The invasion of renal cell lines was detected via Transwell cell migration and invasion assays in vitro. The results showed that CARD10 expression was significantly higher in RCC cells than in normal renal tubular epithelial cells. CARD10 silencing inhibited the proliferation, invasion and migration of RCC cells. EGF stimulation upregulated the activation of the NF-κB pathway in RCC cells. Inhibition of CARD10 expression inhibited NF-κB activation in RCC cells. Taken together, these data suggested that CARD10 promotes the progression of renal cell carcinoma by regulating the NF-κB signaling pathway. Thus, this indicated that CARD10 may be a novel therapeutic target in RCC.
Collapse
Affiliation(s)
- Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ke He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
14
|
Forouzan Jahromi Z, Javeri A, Fakhr Taha M. Tumor suppressive effects of the pleiotropically acting miR-195 in colorectal cancer cells. EXCLI JOURNAL 2019; 18:243-252. [PMID: 31217787 PMCID: PMC6558512 DOI: 10.17179/excli2019-1166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
Abstract
Downregulation of miR-195 in colorectal cancer tissues has been reported in several studies. We investigated the impact exogenous induction of mature miR-195-5p on some malignant features of human colorectal cancer cells. Caco-2 and SW480 human colon cancer cell lines were transfected with a synthetic miR-195-5p mimic. Exogenous induction of miR-195-5p suppressed multiple mediators of invasion and angiogenesis in colorectal cancer cells and increased the apoptotic cell population in both cell lines. Also, migration of both cell lines was significantly compromised after miR-195 transfection. Our results are indicating a strong tumor suppressive role for miR-195 in human colorectal cancer.
Collapse
Affiliation(s)
- Zahra Forouzan Jahromi
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
15
|
Jia XP, Chen XZ, Lou QB, Zhou ZF, Gao L, Zhou PF. Sevoflurane regulates CARMA3 to inhibit migration and invasion of gastric cancer cells by targeting NF-κB signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:220-227. [DOI: 10.11569/wcjd.v27.i4.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sevoflurane on cell migration and invasion in gastric cancer (GC) cells, and to explore the underlying mechanism.
METHODS After SGC7901 cells were transfected with siCARMA3 (siCARMA3 group), siControl (NC group), pcDNA 3.1-CARMA3 (CARMA3 group), or pcDNA 3.1 (vector group) by liposome method, the expression of CARMA3 mRNA in cells was detected by qRT-PCR, and the protein expression of CARMA3, p-p65, and p65 was detected by Western blot.
RESULTS Compared with the control group, sevoflurane inhibited the migration and invasion of GC cells and down-regulated the expression of CARMA3. Silencing of CARMA3 inhibited the migration and invasion of GC cells, while overexpression of CARMA3 promoted the migration and invasion of GC cells. CARMA3 targeted the NF-κB pathway. Thus, sevoflurane regulated CARMA3 to inhibit migration and invasion of GC cells by targeting the NF-κB pathway.
CONCLUSION Sevoflurane could inhibit the migration and invasion of GC cells via mechanisms that may be related to the regulation of CARMA3 to target the NF-κB pathway. This finding will provide a basis for clinical treatment of GC with sevoflurane.
