1
|
Li S, Chao H, Li Z, Chen S, Zhang J, Hao W, Zhang S, Liu C, Liu H. Sex dimorphism of IL-17-secreting peripheral blood mononuclear cells in ankylosing spondylitis based on bioinformatics analysis and machine learning. BMC Musculoskelet Disord 2024; 25:490. [PMID: 38914997 PMCID: PMC11194900 DOI: 10.1186/s12891-024-07589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression is different between male and female. However, it is still unclear whether sex dimorphism of IL-17 contribute to sex differences in AS. METHODS GSE221786, GSE73754, GSE25101, GSE181364 and GSE205812 datasets were collected from the Gene Expression Omnibus (GEO) database. Differential expressed genes (DEGs) were analyzed with the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods. CIBERSORTx and EcoTyper algorithms were used for immune infiltration analyses. Machine learning based on the XGBoost algorithm model was used to identify the impact of DEGs. The Connectivity Map (CMAP) database was used as a drug discovery tool for exploring potential drugs based on the DEGs. RESULTS According to immune infiltration analyses, T cells accounted for the largest proportion of IL-17-secreting PBMCs, and KEGG analyses suggested an enhanced activation of mast cells among male AS patients, whereas the expression of TNF was higher in female AS patients. Other signaling pathways, including those involving metastasis-associated 1 family member 3 (MAT3) or proteasome, were found to be more activated in male AS patients. Regarding metabolic patterns, oxidative phosphorylation pathways and lipid oxidation were significantly upregulated in male AS patients. In XGBoost algorithm model, DEGs including METRN and TMC4 played important roles in the disease process. we integrated the CMAP database for systematic analyses of polypharmacology and drug repurposing, which indicated that atorvastatin, famciclocir, ATN-161 and taselisib may be applicable to the treatment of AS. CONCLUSIONS We analyzed the sex dimorphism of IL-17-secreting PBMCs in AS. The results showed that mast cell activation was stronger in males, while the expression of TNF was higher in females. In addition, through machine learning and the CMAP database, we found that genes such as METRN and TMC4 may promote the development of AS, and drugs such as atorvastatin potentially could be used for AS treatment.
Collapse
Affiliation(s)
- Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China
| | - Caijun Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510378, China.
- Guangdong research institute for Orthopedics & Traumatology of Chinese Medicine, No. 22, Qingzhu Street, Jiangnan West Road, Guangzhou, 510378, China.
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Statins Have an Anti-Inflammation in CKD Patients: A Meta-Analysis of Randomized Trials. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4842699. [PMID: 36317110 PMCID: PMC9617709 DOI: 10.1155/2022/4842699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Background Persistent inflammation has been recognized as an important comorbid condition in patients with chronic kidney disease (CKD) and is associated with many complications, mortality, and progression of CKD. Previous studies have not drawn a clear conclusion about the anti-inflammatory effects of statins in CKD. This meta-analysis is aimed at assessing the anti-inflammatory effects of statins therapy in patients with CKD. Methods A comprehensive literature search was conducted in these databases (Medline, Embase, Cochrane library, and clinical trials) to identify the randomized controlled trials that assess the anti-inflammatory effects of statins. Subgroup, sensitivity, and trim-and-fill analysis were conducted to determine the robustness of pooled results of the primary outcome. Results 25 eligible studies with 7921 participants were included in this meta-analysis. The present study showed that statins therapy was associated with a decreased C-reactive protein (CRP) (-2.06 mg/L; 95% CI: -2.85 to -1.27, p < 0.01). Subgroup, sensitivity, and trim-and-fill analysis showed that the pooled results of CPR were stable. Conclusion This meta-analysis demonstrates that statins supplementation has anti-inflammatory effects in patients with CKD. Statins exert an anti-inflammatory effect that is clinically important in improving complications, reducing mortality, and slowing progression in CKD. We believe that the benefits of statins to CKD are partly due to their anti-inflammatory effects. However, stains usually are prescribed in the CKD patients with dyslipidemia, whether statins can reduce inflammation in CKD patients with normal serum lipid needed to explore in the future. Therefore, we suggest that randomized clinical trials need to assess the effect of statins in CKD patients with normal serum lipid. Whether statins can be prescribed for aiming to inhibit inflammation in CKD also needed further study. Trial Registration. The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO); registration number: CRD42022310334.
