1
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
2
|
Liu X, Ren J, Zhou R, Wen Z, Wen Z, Chen Z, He S, Zhang H. Construction of iron metabolism-related prognostic features of gastric cancer based on RNA sequencing and TCGA database. BMC Cancer 2023; 23:1106. [PMID: 37957566 PMCID: PMC10644585 DOI: 10.1186/s12885-023-11569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Researches have manifested that the disorder of iron metabolism is participated in Gastric cancer (GC), but whether iron metabolism-relevant genes (IMRGs) is related to the survival outcome of GC remain unknown. METHODS Eleven tumor as well as nine adjacent normal tissues from GC patients were underwent mRNA sequencing, and the The Cancer Genome Atlas Stomach Cancer (TCGA-STAD) datasets were acquired from the TCGA database. Cox analyses and least absolute shrinkage and selection operator (LASSO) regression were applied to build a IMRGs signature. The relationship between signature genes and the infiltration profiling of 24 immune cells were investigated using single-sample GSEA (ssGSEA). Meanwhile, the potential biological significance, genes that act synergistically with signature genes, and the upstream regulatory targets were predicted. Finally, the abundance of the signature genes were measured via the quantitative real-time PCR (qRT-PCR). RESULTS A IMRGs signature was constructed according to the expression and corresponding coefficient of DOHH, P4HA3 and MMP1 (The Schoenfeld individual test showed risk score was not significant with P values = 0.83). The prognostic outcome of patients in the high-risk group was terrible (p < 0.05). Receiver operating characteristic (ROC) curves confirmed that the IMRGs signature presented good efficiency for predicting GC prognosis (AUC > 0.6). The nomogram was performed well for clinical utilize (C-index = 0.60), and the MMP1 expression significantly increased in the cohorts at age > 60 and Stage II-IV (p < 0.05). The positive correlation of P4HA3 and MMP1 expression as well as the negative correlation of DOHH expression with risk score (p < 0.0001) and worse prognosis (p < 0.05) were detected as well. Furthermore, 11 differential immune cells were associated with these signature genes (most p < 0.01). Finally, qRT-PCR revealed that the abundance of DOHH, P4HA3 and MMP1 were high in tumor cases, indicating the complex mechanism between the high expression of DOHH as a protective factor and the high expression of P4HA3 and MMP1 as the risk factors in the development of GC. CONCLUSION An iron metabolism-related signature was constructed and has significant values for foretelling the OS of GC.
Collapse
Affiliation(s)
- Xihong Liu
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junyu Ren
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruize Zhou
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengqi Wen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengwei Wen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zihao Chen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanshan He
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongbin Zhang
- Department of Pediatric Surgery First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, P. R. China.
| |
Collapse
|
3
|
Deng SZ, Wu X, Tang J, Dai L, Cheng B. Integrative analysis of lysine acetylation-related genes and identification of a novel prognostic model for oral squamous cell carcinoma. Front Mol Biosci 2023; 10:1185832. [PMID: 37705968 PMCID: PMC10495994 DOI: 10.3389/fmolb.2023.1185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high proportion of oral cancers, is characterized by high aggressiveness and rising incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine acetylation-related genes (LARGs) are therapeutic targets and potential prognostic indicators in various tumors, including oral squamous cell carcinoma. However, systematic bioinformatics analysis of the Lysine acetylation-related genes in Oral squamous cell carcinoma is still unexplored. Methods: We analyzed the expression of 33 Lysine acetylation-related genes in oral squamous cell carcinoma and the effects of their somatic mutations on oral squamous cell carcinoma prognosis. Consistent clustering analysis identified two lysine acetylation patterns and the differences between the two patterns were further evaluated. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a lysine acetylation-related prognostic model using TCGA oral squamous cell carcinoma datasets, which was then validated using gene expression omnibus (GEO) dataset GSE41613. Results: Patients with lower risk scores had better prognoses, in both the overall cohort and within the subgroups These patients also had "hot" immune microenvironments and were more sensitive to immunotherapy. Disscussion: Our findings offer a new model for classifying oral squamous cell carcinoma and determining its prognosis and offer novel insights into oral squamous cell carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lin Dai