Collapse
Affiliation(s)
- Xiu-Ping Jia
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xiao-Zhen Chen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Qun-Bin Lou
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Fei Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
16
|
Yu W, Liang X, Li X, Zhang Y, Sun Z, Liu Y, Wang J. MicroRNA-195: a review of its role in cancers. Onco Targets Ther 2018; 11:7109-7123. [PMID: 30410367 PMCID: PMC6200091 DOI: 10.2147/ott.s183600] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to the 3′-UTR of target mRNAs. Recently, increasing evidence has highlighted their profound roles in various pathological processes, including human cancers. Deregulated miRNAs function as either oncogenes or tumor suppressor genes in multiple cancer types. Among them, miR-195 has been reported to significantly impact oncogenicity in various neoplasms by binding to critical genes and signaling pathways, enhancing or inhibiting the progression of cancers. In this review, we focus on the expression of miR-195 in regulatory mechanisms and tumor biological processes and discuss the future potential therapeutic implications of diverse types of human malignancies.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Zhenqing Sun
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Liu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Jianxun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| |
Collapse
|
17
|
Kong D, Zhang D, Chu X, Wang J. Schizandrin A enhances chemosensitivity of colon carcinoma cells to 5-fluorouracil through up-regulation of miR-195. Biomed Pharmacother 2018; 99:176-183. [PMID: 29331856 DOI: 10.1016/j.biopha.2018.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Nowadays 5-fluorouracil (5-FU)-based adjuvant chemotherapy is widely used for treating colon carcinoma. However, 5-FU resistance in the treatment of colon carcinoma has become more common and thereby new therapeutic strategies and new adjuvant drugs still need to be explored. Two 5-FU-resistant colon cancer cell lines, HCT116 and SW480, were used to investigate the effects of Schizandrin A (SchA), 5-FU, or their combination on cell viability and apoptosis. Besides, the role of miR-195 was studied to further clarify the specific function of SchA. CCK-8 assay and flow cytometry analysis were conducted to determine cell viability and apoptosis, respectively. miR-195 expression was determined by quantitative real-time PCR. Cell apoptosis-related proteins and factors of PI3K/AKT and NF-κB pathways were analyzed by Western blot. Cell viability assay showed that SchA treatment at non-toxic dosages caused a marked enhancement of 5-FU-induced cytotoxicity. Moreover, we explored that miR-195 was up-regulated by SchA; and overexpression of miR-195 reduced cell viability and sensitized 5-FU-resistant HCT116 and SW480 cells to 5-FU. The promoting effect of SchA on 5-FU susceptibility can be partly abolished by miR-195 knockdown. Thus it was speculated that SchA might enhance cell chemosensitivity to 5-FU by up-regulating miR-195. Finally, we found that PI3K/AKT and NF-κB pathways were inhibited by high expression of miR-195 reduced by SchA. Our results suggested that SchA sensitized 5-FU-resistant colon carcinoma cells to 5-FU by up-regulating miR-195. SchA combined with 5-FU could be a promising strategy for the adjuvant chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Dongfang Kong
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Deyong Zhang
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Xianqun Chu
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Jing Wang
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China.
| |
Collapse
|
18
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
20
|
MiR-195 Suppresses Cervical Cancer Migration and Invasion Through Targeting Smad3. Int J Gynecol Cancer 2017; 26:817-24. [PMID: 27206216 DOI: 10.1097/igc.0000000000000686] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play crucial roles in cervical cancer development and progression. The purposes of this study were to investigate the role of miR-195 in cervical cancer and clarify the regulation of Smad3 by miR-195. METHODS Quantitative real-time polymerase chain reaction was used to examine miR-195 expression in cervical cancer tissues and cell lines. The clinicopathological significance of miR-195 down-regulation was further analyzed. Transwell migration and invasion assays were performed. A luciferase reporter assay was conducted to confirm the target gene of miR-195, and the results were validated in cervical cancer tissues and cell lines. RESULTS MiR-195 was significantly decreased in clinical tissues and cervical cancer cell lines. The low miR-195 level was significantly correlated with higher International Federation of Gynecology and Obstetrics stage, node metastasis, and deep stromal invasion. Up-regulation of miR-195 suppressed cell migration and invasion in vitro. Smad3 was verified as a direct target of miR-195, which was further confirmed by the inverse expression of miR-195 and Smad3 in patients' specimens. CONCLUSIONS The newly identified miR-195/Smad3 pathway provides an insight into cervical cancer metastasis and may represent a novel therapeutic target.
