1
|
Shang P, Liu Y, Ren J, Liu Q, Song H, Jia J, Liu Q. Overexpression of miR-532-5p restrains oxidative stress response of chondrocytes in nontraumatic osteonecrosis of the femoral head by inhibiting ABL1. Open Med (Wars) 2024; 19:20240943. [PMID: 38584839 PMCID: PMC10997031 DOI: 10.1515/med-2024-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
This study is to probe into the meaning of serum miR-532-5p in nontraumatic osteonecrosis of the femoral head (ONFH), and a molecular mechanism of miR-532-5p in the development of nontraumatic ONFH. This study enrolled 96 patients diagnosed with nontraumatic ONFH and 96 patients with femoral neck fracture. The levels of miR-532-5p, ABL1, MMP-3, MMP-13, and cleaved-caspase3 were determined. Radiographic progression was assessed by ARCO staging system. Visual analog scale (VAS) and Harris hip score (HHS) were employed for evaluation of the symptomatic severity of nontraumatic ONFH. Cell viability and apoptosis in chondrocytes isolated from clinical samples were investigated with CCK-8 and flow cytometry. The levels of lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) were determined. miR-532-5p was downregulated in tissues and serum of patients with nontraumatic ONFH, negatively related with ARCO staging and VAS, and positively correlated with HHS. Cell apoptosis, LDH, MDA, and ROS strengthened, while cell viability, ΔΨm, and SOD reduced in chondrocytes of nontraumatic ONFH patients. ABL1 was upregulated in cartilage tissues from nontraumatic ONFH patients. miR-532-5p targeted ABL1, and overexpressed miR-532-5p alleviated nontraumatic ONFH-induced oxidative stress damage of chondrocytes by restraining ABL1. miR-532-5p ameliorated oxidative stress injury in nontraumatic ONFH by inhibiting ABL1.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Ying Liu
- Department of Oncology, Second Hospital of Shanxi Medial University, Taiyuan, Shanxi, 030001, P.R. China
| | - Jie Ren
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Qingqing Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haobo Song
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| | - Qiang Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
2
|
Icariin regulates miR-23a-3p-mediated osteogenic differentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-catenin pathways in osteonecrosis of the femoral head. Saudi Pharm J 2022; 29:1405-1415. [PMID: 35002378 PMCID: PMC8720822 DOI: 10.1016/j.jsps.2021.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/β-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and β-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/β-catenin pathways.
Collapse
Key Words
- BAP, bone-specific alkaline phosphatase
- BMP-2, bone morphogenetic protein-2
- BMP-2/Smad5/Runx2 pathway
- BMP-4, bone morphogenetic protein-4
- BMSCs, bone marrow-derived mesenchymal stem cells
- CTX-1, C-terminal telopeptides of type I collagen
- DMEM, Dulbecco’s modified Eagle’s medium
- DR, Digital Radiography
- FBS, fetal bovine serum
- HE, Hematoxylin‐eosin
- Icariin
- LPS, lipopolysaccharide
- NTX-1, N-terminal telopeptides of type I collagen
- OC, osteocalcin
- ONFH, osteonecrosis of the femoral head
- Osteonecrosis of the femoral head
- RT-PCR, Real time PCR
- SI, icariin-containing serum
- TRACP-5b, tartrate-resistant acid phosphatase 5b
- WNT/β-catenin pathway
- miR-23a-3p
Collapse
|
3
|
Chen N, Xiao B, Wang S, Wei B. Bioinformatics analysis of microRNA linked to ubiquitin proteasome system in traumatic osteonecrosis of the femoral head. Medicine (Baltimore) 2020; 99:e21706. [PMID: 32872046 PMCID: PMC7437855 DOI: 10.1097/md.0000000000021706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) have been suggested to act critical roles in the pathophysiology of traumatic osteonecrosis of the femoral head (TONFH). Unfortunately, their roles in the development of TONFH are still ambiguous. The purpose of this study is to identify promising miRNA biomarkers in traumatic osteonecrosis development.We conducted a comprehensive bioinformatics analysis using microarray datasets downloaded from the Gene Expression Omnibus database, and compared the expression of miRNAs in the serum of TONFH patients with controls. Next, we performed target prediction, function enrichment analysis, and protein-protein interaction network analysis based on differentially expressed (DE) miRNAs.We identified 26 DE miRNAs that may contribute to the pathophysiology of TONFH. The miRNAs were linked to ubiquitin proteasome system including conjugating protein ligase activity, ubiquitin-protein ligase activity and ubiquitin mediated proteolysis 5 pathway, and we exposed miR-181a-5p and miR-140-5p as promising biomarkers in TONFH.A predicting model consisting of 5 miRNAs may help discriminating high-risk patients who might develop TONFH after femur neck fracture. Among DE miRNAs, MiR-181a-5p and miR-140-5p may contribute to the development femoral head osteonecrosis after femur neck fracture via ubiquitin proteasome system.
