1
|
Abdelhamed HG, Hassan AA, Sakraan AA, Al-Deeb RT, Mousa DM, Aboul Ezz HS, Noor NA, Khadrawy YA, Radwan NM. Brain interleukins and Alzheimer's disease. Metab Brain Dis 2025; 40:116. [PMID: 39891777 PMCID: PMC11787210 DOI: 10.1007/s11011-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
The central nervous system (CNS) is immune-privileged by several immuno-modulators as interleukins (ILs). ILs are cytokines secreted by immune cells for cell-cell signaling communications and affect the functions of the CNS. ILs were reported to orchestrate different molecular and cellular mechanisms of both physiological and pathological events, through overproduction or over-expression of their receptors. They interact with numerous receptors mediating pro-inflammatory and/or anti-inflammatory actions. Interleukins have been implicated to participate in neurodegenerative diseases. They play a critical role in Alzheimer's disease (AD) pathology which is characterized by the over-production of pro-inflammatory ILs. These may aggravate neurodegeneration, in addition to their contribution to detrimental mechanisms as oxidative stress, and excitotoxicity. However, recent research on the relation between ILs and AD revealed major discrepancies. Most of the major ILs were shown to play both pro- and anti-inflammatory roles in different experimental settings and models. The interactions between different ILs through shared pathways also add to the difficulty of drawing solid conclusions. In addition, targeting the different ILs has not yielded consistent results. The repeated failures of therapeutic drugs in treating AD necessitate the search for novel agents targeting multiple mechanisms of the disease pathology. In this context, the understanding of interleukins and their roles throughout the disease progression and interaction with other systems in the brain may provide promising therapeutic targets for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Heba G Abdelhamed
- Department of Zoology and Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Arwa A Hassan
- Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, Sinai, Egypt
| | - Alaa A Sakraan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Dalia M Mousa
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Jang BK, Shin SJ, Park HH, Kumar V, Park YH, Kim JY, Kang HY, Park S, Kwon Y, Shin SE, Moon M, Lee BJ. Investigation of Novel Aronia Bioactive Fraction-Alginic Acid Nanocomplex on the Enhanced Modulation of Neuroinflammation and Inhibition of Aβ Aggregation. Pharmaceutics 2024; 17:13. [PMID: 39861665 PMCID: PMC11769017 DOI: 10.3390/pharmaceutics17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP). We evaluated whether it is more stable and effective in cognitive disorder mice and neuroinflammation cell models. METHODS The physicochemical properties of the AANCP, such as nanoparticle size, structural stability, and release rate, were characterized. The AANCP was administered to scopolamine-injected Balb/c mice, and to BV2 microglia treated with lipopolysaccharide (LPS) and amyloid beta (Aβ). Inflammation responses were measured via qPCR and ELISA in vitro, and cognitive functions were measured via behavior tests in vivo. RESULTS The AANCP readily formed nanoparticles, 209.6 nm in size, with a negatively charged zeta potential. The AANCP exhibited better stability in four plasma samples (human, dog, rat, and mouse) and was slowly released in different pH conditions (pH 2.0, 7.4, and 8.0) compared with non-complexedABF. In vitro studies on microglial cells treated with AANCPs revealed a suppression of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) induced by LPS. The AANCP increased microglial Aβ phagocytosis through the activation of triggering receptor expressed on myeloid cell 2 (TREM2)-related microglial polarization. The AANCP inhibited aggregation of Aβ in vitro and alleviated cognitive impairment in a scopolamine-induced in vivo dementia mouse model. CONCLUSIONS Our data indicate that AANCPs are more stable than ABFs and effective for cognitive disorders and neuroinflammation via modulation of M2 microglial polarization.