Collapse
|
21
|
Liu Y, Liu J, Wang L, Yang X, Liu X. MicroRNA‑195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol Med Rep 2017; 16:7154-7162. [PMID: 28901478 DOI: 10.3892/mmr.2017.7460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Laryngeal carcinoma is the second most common malignancy of the head and neck cancers. The most common type of laryngeal carcinoma comprises laryngeal squamous cell carcinoma (LSCC), which accounts for ~95% of laryngeal carcinoma cases. Despite great progress in diagnostic and therapeutic techniques over the last few decades, the prognosis for patients with LSCC remains poor. A number of studies reported that various miRNAs are dysregulated in LSCC and serve critical roles in LSCC tumorigenesis and tumor development. The present study aimed to evaluate the expression level of microRNA (miR)‑195 and its possible roles in LSCC. Briefly, miR‑195 was downregulated in LSCC tissues and cell lines. In addition, low miR‑195 expression was significantly correlated with lymph node metastasis and TNM stage of LSCC patients. Further study has demonstrated that miR‑195 overexpression suppressed cell proliferation, migration and invasion of LSCC. Moreover, rho‑associated kinase 1 (ROCK1) was identified as a direct target gene of miR‑195. Downregulation of ROCK1 exerted similar roles to that of miR‑195 overexpression in LSCC, suggesting ROCK1 was a direct downstream target of miR‑195. These findings elucidated a novel molecular mechanism for the pathogenic mechanism in LSCC carcinogenesis and progression, and may have a potential role in the treatment of patients with LSCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jixiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiangli Yang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
22
|
Koduru SV, Leberfinger AN, Ravnic DJ. Small Non-coding RNA Abundance in Adrenocortical Carcinoma: A Footprint of a Rare Cancer. J Genomics 2017; 5:99-118. [PMID: 28943972 PMCID: PMC5607708 DOI: 10.7150/jgen.22060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Adrenocortical carcinoma (ACC) is a relatively rare, but aggressive type of cancer, which affects both children and adults. OBJECTIVE: Small non-coding RNAs (sncRNAs) play important roles and may serve as biomarkers for disease diagnosis, prognosis and treatment. METHODS: In our study, we sought to identify sncRNAs associated with malignant adrenal tumors. We obtained publicly available, small RNA sequencing data derived from 45 ACC and 30 benign tumors arising from the cortex of the adrenal gland, adrenocortical adenomas (ACA), and compared their sncRNA expression profiles. RESULTS: First, we remapped small RNA-seq to miRBase version 21 to check expression of miRNAs and found 147 miRNAs were aberrantly expressed (p<0.05) in ACC samples compared to ACA samples. Pathway analysis of differentially expressed miRNAs revealed p53 signaling pathways to be profoundly affected in ACC samples. Further examination for other types of small RNAs revealed 16 piRNAs, 48 lncRNAs and 19 sn/snoRNAs identified in ACC samples. Conclusions: Our data analysis suggests that publically available resources can be mined for biomarker development and improvements in-patient care; however, further research must be performed to correlate tumor grade with gene expression.
Collapse
Affiliation(s)
- Srinivas V. Koduru
- Division of Plastic Surgery, Department of Surgery, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | - Dino J. Ravnic
- Division of Plastic Surgery, Department of Surgery, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
23
|
MicroRNA-761 promotes the sensitivity of colorectal cancer cells to 5-Fluorouracil through targeting FOXM1. Oncotarget 2017; 9:321-331. [PMID: 29416616 PMCID: PMC5787468 DOI: 10.18632/oncotarget.20109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy is a big challenge for treatment of patients with colorectal cancer; however; the mechanism underlying chemoresistance in colorectal cancer cell has not been elucidated. MicroRNAs (miRNAs) are new players in the development of drug chemoresistance. In our study, we indicated that overexpression of miR-761 promoted the sensitivity of colorectal cancer cells to 5-Fluorouracil (5-FU). miR-761 expression was downregulated in colorectal cancer cell lines and tissues. miR-761 expression was lower in patients with low grade than in patients with high grade. In additon, we showed that elevated expression of miR-761 suppressed colorectal cancer cell proliferation, cell cycle, colony formation and cell invasion. We identified that FOXM1 was a direct target gene of miR-761 in colorectal cancer cell. FOXM1 expression was upregulated in colorectal cancer tissues compare to the adjacent non-tumor tissues. MiR-761 expression was negatively associated with the expression of FOXM1 in colorectal cancer tissues. Elevated expression of FOXM1 suppressed the sensitivity of miR-761-overexpressing HT29 cells to 5-FU. We also indicated that FOXM1 overexpression promoted cell proliferation, cycle and invasion of miR-761-overexpressing HT29 cells. These data suggested that miR-761 played a tumor suppressor miRNA in colorectal cancer progression and reduced miR-761 expression might be a major mechanism for 5-FU resistance in colorectal cancer cell.