Collapse
Affiliation(s)
- Ning Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Bolian Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Shiying Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| | - Biaofang Wei
- Department of Femoral Head, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
4
|
Ye Y, Peng Y, He P, Zhang Q, Xu D. Urinary miRNAs as biomarkers for idiopathic osteonecrosis of femoral head: A multicentre study. J Orthop Translat 2020; 26:54-59. [PMID: 33437623 PMCID: PMC7773953 DOI: 10.1016/j.jot.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/15/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Urinary microRNAs (miRNAs) have shown great diagnostic and prognostic values for multiple diseases. The profile of urinary miRNAs in patients with idiopathic osteonecrosis of femoral head (ONFH) is currently unclear. Methods We first randomly chose ten patients with each Association Research Circulation Osseous (ARCO) stage (I, II, III and IV) and ten healthy participants from the entire cohorts for initial screening. The miRNA polymerase chain reaction (PCR) array was then performed to identify the differentially abundant miRNAs in urine of these participants. We then verified the findings in the entire cohort. Clinical features including age, gender, bone mass index (BMI), lesion size and stages were recorded. We then analysed the association between the level of urinary miRNAs and clinical features. Results Our data indicated that there were 13 differentially abundant miRNAs among all groups. Urinary miR-150 demonstrated the highest diagnostic value among all candidates. Urinary miR-185 and miR-133a increased by ARCO staging. The levels of urinary miR-4824 abruptly decreased after femoral head collapse (ARCO stage III and IV). Urinary miR-144 was the only marker that correlated with lesion size. Conclusions The levels of urinary miRNAs are valuable biomarkers for idiopathic ONFH. Given the noninvasive nature of this test, it is potentially useful for diagnosis and monitoring of idiopathic ONFH progression. The translational potential of this article This article gives novel methods for ONFH diagnosis and progression monitoring in a convenient and non-invasive way.
Collapse
Affiliation(s)
- Yongheng Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Yue Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, Guangdong Province, 519000, China
| | - Peiheng He
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, China
| | - Dongliang Xu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| |
Collapse
|
5
|
Noncoding RNAs in Steroid-Induced Osteonecrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8140595. [PMID: 31930139 PMCID: PMC6942769 DOI: 10.1155/2019/8140595] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is a severe orthopedic disease caused by the long-term administration of glucocorticoids. The main pathological feature of ONFH is the gradually progressive necrosis of bone cells and the bone marrow, ultimately resulting in structural changes or even complete collapse of the femoral head. However, the exact pathogenic mechanism of ONFH remains unknown. Noncoding RNAs (ncRNAs) have emerged as very powerful regulators of gene expression, functioning at both transcriptional and posttranscriptional levels in the pathogenesis of ONFH. Here, we review the current knowledge of the role of ncRNAs, including microRNAs, long noncoding RNAs, and circular RNAs, in the pathogenesis of steroid-induced ONFH. Further focus and validation of these associations can provide new insight into the pathogenic mechanisms at the molecular level to suggest targets for treatment and prevention.
Collapse
|
6
|
Hong G, Han X, He W, Xu J, Sun P, Shen Y, Wei Q, Chen Z. Analysis of circulating microRNAs aberrantly expressed in alcohol-induced osteonecrosis of femoral head. Sci Rep 2019; 9:18926. [PMID: 31831773 PMCID: PMC6908598 DOI: 10.1038/s41598-019-55188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Serum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.