Collapse
Affiliation(s)
- Bong-Keun Jang
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Jeom-Yong Kim
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
- JBKLAB, Inc., 464 Dunchon-daero, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| | - Hye-Yeon Kang
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sunyoung Park
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Youngsun Kwon
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sang-Eun Shin
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Abramchuk D, Voskresenskaya A, Kuzmichev I, Erofeev A, Gorelkin P, Abakumov M, Beloglazkina E, Krasnovskaya O. BODIPY in Alzheimer's disease diagnostics: A review. Eur J Med Chem 2024; 276:116682. [PMID: 39053190 DOI: 10.1016/j.ejmech.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Timely diagnosis and therapy of Alzheimer's disease remains one of the greatest questions in medicinal chemistry of neurodegenerative disease. The lack of low-cost sensors capable of reliable detection of structural changes in AD-related proteins is the driving factor for the development of novel molecules with affinity for AD hallmarks. The development of cheap, safe diagnostic methods is a highly sought-after area of research. Optical fluorescent probes are of great interest due to their non-radioactivity, low cost, and ability of the real-time visualization of AD hallmarks. Boron dipyrromethene (BODIPY)-based fluorophore is one promising fluorescent unit for in vivo labeling due to its high photostability, easy modification, low toxicity, and cell-permeability. In recent years, many fluorescent BODIPY-based probes capable of Aβ plaque, Aβ soluble oligomers, neurofibrillary tangles (NFT) optical detection, as well as probes with copper ion chelating units and viscosity sensors have been developed. In this review, we summarized BODIPY derivatives as fluorescent sensors capable of detecting pathological features of Alzheimer's disease, published from 2009 to 2023, as well as their design strategies, optical properties, and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Daniil Abramchuk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Alevtina Voskresenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Ilia Kuzmichev
- V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per. 23, 119034, Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Maxim Abakumov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova str., 1, 6, 117997, Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia.
| |
Collapse
|
4
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Lee D, Shen AM, Garbuzenko OB, Minko T. Liposomal Formulations of Anti-Alzheimer Drugs and siRNA for Nose-to-Brain Delivery: Design, Safety and Efficacy In Vitro. AAPS J 2024; 26:99. [PMID: 39231845 DOI: 10.1208/s12248-024-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
β-site amyloid precursor protein cleaving enzyme (BACE1) represents a key target for Alzheimer's disease (AD) therapy because it is essential for producing the toxic amyloid β (Aβ) peptide that plays a crucial role in the disease's development. BACE1 inhibitors are a promising approach to reducing Aβ levels in the brain and preventing AD progression. However, systemic delivery of such inhibitors to the brain demonstrates limited efficacy because of the presence of the blood-brain barrier (BBB). Nose-to-brain (NtB) delivery has the potential to overcome this obstacle. Liposomal drug delivery systems offer several advantages over traditional methods for delivering drugs and nucleic acids from the nose to the brain. The current study aims to prepare, characterize, and evaluate in vitro liposomal forms of donepezil, memantine, BACE-1 siRNA, and their combination for possible treatment of AD via NtB delivery. All the liposomal formulations were prepared using the rotary evaporation method. Their cellular internalization, cytotoxicity, and the suppression of beta-amyloid plaque and other pro-inflammatory cytokine expressions were studied. The Calu-3 Transwell model was used as an in vitro system for mimicking the anatomical and physiological conditions of the nasal epithelium and studying the suitability of the proposed formulations for possible NtB delivery. The investigation results show that liposomes provided the effective intracellular delivery of therapeutics, the potential to overcome tight junctions in BBB, reduced beta-amyloid plaque accumulation and pro-inflammatory cytokine expression, supporting the therapeutic potential of our approach.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Science Institute, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Izadi S, Abdolrezaei M, Soukhaklari R, Moosavi M. Memory impairment induced by aluminum nanoparticles is associated with hippocampal IL-1 and IBA-1 upregulation in mice. Neurol Res 2024; 46:284-290. [PMID: 38145565 DOI: 10.1080/01616412.2023.2298137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Increasing evidence indicates a link between aluminum (Al) intake and Alzheimer's disease (AD). The main entry of Al into the human body is through oral route, and in the digestive tract, under the influence of the pH change, Al can be transformed into Al nanoparticles (Al-NP). However, studies related to the effect of Al-NP on the brain are limited and need further investigation. Neuro-inflammation is considered as one of the principal features of AD. Microglial activation and expression of the inflammatory cytokine IL-1β (interleukin-1β) in the brain have been used as hallmarks of brain inflammation. Therefore, in the present study, the hippocampal levels of ionized calcium-binding adaptor molecule 1 (IBA-1), as the marker of microglia activation, and IL-1β were assessed. METHODS Adult male NMRI mice were treated with Al-NP (5 or 10 mg/kg) for 5 days. A novel object recognition (NOR) test was used to assess memory. Following cognitive assessments, the hippocampal tissues were isolated to analyze the levels of IL-1β and IBA-1 as well as beta actin proteins using western blot technique. RESULTS Al-NP in both doses of 5 and 10 mg/kg impaired NOR memory in mice. In addition, Al-NP increased IL-1β and IBA-1 in the hippocampus. DISCUSSION These findings indicate that the memory impairing effect of Al-NP coincides with hippocampal inflammation. According to the proposed relationship between AD and Al toxicity, this study can increase the knowledge about the toxic effects of Al-NP and highlight the need to limit the use of this nanoparticle.