Collapse
|
4
|
TNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway. Int J Mol Sci 2022; 23:ijms231710097. [PMID: 36077498 PMCID: PMC9456118 DOI: 10.3390/ijms231710097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1β increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Collapse
|
5
|
Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Res Cardiol 2022; 117:30. [PMID: 35674847 PMCID: PMC9177477 DOI: 10.1007/s00395-022-00937-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.
Collapse
|
6
|
Yu SM, Han Y, Kim SJ. Simvastatin induces differentiation in rabbit articular chondrocytes via Wnt/β-catenin pathway. Eur J Pharmacol 2019; 863:172672. [DOI: 10.1016/j.ejphar.2019.172672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/31/2023]
|
7
|
Dionísio TJ, Souza GP, Colombini-Ishikiriama BL, Garbieri TF, Parisi VA, Oliveira GM, Cano IP, Rodini CO, Oliveira SHP, Greene AS, Santos CF. AT1 receptor antagonism promotes bone loss attenuation in experimental periodontitis, blocks inflammatory mediators, and upregulates antioxidant enzymes and bone formation markers. J Periodontol 2019; 91:533-544. [PMID: 31473996 DOI: 10.1002/jper.19-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The initiation and progression of periodontitis might involve a local renin-angiotensin system in periodontal tissue. This study hypothesized that Losartan treatment could promote protection to rats submitted to experimental periodontitis (EP) by attenuating alveolar bone loss due to reduction in inflammatory cytokines, better reactive oxidant species regulation and maintenance of the balance between bone formation and resorption factors. METHODS One hundred and thirty rats were submitted to EP with a silk suture thread (4.0) placed around the lower right first molar for 1, 3, 7, and 14 consecutive days. The study comprised four groups: G1-control without EP; G2-animals with EP treated with water; G3-Losartan-treated animals (treatment started at the same day of EP induction), and G4-animals previously treated with Losartan for 30 days followed by induction of EP and continuity of treatment. RESULTS G2 rats had greater bone loss volume, increased number, and thickness and decreased separation of trabeculae. On the other hand, G4 animals showed significant improvements in these parameters. Histological analysis revealed that EP favors inflammatory cell infiltration and junctional epithelium, cementum with alveolar bone crest destruction, but animals pretreated with Losartan (G4) did not show these features. Although the G3 animals did not demonstrate the improvements detected in G4, mRNA expression results were similar. In mandibular tissue, EP promoted mRNA increases for ACE, AT1 receptor, and inflammatory mediators as well as decreases for antioxidant enzymes. However, Losartan treatments attenuated these responses in addition to promoting an increase in bone formation markers and transcription factors. CONCLUSION AT1 receptor modulates EP progression.