Collapse
Affiliation(s)
- Guoju Hong
- Devision of Orthopeadic Surgery, the University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510641, P.R. China
| | - Wei He
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, P.R. China
| | - Yingshan Shen
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qiushi Wei
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| | - Zhenqiu Chen
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
7
|
Expression Profile Analysis of Differentially Expressed Circular RNAs in Steroid-Induced Osteonecrosis of the Femoral Head. DISEASE MARKERS 2019; 2019:8759642. [PMID: 31827647 PMCID: PMC6885284 DOI: 10.1155/2019/8759642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Background A growing number of studies have suggested that circular RNAs (circRNAs) serve as potential diagnostic biomarkers in many diseases. However, the role of circRNAs in steroid-induced osteonecrosis of the femoral head (SONFH) has not been reported. Methods Secondary sequencing was performed to profile circRNA expression in peripheral blood samples from three SONFH patients and three healthy individuals. We confirmed our preliminary findings by qRT-PCR. Bioinformatics analysis was conducted to predict their functions. Results The result showed 345 dysregulated circRNAs. qRT-PCR of eight selected circRNAs preliminarily confirmed the results, which were consistent with RNA sequencing. Bioinformatics analyses were performed to predict the functions of circRNAs to target the genes of miRNAs and the networks of circRNA-miRNA-mRNA interactions. Conclusions This study provides a new and fundamental circRNA profile of SONFH and a theoretical basis for further studies on the functions of circRNAs in SONFH.
Collapse
|
8
|
Bai Y, Liu Y, Jin S, Su K, Zhang H, Ma S. Expression of microRNA‑27a in a rat model of osteonecrosis of the femoral head and its association with TGF‑β/Smad7 signalling in osteoblasts. Int J Mol Med 2018; 43:850-860. [PMID: 30535438 PMCID: PMC6317694 DOI: 10.3892/ijmm.2018.4007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The present study assessed whether microRNA (miR)-27a is an influential factor in steroid-induced osteonecrosis of the femoral head (ONFH) and investigated the underlying mechanism of action. The results indicated that serum miR-27a was decreased in a rat model of ONFH compared with that in control rats. It was also observed that increased miR-27a expression promoted osteogenic differentiation and cell proliferation, inhibited caspase-3/9 and B-cell lymphoma-2-associated X protein expression and induced alkaline phosphatase (ALP) activity and bone morphogenetic protein (BMP)-2, runt-related transcription factor (Runx)2 and osteonectin mRNA expression in osteoblastic MC3T3-E1 cells. miR-27a mimics also induced transforming growth factor (TGF)-β and Smad7 protein expression in MC3T3-E1 cells. Furthermore, transfection with TGF-β expression plasmid was able to enhance the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity, BMP-2, Runx2 and osteonectin mRNA expression, and Smad7 protein expression in the MC3T3-E1 cells. Transfection with a TGF-β or Smad7 expression plasmid also enhanced the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity and osteonectin mRNA expression in the MC3T3-E1 cells. Taken together, the results of the present study suggested that the induction of TGF-β/Smad7 signaling in osteoblasts may be a potential mechanism by which miR-27a regulates steroid-induced ONFH.