Collapse
Affiliation(s)
- Sadegh Izadi
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Abdolrezaei
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roksana Soukhaklari
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Demerdash MS, Attia RT, El-Sherei MM, Aziz WM, Fahmy SA, Issa MY. Unveiling the functional components and anti-Alzheimer's activity of Koelreuteria elegans (Seem.) A.C. Sm. using UHPLC-MS/MS and molecular networking. MATERIALS ADVANCES 2024; 5:3432-3449. [DOI: 10.1039/d4ma00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The metabolomic profiles of Koelreuteria elegans leaf and fruit methanol extracts using UHPLC-MS/MS analysis aided by molecular networking were explored. Both extracts reduced all the examined markers of inflammation and neurodegeneration in the injured streptozotocin (STZ)-induced AD mice.
Collapse
Affiliation(s)
- Mohamed S. Demerdash
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Reem T. Attia
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt
| | - Moshera M. El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wafaa M. Aziz
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, AL109AB, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Bulacios G, Cataldo PG, Naja JR, de Chaves EP, Taranto MP, Minahk CJ, Hebert EM, Saavedra ML. Improvement of Key Molecular Events Linked to Alzheimer's Disease Pathology Using Postbiotics. ACS OMEGA 2023; 8:48042-48049. [PMID: 38144080 PMCID: PMC10734025 DOI: 10.1021/acsomega.3c06805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
In the past 50 years, life expectancy has increased by more than 20 years. One consequence of this increase in longevity is the rise of age-related diseases such as dementia. Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases. AD pathogenesis is not restricted to the neuronal compartment but includes strong interactions with other brain cells, particularly microglia triggering the release of inflammatory mediators, which contribute to disease progression and severity. There is growing evidence revealing the diverse clinical benefits of postbiotics in many prevalent conditions, including neurodegenerative diseases. Here, we tested the ability of bacterial conditioned media (BCM) derived from selected lactic acid bacteria (LAB) strains to regulate core mechanisms relevant to AD pathophysiology in the microglia cell line BV-2. Levilactobacillus brevis CRL 2013, chosen for its efficient production of the neurotransmitter GABA, and Lactobacillus delbrueckii subsp. lactis CRL 581, known for its anti-inflammatory properties, were selected alongside Enterococcus mundtii CRL 35, a LAB strain that can significantly modulate cytokine production. BCM from all 3 strains displayed antioxidant capabilities, reducing oxidative stress triggered by beta-amyloid oligomers (oAβ1-42). Additionally, BCM effectively mitigated the expression of inflammatory cytokines, namely, TNF-α, IL-1β, and IL-6 triggered by oAβ1-42. Furthermore, our study identified that BCM from CRL 581 inhibit the activity of acetylcholinesterase (AChE), a crucial enzyme in AD progression, in both human erythrocytes and mouse brain tissues. Notably, the inhibitory effect was mediated by low-molecular-weight components of the BCM. L. delbrueckii subsp. lactis CRL 581 emerged as a favorable candidate for production of postbiotics with potential benefits for AD therapy since it demonstrated potent antioxidant activity, reduction of cytokine expression, and partial AChE inhibition. On the other hand, E. mundtii CRL 35 showed that the antioxidant activity failed to inhibit AChE and caused induction of iNOS expression, rendering it unsuitable as a potential therapeutic for AD. This study unveils the potential benefits of LAB-derived postbiotics for the development of new avenues for therapeutic interventions for AD.