Collapse
Affiliation(s)
- Thiago J Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gabriela P Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Thais F Garbieri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Viviane A Parisi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gabriela M Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Isadora P Cano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Camila O Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Sandra H P Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University-UNESP, Araçatuba, São Paulo, Brazil
| | - Andrew S Greene
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
8
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
9
|
Środa-Pomianek K, Michalak K, Palko-Łabuz A, Uryga A, Świątek P, Majkowski M, Wesołowska O. The Combined Use of Phenothiazines and Statins Strongly Affects Doxorubicin-Resistance, Apoptosis, and Cox-2 Activity in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040955. [PMID: 30813251 PMCID: PMC6412564 DOI: 10.3390/ijms20040955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023] Open
Abstract
Since none of the multidrug resistance (MDR) modulators tested so far found their way into clinic, a novel approach to overcome the MDR of cancer cells has been proposed. The combined use of two MDR modulators of dissimilar mechanisms of action was suggested to benefit from the synergy between them. The effect of three phenothiazine derivatives that were used as single agents and in combination with simvastatin on cell growth, apoptosis induction, activity, and expression of cyclooxygenase-2 (COX-2) in doxorubicin-resistant colon cancer cells (LoVo/Dx) was investigated. Treatment of LoVo/Dx cells by phenothiazine derivatives combined with simvastatin resulted in an increase of doxorubicin cytotoxicity and its intracellular accumulation as compared to the treatment with phenothiazine derivatives that were used as single agents. Similarly, LoVo/Dx cells treated with two-component mixture of modulators showed the reduced expression of ABCB1 (P-glycoprotein) transporter and COX-2 enzyme, both on mRNA and protein level. Reduced expression of anti-apoptotic Bcl-2 protein and increased expression of pro-apoptotic Bax were also detected. Additionally, COX-2 activity was diminished, and caspase-3 activity was increased to a higher extent by phenothiazine derivative:simvastatin mixtures than by phenothiazine derivatives themselves. Therefore, the introduction of simvastatin strengthened the anti-MDR, anti-inflammatory, and pro-apoptotic properties of phenothiazines in LoVo/Dx cells.
Collapse
Affiliation(s)
- Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Anna Uryga
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland.
| | - Michał Majkowski
- Confocal Microscopy Laboratory, Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| |
Collapse
|
10
|
Elkahloun AG, Rodriguez Y, Alaiyed S, Wenzel E, Saavedra JM. Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation. Mol Neurobiol 2018; 56:3193-3210. [PMID: 30105672 DOI: 10.1007/s12035-018-1300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
The Angiotensin II Receptor Blocker (ARB) Telmisartan reduces inflammation through Angiotensin II AT1 receptor blockade and peroxisome proliferator-activated receptor gamma (PPARγ) activation. However, in a mouse microglia-like BV2 cell line, imitating primary microglia responses with high fidelity and devoid of AT1 receptor gene expression or PPARγ activation, Telmisartan reduced gene expression of pro-injury factors, enhanced that of anti-inflammatory genes, and prevented LPS-induced increase in inflammatory markers. Using global gene expression profiling and pathways analysis, we revealed that Telmisartan normalized the expression of hundreds of genes upregulated by LPS and linked with inflammation, apoptosis and neurodegenerative disorders, while downregulating the expression of genes associated with oncological, neurodegenerative and viral diseases. The PPARγ full agonist Pioglitazone had no neuroprotective effects. Surprisingly, the PPARγ antagonists GW9662 and T0070907 were neuroprotective and enhanced Telmisartan effects. GW9226 alone significantly reduced LPS toxic effects and enhanced Telmisartan neuroprotection, including downregulation of pro-inflammatory TLR2 gene expression. Telmisartan and GW9662 effects on LPS injury negatively correlated with pro-inflammatory factors and upstream regulators, including TLR2, and positively with known neuroprotective factors and upstream regulators. Gene Set Enrichment Analysis (GSEA) of the Telmisartan and GW9662 data revealed negative correlations with sets of genes associated with neurodegenerative and metabolic disorders and toxic treatments in cultured systems, while demonstrating positive correlations with gene sets associated with neuroprotection and kinase inhibition. Our results strongly suggest that novel neuroprotective effects of Telmisartan and GW9662, beyond AT1 receptor blockade or PPARγ activation, include downregulation of the TLR2 signaling pathway, findings that may have translational relevance.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, MSC 4435, Bethesda, MD, 20892-4435, USA