- Department of Stomatology, The First Hospital of Wuhan, Wuhan, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Xie B, Tan S, Li C, Liang J. Development and validation of an oxidative stress‑related prognostic signature in osteosarcoma: A combination of molecular experiments and bioinformatics. Oncol Lett 2023; 26:279. [PMID: 37274481 PMCID: PMC10236143 DOI: 10.3892/ol.2023.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent malignancies with a bad prognosis. Oxidative stress is closely associated with various type of cancer. The present study aimed to establish an oxidative stress-related gene prognostic signature. Supported by The Cancer Genome Atlas and Gene Expression Omnibus, the least absolute shrinkage and selection operator regression, Cox regression, receiver operating characteristic curves and Kaplan-Meier survival analysis were used to construct and validate a prognostic signature and the derived risk score. Tumor microenvironment scores and immune infiltration levels in OS were calculated. Correlation between these parameters and risk score was analyzed. In addition, single analysis of each hub gene was performed. Finally, a series of molecular experiments was used to detect the role of MAP3K5 (one of the hub genes) in OS. A total of five genes most associated with OS prognosis were identified as independent predictors, namely catalase (CAT), mitogen-activated protein kinase 1 (MAPK1), glucose-6-phosphate dehydrogenase (G6PD), mitogen-activated protein kinase kinase kinase 5 (MAP3K5) and C-C motif chemokine ligand 2 (CCL2). Based on the signature, higher risk score indicated poorer prognosis. Nomogram performed well and reliably predicted 3- and 5-year survival rate in OS. Patients with increasing risk scores had higher tumor purity and lower immune infiltration levels. Compared with an osteoblast cell line, the expression of CAT, CCL2, MAPK1 and G6PD was upregulated and MAP3K5 was downregulated. MAP3K5 inhibited cellular proliferation and motility, promoted cellular apoptosis and induced reactive oxygen species generation. Overall, the signature could effectively predict the prognosis of patients with OS and were expected to be potential biomarkers. And it provided new ideas for understanding the interactions between oxidative stress and OS.
Collapse
Affiliation(s)
- Bin Xie
- Second Department of Spinal Surgery, Weihaiwei People's Hospital, Weihai, Shandong 264200, P.R. China
| | - Shiyong Tan
- Second Department of Spinal Surgery, Weihaiwei People's Hospital, Weihai, Shandong 264200, P.R. China
| | - Chao Li
- Second Department of Spinal Surgery, Weihaiwei People's Hospital, Weihai, Shandong 264200, P.R. China
| | - Junyang Liang
- Second Department of Spinal Surgery, Weihaiwei People's Hospital, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
5
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
6
|
Wang L, Lan J, Tang J, Luo N. MCP-1 targeting: Shutting off an engine for tumor development. Oncol Lett 2021; 23:26. [PMID: 34868363 PMCID: PMC8630816 DOI: 10.3892/ol.2021.13144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
A large amount of research has proven that monocyte chemotactic protein-1 (MCP-1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP-1 is associated with tumor development. MCP-1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP-1 exerts its effects mainly via the MCP-1/C-C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK-3β/Snail, c-Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP-1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP-1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP-1. The improved understanding into the structure of MCP-1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinxin Lan
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
7
|
Dou B, Chen T, Chu Q, Zhang G, Meng Z. The roles of metastasis-related proteins in the development of giant cell tumor of bone, osteosarcoma and Ewing's sarcoma. Technol Health Care 2021; 29:91-101. [PMID: 33682749 PMCID: PMC8150547 DOI: 10.3233/thc-218010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND: Giant cell tumor of bone (GC), osteosarcoma (OS) and Ewing’s sarcoma (ES) are three different types of bone cancer with common and specific pathology features. OBJECTIVE: The purpose of the study was to examine the relationship and differences of the three bone tumors using clinical samples. METHODS: Through screening the profiles of clinical samples from GC, OS and ES patients using a humanoncology array, we found 26, 25 and 15 tumorigenesis factors significantly increased in GS, OS and ES tissues compared to normal individuals. eNOS, endostatin, HIF-1α, IL-6, CCL2/MCP-1, CCL8/MCP-2, CCL7/MCP-3, Tie and VEGF directly or indirectly involve in the metastasis Therefore, expression levels of the 6 factors were further determined by Western blot. RESULTS: The results showed levels of MCP1, MCP2, MCP3 or IL-6 in the GS, OS and ES significantly increased, and the expression levels of angiogenesis and anti-angiogenesis factors containing eNOS, endostatin, HIF-1α, Tie or VEGF were enhanced. CONCLUSIONS: Our results suggest that eNOS, endostatin, HIF-1α, IL-6, CCL2/MCP-1, CCL8/MCP-2, CCL7/MCP-3, Tie and VEGF may play important roles in tumorigenesis, reveal the expression differences of tumor-associated cytokines and angiogenesis related factors, and provide clinical evidence for studying the mechanisms on the metastasis in GC, OS and ES.