Collapse
Affiliation(s)
- Gabriela
Agustina Bulacios
- Laboratorio
de Genética y Biología Molecular,CERELA-CONICET, Centro de Referencia para Lactobacilos, Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Pablo Gabriel Cataldo
- Laboratorio
de Tecnología, CERELA-CONICET, Centro de Referencia para Lactobacilos,
Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Johana Romina Naja
- Laboratorio
de Genética y Biología Molecular,CERELA-CONICET, Centro de Referencia para Lactobacilos, Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Elena Posse de Chaves
- Departments
of Pharmacology and Medicine and the Centre for Neuroscience, Faculty
of Medicine and Dentistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - María Pía Taranto
- Laboratorio
de Tecnología, CERELA-CONICET, Centro de Referencia para Lactobacilos,
Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Carlos Javier Minahk
- Instituto
Superior de Investigaciones Biológicas, Chacabuco, San Miguel de Tucumán 461, Argentina
| | - Elvira María Hebert
- Laboratorio
de Tecnología, CERELA-CONICET, Centro de Referencia para Lactobacilos,
Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - María Lucila Saavedra
- Laboratorio
de Genética y Biología Molecular,CERELA-CONICET, Centro de Referencia para Lactobacilos, Chacabuco 145, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| |
Collapse
|
9
|
Zainuddin MS, Bhuvanendran S, Radhakrishnan AK, Azman AS. Alzheimer's Disease-Related Proteins Targeted by Secondary Metabolite Compounds from Streptomyces: A Scoping Review. J Alzheimers Dis Rep 2023; 7:1335-1350. [PMID: 38143777 PMCID: PMC10741902 DOI: 10.3233/adr-230065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease that is characterized as rapid and progressive cognitive decline affecting 26 million people worldwide. Although immunotherapies are ideal, its clinical safety and effectiveness are controversial, hence, treatments are still reliant on symptomatic medications. Concurrently, the Streptomyces genus has attracted attention given its pharmaceutically beneficial secondary metabolites to treat neurodegenerative diseases. Objective To present secondary metabolites from Streptomyces sp. with regulatory effects on proteins and identified prospective target proteins for AD treatment. Methods Research articles published between 2010 and 2021 were collected from five databases and 83 relevant research articles were identified. Post-screening, only 12 research articles on AD-related proteins were selected for further review. Bioinformatics analyses were performed through the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) network, PANTHER Go-Slim classification system (PANTHER17.0), and Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper. Results A total of 20 target proteins were identified from the 12 shortlisted articles. Amyloid-β, BACE1, Nrf-2, Beclin-1, and ATG5 were identified as the potential target proteins, given their role in initiating AD, mitigating neuroinflammation, and autophagy. Besides, 10 compounds from Streptomyces sp., including rapamycin, alborixin, enterocin, bonnevillamides D and E, caniferolide A, anhydroexfoliamycin, rhizolutin, streptocyclinone A and B, were identified to exhibit considerable regulatory effects on these target proteins. Conclusions The review highlights several prospective target proteins that can be regulated through treatments with Streptomyces sp. compounds to prevent AD's early stages and progression. Further identification of Streptomyces sp. compounds with potential anti-AD properties is recommended.
Collapse
Affiliation(s)
| | | | - Ammu K. Radhakrishnan
- Jeffery Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
10
|
Fonseca-Santos B, Cazarin CA, da Silva PB, Dos Santos KP, da Rocha MCO, Báo SN, De-Souza MM, Chorilli M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023:102689. [PMID: 37156330 DOI: 10.1016/j.nano.2023.102689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Alzheimer's disease (AD) is an illness that affects people aged 65 or older and affects around 6.5 million in the United States. Resveratrol is a chemical obtained from natural products and it exhibits biological activity based on inhibiting the formation, depolymerization of the amyloid, and decreasing neuroinflammation. Due to the insolubility of this compound; its incorporation in surfactant-based systems was proposed to design an intranasal formulation. A range of systems has been produced by mixing oleic acid, CETETH-20 and water. Polarised light microscopy (PLM), small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) confirm the initial liquid formulation (F) presented as microemulsion (ME). After dilution, the gelled systems were characterized as hexagonal mesophase and they showed feasibility proprieties. Pharmacological assays performed after intranasal administration showed the ability to improve learning and memory in animals, as well as remission of neuroinflammation via inhibition of interleukin.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil; Federal University of Bahia (UFBA), Health Sciences Institute, Department of Biotechnology, Salvador, Bahia 40170-115, Brazil.