Collapse
Affiliation(s)
- Yuming Bai
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ying Liu
- Department of Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shengli Jin
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ke Su
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Haisen Zhang
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shiyun Ma
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
9
|
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018; 671:103-109. [DOI: 10.1016/j.gene.2018.05.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
10
|
Wei B, Wei W, Wang L, Zhao B. Differentially Expressed MicroRNAs in Conservatively Treated Nontraumatic Osteonecrosis Compared with Healthy Controls. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9015758. [PMID: 29977921 PMCID: PMC5994295 DOI: 10.1155/2018/9015758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulation of microRNAs (miRNAs) contributes to nontraumatic osteonecrosis of the femoral head (ONFH-N), but the differentially expressed circulating miRNAs in patients with ONFH-N receiving nonsurgical therapy are unknown. This study aimed to determine the miRNAs expression profile of patients with ONFH-N receiving conservative treatments. This was a case-control prospective study of 43 patients with ONFH-N and 43 participants without ONFH-N, enrolled from 10/2014 to 10/2016 at the Department of Orthopedics of the Linyi People's Hospital (China). The two groups were matched for age, gender, and living area. Microarray analysis and quantitative RT-PCR were used to examine the differentially expressed miRNAs. Bioinformatics was used to predict miRNA target genes and signaling pathways. Microarray and quantitative RT-PCR revealed that nine miRNAs were downregulated and five miRNAs were upregulated in ONFH-N (n = 3) compared with controls (n = 3). Bioinformatics showed that calcium-mediated signaling pathway, regulation of calcium ion transmembrane transporter activity, cytoskeletal protein binding, and caveolae macromolecular signaling complex were probably regulated by the identified differentially expressed miRNAs. In the remaining 80 subjects (n = 40/group), miR-335-5p was downregulated (P = 0.01) and miR-100-5p was upregulated (P = 0.02) in ONFH-N compared with controls. In conclusion, some miRNAs are differentially expressed in conservatively treated ONFH-N compared with controls. Those miRNAs could contribute to the pathogenesis of ONFH-N.
Collapse
Affiliation(s)
- Biaofang Wei
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Wei Wei
- Department of Orthopedics, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Wang
- Department of Surgery, Shandong Medical College, Linyi, China
| | - Baoxiang Zhao
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
11
|
Feng C, Liu M, Fan X, Yang M, Liu H, Zhou Y. Intermittent cyclic mechanical tension altered the microRNA expression profile of human cartilage endplate chondrocytes. Mol Med Rep 2018; 17:5238-5246. [PMID: 29393457 PMCID: PMC5865992 DOI: 10.3892/mmr.2018.8517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies have identified the association between cartilage endplate (CEP) degeneration and abnormal mechanical loading. Several studies have reported that intermittent cyclic mechanical tension (ICMT) regulates CEP degeneration via various biological processes and signaling pathways. However, the functions of microRNAs in regulating the cellular responses of CEP chondrocytes to ICMT remain to be elucidated. The current study determined the differentially expressed microRNAs in human CEP chondrocytes exposed to ICMT using microarray analysis. A total 21 significantly upregulated and 62 downregulated miRNAs were identified compared with the control. The findings were subsequently partially validated by reverse transcription-quantitative polymerase chain reaction. Potential target genes of the significantly differentially expressed miRNAs were predicted using bioinformatics analysis and were used for Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The present study revealed that the significantly differentially expressed microRNAs were involved in various signaling pathways and biological processes that are crucial to regulating the responses of CEP chondrocytes to ICMT. The current study provided a global view of microRNA expression in CEP chondrocytes under mechanical stimulation, suggesting that microRNAs are important for regulating the mechanical response of CEP chondrocytes. Additionally, it provided a novel insight into the association between mechanical stress and the establishment and progression of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Fan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
12
|
Li Z, Yang B, Weng X, Tse G, Chan MTV, Wu WKK. Emerging roles of MicroRNAs in osteonecrosis of the femoral head. Cell Prolif 2017; 51. [PMID: 29131454 DOI: 10.1111/cpr.12405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is one of the most common orthopaedic diseases. The exact pathogenic mechanism of ONFH is still unknown. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively modulate gene expression at post-transcriptional level. An increasing number of studies have shown that miRNAs play crucial roles in different physiological processes, including development, cell proliferation, differentiation and metabolism. Recently, multiple studies demonstrated that miRNAs are involved in the pathogenesis of ONFH. In this review, we summarize dysregulated miRNAs and their functions in ONFH. Furthermore, we discuss their potential clinical applications for diagnosis and treatment of ONFH.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gary Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Dong Y, Li T, Li Y, Ren S, Fan J, Weng X. MicroRNA-23a-3p inhibitor decreases osteonecrosis incidence in a rat model. Mol Med Rep 2017; 16:9331-9336. [PMID: 29039554 PMCID: PMC5779994 DOI: 10.3892/mmr.2017.7808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
The mechanism of steroid-associated femoral head necrosis remains unclear. The present study investigated the role of microRNA-23a-3p (miR-23a-3p) in the incidence of osteonecrosis in a rat model. An miR-23a-3p mimic, an inhibitor and a negative control were transfected into bone mesenchymal stem cells using a lentiviral vector, and then injected into the steroid-induced femoral head necrosis model. Osteonecrosis incidence was assessed by micro computed tomography and histopathology. Low-density lipoprotein receptor-related protein 5 (LRP-5) expression was assessed by immunohistochemistry. The results demonstrated the incidence of osteonecrosis decreased in the miR-23a-3p inhibitor group compared with the miR-23a-3p mimic group (18.2% vs. 75%; P<0.05). The ratio of bone volume/total volume and trabecular thickness were significantly increased in the miR-23a-3p inhibitor group compared with the miR-23a mimic group. The expression level of LRP-5 was higher in the miR-23a-3p inhibitor group. The present study indicated that miR may provide a novel and alternative approach for understanding the mechanism underlying steroid-associated necrosis of the femoral head.