Collapse
|
24
|
Shuang Y, Li C, Zhou X, Huang Y, Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol Rep 2017; 38:2155-2165. [PMID: 28791411 PMCID: PMC5652960 DOI: 10.3892/or.2017.5875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression and are involved in cell biological processes. The aberrant expression of miR-195 has been found in various types of human cancer. However, the effect of miR-195 on the initiation and development of laryngeal squamous cell carcinoma (LSCC) remains to be elucidated. Accordingly, in the present study, we detected the expression level of miR-195 in the LSCC and the normal tissues and found that miR-195 were significantly downregulated in the LSCC tissues. Gain-of-function or loss-of-function studies including cell proliferation, wound healing assay, Transwell assay, cell cycle and apoptosis assays were performed to investigate the biological function of miR-195. Luciferase reporter assay and the rescue study confirmed that DCUN1D1 was a target of miR-195. Furthermore, DCUN1D1 expression levels were found to be upregulated in laryngeal tissues and to have a negative correlation with miR-195. We also found that both miR-195 and DCUN1D1 siRNAs can inhibit cell invasion possibly through downregulating Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) at the post-transcriptional level, which can be attenuated by restoring the expression of DCUN1D1. In summary, these data suggest that low expression of miR-195 contributes to the poor prognosis of LSCC and miR-195 regulates the proliferation and invasion ability of LSCC cells in vitro. miR-195 may suppress growth and invasion of LSCC cells possibly through targeting DCUN1D1, which would provide a candidate target for cancer therapy.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuan Zhou
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| | - Yongwang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lun Zhang
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Xu Z, Li C, Qu H, Li H, Gu Q, Xu J. MicroRNA-195 inhibits the proliferation and invasion of pancreatic cancer cells by targeting the fatty acid synthase/Wnt signaling pathway. Tumour Biol 2017. [PMID: 28639885 DOI: 10.1177/1010428317711324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that microRNAs are critical regulators of cancer development and progression. MicroRNA-195 has been reported as a cancer-related microRNA in many human cancers. However, the role of microRNA-195 in pancreatic cancer remains largely unknown. Here, we show that microRNA-195 is downregulated in pancreatic cancer tissues and cell line. Also, we show that overexpression of microRNA-195 inhibits the proliferation and invasion of pancreatic cancer cells, whereas suppression of microRNA-195 promotes proliferation and invasion. We show that microRNA-195 directly targets the fatty acid synthase enzyme and negatively regulates the expression of fatty acid synthase. Also, we show that fatty acid synthase expression is inversely correlated with microRNA-195 expression in pancreatic cancer tissues. Moreover, our results show that microRNA-195 inhibits Wnt signaling in pancreatic cancer cells. By restoring fatty acid synthase expression, we were able to reverse the antitumor effects of microRNA-195 in pancreatic cancer cells. Taken together, our findings show that microRNA-195 inhibits pancreatic cancer cell proliferation and invasion by regulating the fatty acid synthase/Wnt signaling pathway, suggesting a tumor suppressive role for microRNA-195 in the development and progression of pancreatic cancer. Thus, inhibiting fatty acid synthase by microRNA-195 may serve as a novel therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhichao Xu
- 1 Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chunli Li
- 2 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hui Qu
- 1 Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huiling Li
- 1 Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qiaoyan Gu
- 3 Department of Gastroenterology, The Affiliated Hospital of Yan'an University, Yan'an, P.R. China
| | - Jing Xu
- 1 Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
26
|