| | - Camila André Cazarin
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Kaio Pini Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Márcia Maria De-Souza
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil.
| |
Collapse
|
11
|
Role of pro-inflammatory cytokines in Alzheimer's disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100149. [PMID: 36593925 PMCID: PMC9804106 DOI: 10.1016/j.crphar.2022.100149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Neurodegeneration and synaptic loss in Alzheimer's disease (AD) lead to impairment in memory functions. Neuroinflammation causes activation of microglia and astrocytes cells that locally and systemically produces inflammatory cytokines which can serve as early diagnostic markers or therapeutic targets in AD. Pro-inflammatory cytokines (Interleukins (IL-1β, IL-6 and IL-10) and tumor necrosis factor (TNF α)) levels were estimated in serum, cerebral tissue, hepatic tissue, and renal tissue in treatment groups of scopolamine-induced amnesia mice model using ELISA protocol. The results showed that cerebral tissue of AD mice exhibited elevated levels of IL1β, IL6, IL10 and TNFα which indicate contribution of pro-inflammatory cytokines in the progression of AD. A significant reduction in the concentration of IL1β, IL-10 and TNF-α were noticed in serum, cerebral tissue and hepatic tissue of animal group treated with marketed memantine tablet (Admenta), pure memantine drug (MEMp), memantine-poly (lactic-co-glycolic acid) self-assembled nanoscaffolds (MEM-PLGA) SANs, Polyethylene Glycol coated memantine-poly (lactic-co-glycolic acid) self-assembled nanoscaffolds [(PEG-MEM-PLGA) SANs] and Polyethylene Glycol coated memantine-poly [(lactic-co-glycolic acid)] self-assembled nanoscaffolds grafted with Bone Marrow Derived Stem Cell ((PEG-MEM-PLGA) SANs-BMSc), whereas a high level of IL-6 was observed in hepatic tissue, cerebral tissue and renal tissues of normal and AD induced mice which showed the emerging potential of IL-6 cytokines that can trigger either neurons survival after injury or causing neurodegeneration and cell apoptosis. The Neuroregenerative potential of stem cells helps in the proliferation of neuronal cell and thus improves cognition in AD animal model.
Collapse
|
12
|
Pinus halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022; 10:biomedicines10092300. [PMID: 36140401 PMCID: PMC9496595 DOI: 10.3390/biomedicines10092300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
The Pinus L. genus comprises around 250 species, being popular worldwide for their medicinal and aromatic properties. The present study aimed to evaluate the P. halepensis Mill. essential oil (PNO) in an Alzheimer’s disease (AD) environment as an anxiolytic and antidepressant agent. The AD-like symptoms were induced in Wistar male rats by intracerebroventricular administration of amyloid beta1-42 (Aβ1-42), and PNO (1% and 3%) was delivered to Aβ1-42 pre-treated rats via inhalation route for 21 consecutive days, 30 min before behavioral assessments. The obtained results indicate PNO’s potential to relieve anxious–depressive features and to restore redox imbalance in the rats exhibiting AD-like neuropsychiatric impairments. Moreover, PNO presented beneficial effects against neuroinflammation and neuroapoptosis in the Aβ1-42 rat AD model.