| | - Yara Rodriguez
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Seham Alaiyed
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Erin Wenzel
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Juan M Saavedra
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
11
|
Xiao YH, He XY, Han Q, Yang F, Zhou SX. Atorvastatin prevents glomerular extracellular matrix formation by interfering with the PKC signaling pathway. Mol Med Rep 2018; 17:6441-6448. [PMID: 29532876 PMCID: PMC5928626 DOI: 10.3892/mmr.2018.8724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/25/2018] [Indexed: 01/21/2023] Open
Abstract
Platelet-activating factor (PAF) promotes glomerular extracellular matrix (ECM) deposition, primarily through activation of the protein kinase C (PKC) pathway. The present study was designed to investigate whether atorvastatin, which mediates a protective effect against glomerular ECM deposition and diabetic neuropathy, may interfere with the PKC‑transforming growth factor‑β1 (TGF‑β1) pathway in a model of human mesangial cells (HMCs) exposed to a high glucose (HG) and lysophosphatidylcholine (LPC) environment. HMCs were divided into three treatment groups: Control, high glucose and lysophosphatidylcholine (HG+LPC), and HG+LPC+atorvastatin. Cells were cultured for 24 h. The levels of the ECM‑associated molecules collagen IV (Col IV) and fibronectin (Fn) in the supernatant were detected using an ELISA kit. PKC‑β1, TGF‑β1 and PAF‑receptor gene expression was detected by reverse transcription‑quantitative polymerase chain reaction. PKC‑β1 and TGF‑β1 protein expression was detected by western blotting, and the subcellular localization of PKC‑β1 was assessed using immunofluorescence. The results indicated that atorvastatin may reduce the secretion of ECM components (Fn and Col IV) in HMCs in a HG and LPC environment, by inhibiting the increase in PAF secretion and the activation of the PKC‑TGF‑β1 signaling pathway.
Collapse
Affiliation(s)
- Yan-Hua Xiao
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiao-Yun He
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qing Han
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Fan Yang
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Su-Xian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
12
|
Zhou H, Zhang W, Bi M, Wu J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 2016; 38:1003-11. [PMID: 27499172 PMCID: PMC5029963 DOI: 10.3892/ijmm.2016.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022] Open
Abstract
Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wensong Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
13
|
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Yokomoto-Umakoshi M, Sugimoto T. Simvastatin rescues homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by decreasing the expressions of NADPH oxidase 1 and 2. Endocr J 2016; 63:389-95. [PMID: 26842590 DOI: 10.1507/endocrj.ej15-0480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Clinical studies have shown that hyperhomocysteinemia is associated with bone fragility. Homocysteine (Hcy) induces apoptosis of osteoblastic cell lineage by increasing oxidative stress, which may contribute to Hcy-induced bone fragility. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, ameliorate oxidative stress by regulating oxidant and anti-oxidant enzymes. However, the effects of statins on Hcy-induced apoptosis of osteocytes are unknown. This study was thus aimed to investigate whether or not statins prevent Hcy-induced apoptosis of osteocytic MLO-Y4 cells and regulate NADPH oxidase (Nox) expression. TUNEL staining showed that 5 mM Hcy induced apoptosis of MLO-Y4 cells, and that co-incubation of 10(-9) or 10(-8) M simvastatin significantly suppressed the apoptotic effect. Moreover, we confirmed the beneficial effect of simvastatin against Hcy's apoptotic effect by using a DNA fragment ELISA assay. However, TUNEL staining showed no significant effects of pravastatin, a hydrophilic statin, on the Hcy-induced apoptosis. Real-time PCR showed that Hcy increased the mRNA expressions of Nox1 and Nox2, whereas simvastatin inhibited the stimulation of Nox1 and Nox2 expressions by Hcy. In contrast, neither Hcy nor simvastatin had any effect on Nox4 expression. These findings indicate that simvastatin prevents the detrimental effects of Hcy on the apoptosis of osteocytes by regulating the expressions of Nox1 and Nox2, suggesting that statins may be beneficial for preventing Hcy-induced osteocyte apoptosis and the resulting bone fragility.
Collapse
Affiliation(s)
- Ayumu Takeno
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | | | | | | | | | |
Collapse
|