Yan JJ, Chang Y, Zhang YN, Lin JS, He XX, Huang HJ. miR-195 inhibits cell proliferation via targeting AEG-1 in hepatocellular carcinoma. Oncol Lett 2017; 13:3118-3126. [PMID: 28529562 PMCID: PMC5431445 DOI: 10.3892/ol.2017.5826] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has indicated that microRNAs (miRNAs) are frequently dysregulated and are fundamental in the pathogenesis of hepatocellular carcinoma (HCC). However, the roles of miR-195 in HCC have not been well elucidated. In the present study, the expression of miR-195 was determined to be markedly downregulated in HCC tissues and cell lines, as compared with normal liver cells. Restoration of miR-195 expression resulted in significant inhibition of the proliferation and tumorigenicity of HCC cells in vitro and in vivo. Gene expression data and luciferase reporter assays revealed that miR-195 is able to directly inhibit the expression of astrocyte elevated gene 1 (AEG-1) through interaction with its 3′ untranslated region. Consistently, an inverse correlation between miR-195 and AEG-1 expression was observed in HCC tissues. Furthermore, the overexpression of AEG-1 was able to partially attenuate the miR-195-induced inhibition of cell growth and promotion of apoptosis. Taken together, these findings indicate that miR-195 functions as a tumor suppressor by inhibiting AEG-1. This pathway may provide new insights into the potential molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Jing-Jun Yan
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Chang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Nan Zhang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ju-Sheng Lin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huan-Jun Huang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
27
|
Jin L, Li X, Li Y, Zhang Z, He T, Hu J, Liu J, Chen M, Shi M, Jiang Z, Gui Y, Yang S, Mao X, Lai Y. Identification of miR‑195‑3p as an oncogene in RCC. Mol Med Rep 2017; 15:1916-1924. [PMID: 28260025 DOI: 10.3892/mmr.2017.6198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that the deregulation of microRNAs (miRNAs; miRs) contributes to tumorigenesis. Previous studies have shown that miR‑195 is downregulated in various types of cancer. The present study aimed to investigate the function and expression levels of miR‑125b. Results of qPCR revealed that miR‑195‑3p, the mature sequence of miR‑195, was upregulated in renal cell carcinoma (RCC) tissues and cell lines (786‑O, 769P and ACHN). This indicated that the function and role of miR‑195‑3p may differ in different types of tumor. To assess the function of miR‑195‑3p in RCC cell lines, cell proliferation was examined using MTT and CCK‑8 assays, mobility was assessed using a cell scratch assay, Transwell migration assay and invasion assay, and apoptosis was examined using flow cytometry. These assessments were also performed in cells with upregulated or downregulated miR‑195‑3p via transfection with synthesized miR‑195‑3p mimic or inhibitor. The results revealed that the overexpression of miR‑195‑3p promoted 786‑O and ACHN RCC cell proliferation, migration and invasion, and inhibited cell apoptosis, whereas the downregulation of miR‑195‑3p suppressed cell proliferation, migration and invasion, and induced cell apoptosis. These results indicated that miR‑195‑3p was associated with the tumorigenesis of RCC, with further investigations to focus on the pathway and use of miR‑195‑3p as a clinical biomarker for RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Shi
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zhimao Jiang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
28
|
Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 2016; 7:7-22. [PMID: 26683705 PMCID: PMC4807979 DOI: 10.18632/oncotarget.6589] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSC) are currently being explored in diverse clinical applications, including regenerative therapies. Their contribution to regeneration of bone fractures is dependent on their capacity to proliferate, undergo osteogenesis and induce angiogenesis. This study aimed to uncover microRNAs capable of concomitantly regulate these mechanisms. Following microRNA array results, we identified miR-195 and miR-497 as downregulated in human primary MSC under osteogenic differentiation. Overexpression of miR-195 or miR-497 in human primary MSC leads to a decrease in osteogenic differentiation and proliferation rate. Conversely, inhibition of miR-195 increased alkaline phosphatase expression and activity and cells proliferation. Then, miR-195 was used to study MSC capacity to recruit blood vessels in vivo. We provide evidence that the paracrine effect of MSC on angiogenesis is diminishedwhen cells over-express miR-195. VEGF may partially mediate this effect, as its expression and secreted protein levels are reduced by miR-195, while increased by anti-miR-195, in human MSC. Luciferase reporter assays revealed a direct interaction between miR-195 and VEGF 3′-UTR in bone cancer cells. In conclusion, our results suggest that miR-195 regulates important mechanisms for bone regeneration, specifically MSC osteogenic differentiation, proliferation and control of angiogenesis; therefore, it is a potential target for clinical bone regenerative therapies.