Collapse
|
13
|
Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081800. [PMID: 35892700 PMCID: PMC9332859 DOI: 10.3390/biomedicines10081800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most striking hallmarks shared by various neurodegenerative diseases, including Alzheimer’s disease (AD), is microglia-mediated neuroinflammation. The main pathological features of AD are extracellular amyloid-β (Aβ) plaques and intracellular tau-containing neurofibrillary tangles in the brain. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles. The crosstalk between microglia and neurons helps maintain brain homeostasis, and the metabolic phenotype of microglia determines its polarizing phenotype. There are currently many research and development efforts to provide disease-modifying therapies for AD treatment. The main targets are Aβ and tau, but whether there is a causal relationship between neurodegenerative proteins, including Aβ oligomer and tau oligomer, and regulation of microglia metabolism in neuroinflammation is still controversial. Currently, the accumulation of Aβ and tau by exosomes or other means of propagation is proposed as a regulator in neurological disorders, leading to metabolic disorders of microglia that can play a key role in the regulation of immune cells. In this review, we propose that the accumulation of Aβ oligomer and tau oligomer can propagate to adjacent microglia through exosomes and change the neuroinflammatory microenvironment by microglia metabolic reprogramming. Clarifying the relationship between harmful proteins and microglia metabolism will help people to better understand the mechanism of crosstalk between neurons and microglia, and provide new ideas for the development of AD drugs.
Collapse
|
14
|
Optimal Formula of Angelica sinensis Ameliorates Memory Deficits in β-amyloid Protein-induced Alzheimer's Disease Rat Model. Curr Med Sci 2022; 42:39-47. [PMID: 35122611 DOI: 10.1007/s11596-022-2528-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Angelica (A.) sinensis is used as a traditional medical herb for the treatment of neurodegeneration, aging, and inflammation in Asia. A. sinensis optimal formula (AOF) is the best combination in A. sinensis that has been screened to rescue the cognitive ability in β-amyloid peptide (Aβ25-35)-treated Alzheimer's disease (AD) rats. The objective of this study was to investigate the effect of AOF on the learning and memory of AD rats as well as to explore the underlying mechanisms. METHODS Male Wistar rats were infused with Aβ25-35 for AD model induction or saline (negative control). Five groups of AD rats were fed on AOF at 20, 40, or 80 mL/kg every day, donepezil at 0.9 mg/kg every day (positive control), or an equal volume of water (AD model) intragastrically once a day for 4 weeks, while the negative control rats were fed on water. The Morris water maze test was used to evaluate the cognitive function of the rats. The Aβ accumulation, cholinergic levels, and antioxidative ability were detected by ELISA. Additionally, the candidate mechanism was determined by gene sequencing and quantitative real-time polymerase chain reaction. RESULTS The results showed that AOF administration significantly ameliorated Aβ25-35-induced memory impairment. AOF decreased the levels of amyloid-β precursor protein and Aβ in the hippocampus, rescued the cholinergic levels, increased the activity of superoxide dismutase, and decreased the malondialdehyde level. In addition, AOF inhibited the expression of IL1b, Mpo, and Prkcg in the hippocampus. CONCLUSION These experimental findings illustrate that AOF prevents the decrease in cognitive function and Aβ deposits in Aβ25-35-treated rats via modulating neuroinflammation and oxidative stress, thus highlighting a potential therapeutic avenue to promote the co-administration of formulas that act on different nodes to maximize beneficial effects and minimize negative side effects.
Collapse
|
15
|
The Combination of Cigarette Smoking and Alcohol Consumption Synergistically Increases Reactive Carbonyl Species in Human Male Plasma. Int J Mol Sci 2021; 22:ijms22169043. [PMID: 34445749 PMCID: PMC8396601 DOI: 10.3390/ijms22169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases. In this study, at least 41 types of RCS were identified in the lipophilic fraction of plasma samples from 40 subjects using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Higher levels of 10 alkanals, 5 trans-2-alkenals, 1 cis-4-alkenal, and 3 alkadienals were detected in the smoking/drinking group (N = 10) as compared to those with either habit (N = 10 each) or without both habits (N = 10) in the analysis of covariances adjusted for age and BMI. The levels of 3 alkanals, 1 trans-2-alkenal, 1 alkadienal, and 1 4-hydroxy-2-alkenal in the smoking/drinking group were significantly higher than those in the no-smoking/drinking and no-smoking/no-drinking groups. These results strongly indicate that the combination of cigarette smoking and alcohol drinking synergistically increases the level and variety of RCS in the circulating blood, and may further jeopardize cellular function.