Collapse
Affiliation(s)
- Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tao Li
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yulong Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Shaoda Ren
- Center of Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences and School of Basic Medicine, Beijing 100005, P.R. China
| | - Junfen Fan
- Center of Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences and School of Basic Medicine, Beijing 100005, P.R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
14
|
Abstract
Younger patients are affected more often by osteonecrosis than by osteoarthritis, and osteonecrosis has significantly greater long-term morbidity. Corticosteroids are the most common cause of nontraumatic osteonecrosis. The femoral head is the most common site of osteonecrosis. In rare instances, osteonecrosis of the jaw has been associated with bisphosphonate exposure. This phenomenon is more common with repeated intravenous infusions of bisphosphonates. Case reports of osteonecrosis of the jaw in association with other medications, such as denosumab, have been reported. The final common pathway in the pathogenesis of osteonecrosis is disruption of blood supply to a segment of bone. Abnormalities in lipid metabolism, bone homeostasis, regulation of apoptosis, coagulopathies, innate immunity, and oxidative stress may play a role in the pathogenesis of osteonecrosis. Epigenetics may alter the predisposition to develop osteonecrosis. MRI is currently the optimal test for early diagnosis and identification of the extent of osteonecrosis. Nonsurgical treatment of osteonecrosis does not change the natural history of the disease. Although surgical treatment of femoral head osteonecrosis has many variations, most symptomatic patients eventually require total hip arthroplasty. Knowledge of risk factors and early detection are crucial to the successful management of osteonecrosis. Because of the lack of successful treatment options, new modes of management focus on the prevention of osteonecrosis.
Collapse
|
15
|
miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci Rep 2016; 6:38491. [PMID: 27910957 PMCID: PMC5133594 DOI: 10.1038/srep38491] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
The imbalance between adipogenic and osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) plays a significant role in the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH). Several microRNAs (miRNAs) are involved in regulating adipogenesis and osteogenesis. In this study, we established a steroid-induced ONFH rat model to identify the potential relevant miRNAs. We identified 9 up-regulated and 28 down-regulated miRNAs in the ONFH rat model. Of these, miR-27a was down-regulated and negatively correlated with peroxisome proliferator-activated receptor gamma (PPARγ) and gremlin 1 (GREM1) expression. Further studies confirmed that PPARγ and GREM1 were direct targets of miRNA-27a. Additionally, adipogenic differentiation was enhanced by miR-27a down-regulation, whereas miRNA-27a up-regulation attenuated adipogenesis and promoted osteogenesis in steroid-induced rat BMSCs. Moreover, miRNA-27a up-regulation had a stronger effect on adipogenic and osteogenic differentiation in steroid-induced rat BMSCs than si-PPARγ and si-GREM1. In conclusion, we identified 37 differentially expressed miRNAs in the steroid-induced ONFH model, of which miR-27a was down-regulated. Our results showed that miR-27a up-regulation could inhibit adipogenesis and promote osteogenesis by directly targeting PPARγ and GREM1. Thus, miR-27a is likely a key regulator of adipogenesis in steroid-induced BMSCs and a potential therapeutic target for ONFH treatment.