Collapse
Affiliation(s)
- Maria Ines Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Andreia Machado Silva
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Daniel Marques Vasconcelos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Catarina Rodrigues Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Hugo Caires
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Marta Teixeira Pinto
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), Porto, Portugal
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susana Gomes Santos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Yun UJ, Song NJ, Yang DK, Kwon SM, Kim K, Kim S, Jo DG, Park WJ, Park KW, Kang H. miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. J Cell Biochem 2016; 116:2589-97. [PMID: 25903991 DOI: 10.1002/jcb.25204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ui Jeong Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong Kwon Yang
- Icahn School of Medicine at Mount Sinai, New York, USA.,College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - So-Mi Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwangho Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Jin Park
- College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| |
Collapse
|
30
|
Yang IP, Tsai HL, Miao ZF, Huang CW, Kuo CH, Wu JY, Wang WM, Juo SHH, Wang JY. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients. J Transl Med 2016; 14:108. [PMID: 27126129 PMCID: PMC4850676 DOI: 10.1186/s12967-016-0856-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third leading cause of cancer mortality worldwide and is associated with high recurrence and mortality, despite recent advancements in therapeutic strategies. MicroRNA (miR) deregulation is
associated with CRC development and recurrence; therefore, miRs may be reliable biomarkers for detecting early relapse postoperatively. Methods In this study ten candidates were identified using miR arrays: miR-7, miR-31, miR-93, miR-141, miR-195, miR-375, miR-429, miR-494, miR-650, and let-7b. Substantial differences were observed in their expression levels between early relapsed (recurrences within 12 months after surgery) and non-early relapsed CRC patients. The validation study, including 50 early relapsed and 54 non-early relapsed patients, confirmed miR expression alterations in cancer tissue samples. Results Using a miR real-time quantitative polymerase chain reaction (RT-qPCR), we observed that expression levels of miR-93, miR-195, and let-7b were significantly decreased, whereas those of miR-7, miR-141 and miR-494 showed increases that were more significant in the CRC tissue samples from the early relapsed patients than in those from the non-early relapsed patients. Disease-free survival and overall survival were significantly worse in the high miR-7, miR-141, and miR-494 expression subgroups and the low miR-93 and miR-195 expression subgroups (all P < 0.05). A panel of 6 miRs (miR-7, miR-93, miR-195, miR-141, miR-494, and let-7b), at a cut-off value of 2 deregulated miRs, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 76.6 % and a specificity of 71.4 %. By combining this 6-miRs panel with 6 clinicopathologic factors, at a cut-off value of 4, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 89.4 % and a specificity of 88.9 %. Conclusions This study showed that the developed miR panel has the potential to improve predicting early relapse in CRC patients.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou First Road, Kaohsiung, 807, Taiwan
| | - Ching-Wen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou First Road, Kaohsiung, 807, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Yih Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ming Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Department of Genomic Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou First Road, Kaohsiung, 807, Taiwan. .,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Apoptosis-related microRNA changes in the right atrium induced by remote ischemic perconditioning during valve replacement surgery. Sci Rep 2016; 6:18959. [PMID: 26738985 PMCID: PMC4704063 DOI: 10.1038/srep18959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/13/2015] [Indexed: 01/05/2023] Open
Abstract
We previously found that remote ischemic perconditioning (RIPerc) was effective in attenuating myocardial injury during cardiac surgery. Given that microRNAs (miRs) act as an important player in ischemic/reperfusion (I/R) injury and apoptosis, this study aimed to investigate whether RIPerc reduces apoptosis in atrial myocardium and which apoptosis-related miRs are involved during valve replacement surgery. Here, we demonstrated that RIPerc inhibited apoptosis in atrial myocardium during cardiac ischemia and that 17 miRs showed at least a 1.5-fold change in expression after ischemia. Of the 17 miRs, 9 miRs, including miR-1, miR-21, miR-24, and miR-195, which are related to apoptosis, exhibited different expression patterns in the RIPerc group compared with the control. Using qRT-PCR and Western blotting, we demonstrated that miR-1 and miR-195 were downregulated and that their common putative target gene Bcl-2 was upregulated in the RIPerc group. However, the differences in miR-21 and miR-24 expression, together with programmed cell death 4 (PDCD4), which is the target gene of miR-21, were not significant. These findings provide some insight into the role of miRs in the cardioprotective effects induced by RIPerc.