Collapse
|
16
|
Ji Z, Liu C, Zhao W, Soto C, Zhou X. Multi-scale modeling for systematically understanding the key roles of microglia in AD development. Comput Biol Med 2021; 133:104374. [PMID: 33864975 DOI: 10.1016/j.compbiomed.2021.104374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States. Unfortunately, current therapies are largely palliative and several potential drug candidates have failed in late-stage clinical trials. Studies suggest that microglia-mediated neuroinflammation might be responsible for the failures of various therapies. Microglia contribute to Aβ clearance in the early stage of neurodegeneration and may contribute to AD development at the late stage by releasing pro-inflammatory cytokines. However, the activation profile and phenotypic changes of microglia during the development of AD are poorly understood. To systematically understand the key role of microglia in AD progression and predict the optimal therapeutic strategy in silico, we developed a 3D multi-scale model of AD (MSMAD) by integrating multi-level experimental data, to manipulate the neurodegeneration in a simulated system. Based on our analysis, we revealed that how TREM2-related signal transduction leads to an imbalance in the activation of different microglia phenotypes, thereby promoting AD development. Our MSMAD model also provides an optimal therapeutic strategy for improving the outcome of AD treatment.
Collapse
Affiliation(s)
- Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu, 210095, China; School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| | - Changan Liu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease & Brain Disorder, Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Hsu HW, Rodriguez-Ortiz CJ, Zumkehr J, Kitazawa M. Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience 2021; 453:69-80. [PMID: 33246059 PMCID: PMC7796931 DOI: 10.1016/j.neuroscience.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance. Recently, we demonstrated that pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, significantly down-regulated LRP1 in human primary microvascular endothelial cells (MVECs). In this study, we sought to determine the underlying molecular mechanism by which IL-1β led to LRP1 loss in MVECs. Reduced LRP1 protein and transcript were detected up to 24 h post-exposure and returned to the baseline levels after 48 h post-exposure with 1 ng/ml IL-1β. This reduction was in part mediated by microRNA-205-5p, -200b-3p, and -200c-3p, as these microRNAs were concomitantly upregulated in MVECs exposed to IL-1β. Synthetic microRNA-205-5p, -200b-3p, and -200c-3p mimics recapitulated LRP1 loss in MVECs without IL-1β, and their synthetic antagomirs effectively reversed IL-1β-mediated LRP1 loss. Importantly, we found that the expression of these three microRNAs was controlled by NF-κB as pharmacological NF-κB inhibitor, BMS-345541, inhibited the IL-1β-mediated upregulation of these microRNAs and rescued LRP1 expression. siRNA-mediated silencing of IκB in MVECs elevated microRNA-200b-3p and decreased LRP1 transcript, partially confirming our overall findings. In conclusion, our study provides a mechanism by which pro-inflammatory IL-1β instigates the suppression of LRP1 expression in MVECs. Our findings could implicate spatiotemporal loss of LRP1 and impairment of the LRP1-mediated clearance mechanism by endothelial cells.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States.