Collapse
|
16
|
Li P, Sun N, Zeng J, Zeng Y, Fan Y, Feng W, Li J. Differential expression of miR-672-5p and miR-146a-5p in osteoblasts in rats after steroid intervention. Gene 2016; 591:69-73. [PMID: 27378744 DOI: 10.1016/j.gene.2016.06.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Apoptosis of osteoblasts and osteocytes is one cause of steroid-induced osteonecrosis of the femoral head; however, the molecular mechanism of steroid affecting osteoblasts at the genetic level is unclear. The aim of the present work is to examine differential expression of osteoblasts in rats after steroid intervention and to verify expression by real-time polymerase chain reaction (RT-PCR). METHODS Primary culture, passaging and identification of osteoblasts of SD neonatal rats were conducted; osteoblasts were divided into two groups, the control group, and the steroid group. Total RNA was extracted separately, and quality control was performed; by means of RNA labeling and microarray hybridization, data were collected and then standardized to ascertain differences in miRNA expression between the two groups. The gene expression spectrum was analyzed. Obvious differential expression of miR-672-5p and miR-146a-5p was verified by RT-PCR. Miranda, microcosm and mirdb bioinformatics software were used to predict target genes. RESULTS Compared with the control group, morphologically, the osteoblasts in the steroid group were more irregular and showed various shapes. The number of miRNAs (fold change >2) in the steroid group was six. Four miRNAs were upregulated and two miRNAs were downregulated. In particular, upregulated miR-672-5p expression and downregulated miR-146a-5p expression were significant. RT-PCR results showed that the 2(-△△) CT value of miR-672-5p in the steroid group was 3.743-fold of that in the control group, and the 2(-△△) CT value of miR-146a-5p in the steroid group was 0.322-fold of that in the control group. Angptl4, Ccdc51, Ssbp3 and RGD1306991 were predicted as the target gene of miR-672-5p, while Hrp12 was that of miR-146a-5p. CONCLUSION Expression profiles of miR-672-5p and miR-146a-5p had the most significant changes in the osteoblasts of rats with steroid intervention, which may provide a new viewpoint to pathogenesis of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Pengfei Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Sun
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchun Zeng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Yirong Zeng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Yueguang Fan
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China.
| | - Wenjun Feng
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| | - Jie Li
- Deparment of orthopedics, The First Affiliated Hospital of Guangzhou university of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Yuan HF, Von Roemeling C, Gao HD, Zhang J, Guo CA, Yan ZQ. Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis. Exp Mol Pathol 2015; 98:158-63. [PMID: 25612520 DOI: 10.1016/j.yexmp.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
Abstract
The reparative reaction is considered to be important during the occurrence of collapse in the femoral head with osteonecrosis (ONFH), but little is known about the long-term reparative process. The aim of this study was to determine and analyze the altered microRNA expression profile in the reparative interface of ONFH, and further validate the expression of the involved genes in the predicted pathways. Microarray analysis was performed comparing the reparative interface of patients with ONFH and normal tissue of patients with fresh femoral neck fracture (FNF) and partly validated by real-time PCR. Potential target genes of differentially expressed miRNAs were predicted by TargetScan and miRanda, and the target genes were used for further bioinformatics analysis such as Gene Ontology and Pathway assay. The filtered miRNAs and genes in the predict pathways were further examined by real-time PCR in another 6 independent ONFH patients. Among the 2578 miRNAs identified, 17 were consistently differentially expressed, 12 of which are up-regulated and 5 down-regulated. GO classification showed that the predicted target genes of these miRNAs are involved in signal transduction, cell differentiation, methylation, cell growth and apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification indicated that these genes play a role in angiogenesis and Wnt signaling pathways. The expression of miR-34a and miR-146a and genes in the predict pathways were significantly up-regulated. This study presented a global view of miRNA expression in the reparative interface of osteonecrosis. In addition, our data provided novel and robust information for further researches in the pathogenesis and molecular events of ONFH.
Collapse
Affiliation(s)
- Heng-feng Yuan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cancer Biology, Mayo Clinic, FL, USA
| | | | - Hui-di Gao
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-an Guo
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuo-qin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|