Collapse
|
32
|
Zhang Y, Zhang D, Wang F, Xu D, Guo Y, Cui W. Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci Rep 2015; 5:17942. [PMID: 26656154 PMCID: PMC4677300 DOI: 10.1038/srep17942] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
miRNAs have been established as critical layer of regulation during tumorigenesis; extracellular miRNAs are extraordinarily stable; and, quantitative reverse transcript polymerase chain reaction (qRT-PCR) provides a sensitive platform for quantifying miRNAs with a broad dynamic range. Herein, we aimed to establish a serum miRNA signature for diagnosing cervical cancer (CC). In this study, we recruited a cohort of 184 CC, 186 cervical intraepithelial neoplasia (CIN) patients and 193 healthy control subjects. qRT-PCR was performed with serum samples to screen a pool of 444 miRNAs at the initial phase, 66 miRNAs at the training phase, and 7 miRNAs at the validation phase. The profile of 4 circulating miRNAs (miR-16-2*, miR-195, miR-2861, miR-497) was established for CC diagnosis. By Receiver Operating Characteristic (ROC) curve analysis, this 4-miRNA signature showed high accuracy in discriminating CC (AUC = 0.849), and CIN individuals (AUC = 0.734) from healthy controls. Among these 4 miRNAs, only miR-16-2*, but not miR-195, miR-2861 or miR497, shared a similar pattern in sera of breast cancer and ovarian cancer patients. Overall, our studies have identified a novel noninvasive biomarker constituted with a panel of four miRNAs (miR-16-2*, miR-195, miR-2861, miR-497).
Collapse
Affiliation(s)
- Yujuan Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| | - Donghong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| | - Fei Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| | - Danfei Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| | - Ye Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| | - Wei Cui
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Beijing, 100730, China
| |
Collapse
|
33
|
Liu C, Guan H, Wang Y, Chen M, Xu B, Zhang L, Lu K, Tao T, Zhang X, Huang Y. miR-195 Inhibits EMT by Targeting FGF2 in Prostate Cancer Cells. PLoS One 2015; 10:e0144073. [PMID: 26650737 PMCID: PMC4674136 DOI: 10.1371/journal.pone.0144073] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/14/2015] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of deaths in America. The major cause of mortality can be attributed to metastasis. Cancer metastasis involves sequential and interrelated events. miRNAs and epithelial-mesenchymal transition (EMT) are implicated in this process. miR-195 is downregulated in many human cancers. However, the roles of miR-195 in PCa metastasis and EMT remain unclear. In this study, data from Memorial Sloan Kettering Cancer Center (MSKCC) prostate cancer database were re-analysed to detect miR-195 expression and its roles in PCa. miR-195 was then overexpressed in castration-resistant PCa cell lines, DU-145 and PC-3. The role of miR-195 in migration and invasion in vitro was also investigated, and common markers in EMT were evaluated through Western blot analysis. A luciferase reporter assay was conducted to confirm the target gene of miR-195; were validated in PCa cells. In MSKCC data re-analyses, miR-195 was poorly expressed in metastatic PCa; miR-195 could be used to diagnose metastatic PCa by measuring the corresponding expression. Area under the receiver operating characteristic curve (AUC-ROC) was 0.705 (P = 0.017). Low miR-195 expression was characterised with a shorter relapse-free survival (RFS) time. miR-195 overexpression suppressed cell migration, invasion and EMT. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-195. FGF2 knockdown also suppressed migration, invasion and EMT; by contrast, increased FGF2 partially reversed the suppressive effect of miR-195. And data from ONCOMINE prostate cancer database showed that PCa patients with high FGF2 expression showed shorter RFS time (P = 0.046). Overall, this study demonstrated that miR-195 suppressed PCa cell metastasis by downregulating FGF2. miR-195 restoration may be considered as a new therapeutic method to treat metastatic PCa.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Han Guan
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yiduo Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- * E-mail:
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yeqing Huang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| |
Collapse
|
34
|
Wang F, Jiang C, Sun Q, Yan F, Wang L, Fu Z, Liu T, Hu F. miR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther 2015; 8:3021-8. [PMID: 26527888 PMCID: PMC4621222 DOI: 10.2147/ott.s90710] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proto-oncogene Raf1 serves as a part of the mitogen-activated protein kinases/extracellular signal-regulated kinase signal transduction pathway and regulates cell migration, apoptosis, and differentiation. Although a large number of studies have shown that Raf1 is overexpressed in various kinds of cancer, little is known about the association between Raf1 and miRNAs in thyroid carcinoma. This study proves that Raf1 is overexpressed in thyroid cancer, which has been confirmed by many other studies. Besides, we identify that Raf1 is a direct target