| |
Collapse
|
18
|
Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA, De Assis AM, da Silva JS, Souza DO, Costa MDFD, Butt AM, Costa SL. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimer's Disease. Front Aging Neurosci 2020; 12:119. [PMID: 32499693 PMCID: PMC7243840 DOI: 10.3389/fnagi.2020.00119] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative disorders (ND) are characterized by the progressive and irreversible loss of neurons. Alzheimer’s Disease (AD) is the most incident age-related ND, in which the presence of a chronic inflammatory compound seems to be related to its pathogenesis. Different stimuli in the central nervous system (CNS) can induce activation, proliferation, and changes in phenotype and glial function, which can be modulated by anti-inflammatory agents. Apigenin (4,5,7–trihydroxyflavone) is a flavonoid found in abundance in many fruits and vegetables, that has shown important effects upon controlling the inflammatory response. This study evaluated the neuroprotective and neuroimmunomodulatory potential of apigenin using in vitro models of neuroinflammation associated with AD. Co-cultures of neurons and glial cells were obtained from the cortex of newborn and embryonic Wistar rats. After 26 days in vitro, cultures were exposed to lipopolysaccharide (LPS; 1 μg/ml), or IL-1β (10 ng/ml) for 24 h, or to Aβ oligomers (500 nM) for 4 h, and then treated with apigenin (1 μM) for further 24 h. It was observed that the treatment with apigenin preserved neurons and astrocytes integrity, determined by Rosenfeld’s staining and immunocytochemistry for β-tubulin III and GFAP, respectively. Moreover, it was observed by Fluoro-Jade-B and caspase-3 immunostaining that apigenin was not neurotoxic and has a neuroprotective effect against inflammatory damage. Additionally, apigenin reduced microglial activation, characterized by inhibition of proliferation (BrdU+ cells) and modulation of microglia morphology (Iba-1 + cells), and decreased the expression of the M1 inflammatory marker CD68. Moreover, as determined by RT-qPCR, inflammatory stimuli induced by IL-1β increased the mRNA expression of IL-6, IL-1β, and CCL5, and decreased the mRNA expression of IL-10. Contrary, after treatment with apigenin in inflammatory stimuli (IL-1β or LPS) there was a modulation of the mRNA expression of inflammatory cytokines, and reduced expression of OX42, IL-6 and gp130. Moreover, apigenin alone and after an inflammatory stimulus with IL-1β also induced the increase in the expression of brain-derived neurotrophic factor (BDNF), an effect that may be associated with anti-inflammatory and neuroprotective effects. Together these data demonstrate that apigenin presents neuroprotective and anti-inflammatory effects in vitro and might represent an important neuroimmunomodulatory agent for the treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Naiara Silva Dourado
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Cleide Dos Santos Souza
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,Sheffield Institute of Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Monique Marylin Alves de Almeida
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Alessandra Bispo da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,College of Nursing, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Victor Diogenes Amaral Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil
| | - Adriano Martimbianco De Assis
- INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Postgraduate in Health and Behavior, Catholic University of Pelotas (UCPEL), Pelotas, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jussemara Souza da Silva
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria de Fatima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT)-Translational Neuroscience (INCT-TN, BR), Porto Alegre, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Av. Reitor Miguel Calmon S/N, Federal University of Bahia (UFBA), Salvador, Brazil.,INCT for Excitotoxicity and Neuroprotection (INCT-EN, BR), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT)-Translational Neuroscience (INCT-TN, BR), Porto Alegre, Brazil
| |
Collapse
|
19
|
Dinicola S, Proietti S, Cucina A, Bizzarri M, Fuso A. Alpha-Lipoic Acid Downregulates IL-1β and IL-6 by DNA Hypermethylation in SK-N-BE Neuroblastoma Cells. Antioxidants (Basel) 2017; 6:antiox6040074. [PMID: 28954414 PMCID: PMC5745484 DOI: 10.3390/antiox6040074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a pleiotropic molecule with antioxidant and anti-inflammatory properties, of which the effects are exerted through the modulation of NF-kB. This nuclear factor, in fact, modulates different inflammatory cytokines, including IL-1b and IL-6, in different tissues and cell types. We recently showed that IL-1b and IL-6 DNA methylation is modulated in the brain of Alzheimer's disease patients, and that IL-1b expression is associated to DNA methylation in the brain of patients with tuberous sclerosis complex. These results prompted us to ask whether ALA-induced repression of IL-1b and IL-6 was dependent on DNA methylation. Therefore, we profiled DNA methylation in the 5'-flanking region of the two aforementioned genes in SK-N-BE human neuroblastoma cells cultured in presence of ALA 0.5 mM. Our experimental data pointed out that the two promoters are hypermethylated in cells supplemented with ALA, both at CpG and non-CpG sites. Moreover, the observed hypermethylation is associated with decreased mRNA expression and decreased cytokine release. These results reinforce previous findings indicating that IL-1b and IL-6 undergo DNA methylation-dependent modulation in neural models and pave the road to study the epigenetic mechanisms triggered by ALA.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Andrea Fuso
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy.
| |
Collapse
|