of miR-15a/b, miR-16, and miR-195 by dual luciferase reporter assay. We also find that the expression of miR-195 is downregulated in 50 pairs of thyroid tumor tissues compared to the adjacent nontumor tissues, while there is no difference in the expression of miR-15a/b and miR-16 between the groups. Furthermore, exogenous overexpression of miR-195 significantly inhibits the protein expression of Raf1 and blocks the thyroid cancer cell proliferation. Our findings delineate a novel mechanism for the regulation of Raf1 in thyroid cancer, which may help to provide a new direction for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Fangzheng Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Chuner Jiang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Fenqin Yan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Zhenfu Fu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Tongxin Liu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Fujun Hu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
35
|
The role of miRNAs in the pheochromocytomas. Tumour Biol 2015; 37:4235-9. [DOI: 10.1007/s13277-015-4199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
|
36
|
Mao Q, Quan T, Luo B, Guo X, Liu L, Zheng Q. MiR-375 targets KLF4 and impacts the proliferation of colorectal carcinoma. Tumour Biol 2015. [PMID: 26224477 DOI: 10.1007/s13277-015-3809-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MiR-375 has been identified as oncogenes or tumor suppressor genes which has the potential to the development and growth of cancers. However, the limited information concerning the expression and role of miR-375 in colorectal cancer (CRC) is available. In this work, we provide evidence for a function of miR-375 in the inhibition of CRC proliferation. Here, we showed that miR-375, down-modulated in human colorectal cancer tissues compared with normal human colon tissues, including several colorectal cancer cell lines. Subsequently, using the luciferase reporter assays, we found that the KLF4 untranslated region (3'UTR) carries the direct binding site of miR-375. In terms of function in vitro, CCK-8 assay, colony formation assay, and cell cycle assay demonstrated that the overexpression of miR-375 suppressed CRC cell proliferation. Inhibition of KLF4 performed similar effects with miR-375 overexpression on CRC cells, and overexpression of KLF4 could significantly reverse the tumor suppressive effects of miR-375 on CRC cells. Furthermore, we found overexpressed miR-375 effectively repressed tumor growth via KLF4 in xenograft animal experiment. Taken together, these results illustrated that miR-375 depresses proliferation of CRC through regulating 3'UTR of KLF4 mRNA, which might be a promising therapeutic target for treating colorectal cancers.
Collapse
Affiliation(s)
- Qiqi Mao
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Tao Quan
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Bin Luo
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuefeng Guo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qinghui Zheng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
37
|
Jafri MA, Zaidi SK, Ansari SA, Al-Qahtani MH, Shay JW. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer. Expert Opin Ther Targets 2015; 19:1705-23. [PMID: 26189482 DOI: 10.1517/14728222.2015.1069816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small (19 - 22 nucleotide), non-protein-coding RNA segments that function as master regulators of hundreds of genes simultaneously in both normal and malignant cells. In colorectal cancer (CRC) miRNAs are deregulated and have critical roles in initiation and progression of CRC by interacting with various oncogenes and tumor suppressor genes including APC, KRAS and p53, or by modulating downstream signal transduction pathways. Numerous promising miRNAs have emerged as potential drug targets for therapeutic intervention and possible candidates for replacement therapy in CRC. AREAS COVERED In this review the authors summarize the available information on miRNAs and their role in CRC. The authors point out specific miRNAs as potential drug targets and those having a significant role in gene activation and gene silencing during the process of CRC development, to highlight their importance as possible therapeutic candidates for the treatment of CRC. EXPERT OPINION Targeting miRNAs provides an emerging opportunity to develop effective miRNA-based replacement therapy or antagonists to alter expression in colon cancer patient tumors. However, the biggest challenge is to overcome obstacles associated with pharmacokinetics, delivery and toxicity in order to translate the potential of miRNAs into efficacious anticancer drugs.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | - Shakeel Ahmed Ansari
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | | | - Jerry W Shay
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia.,b 2 UT Southwestern Medical Center, Department of Cell Biology , Dallas, TX, USA +1 214 648 4201 ; +1 214 648 5814 ;
| |
Collapse
|
38
|
Cai H, Zhao H, Tang J, Wu H. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res 2015; 194:505-510. [DOI: 10.1016/j.jss.2014.11.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
|