Collapse
Affiliation(s)
- Bo Dou
- Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China.,School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.,Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Guirong Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Zhaoli Meng
- Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
8
|
Abstract
IMPORTANCE Host immune dysregulation is associated with initiation and development of osteosarcoma. In addition, immunotherapy for osteosarcomas requires some knowledge of the immune state of patients. OBJECTIVE To perform an immunogenomic landscape analysis based on The Cancer Genome Atlas (TCGA) project, which provides osteosarcoma samples with clinical information. DESIGN, SETTING, AND PARTICIPANTS This genetic association study was conducted from July 20, 2020, to September 20, 2020, as a secondary analysis of public data. Cox regression and risk score analyses were used to construct signatures of immune-related genes (IRGs) in 84 patients with osteosarcoma from TCGA with corresponding clinical information. Patients were divided into high- and low-risk groups with 42 individuals in each group according to their risk scores. Data were analyzed from July 20 to September 20, 2020. MAIN OUTCOMES AND MEASURES Differentially expressed genes (DEGs) were analyzed between groups, and potential molecular mechanisms, expression regulation, and immune cell infiltration were also explored using bioinformation methods. A prognostic model based on independent risk factors selected from multivariate Cox hazard ratio regression was established to estimate 1-year overall survival. RESULTS In this genetic association study based on 84 samples from patients with osteosarcoma from TCGA (mean [SD] age, 15.0 [4.8] years; 47 [56.0%] men; mean [SD] follow-up time, 4.1 [2.8] years), a total of 14 survival-associated IRGs were identified. Patients assigned to the high-risk group had worse survival than patients from the low-risk group (1 death [2.4%] vs 26 deaths [61.9%%]; P < .001). The protein digestion and absorption pathway was one of the associated pathways in the functional enrichment analysis (gene ratio, 2:8; P < .001). The prognostic model based on metastases at diagnosis and risk score performed well in 1-year overall survival estimations (area under the curve, 0.947; 95% CI, 0.832-0.972). The risk score was correlated with immune cell infiltration (B cells: r = 0.331; P = .002; macrophages: r = 0.410; P < .001; CD8 T cells: r = 0.230; P = .04). CONCLUSIONS AND RELEVANCE This genetic association study developed a prognostic modeling tool for osteosarcoma based on IRG expression profiles, which could result in improved survival rates through more individualized therapies. Further research on IRG expression profiles could provide potential targets for future studies on immune treatment for osteosarcoma.
Collapse
Affiliation(s)
- Wangmi Liu
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiankuan Xie
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yiying Qi
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayan Wu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Qi W, Yan Q, Lv M, Song D, Wang X, Tian K. Prognostic Signature of Osteosarcoma Based on 14 Autophagy-Related Genes. Pathol Oncol Res 2021; 27:1609782. [PMID: 34335109 PMCID: PMC8322075 DOI: 10.3389/pore.2021.1609782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Background: Osteosarcoma is a common malignancy of bone with inferior survival outcome. Autophagy can exert multifactorial influence on tumorigenesis and tumor progression. However, the specific function of genes related to autophagy in the prognosis of osteosarcoma patients remains unclear. Herein, we aimed to explore the association of genes related to autophagy with the survival outcome of osteosarcoma patients. Methods: The autophagy-associated genes that were related to the prognosis of osteosarcoma were optimized by LASSO Cox regression analysis. The survival of osteosarcoma patients was forecasted by multivariate Cox regression analysis. The immune infiltration status of 22 immune cell types in osteosarcoma patients with high and low risk scores was compared by using the CIBERSORT tool. Results: The risk score model constructed according to 14 autophagy-related genes (ATG4A, BAK1, BNIP3, CALCOCO2, CCL2, DAPK1, EGFR, FAS, GRID2, ITGA3, MYC, RAB33B, USP10, and WIPI1) could effectively predict the prognosis of patients with osteosarcoma. A nomogram model was established based on risk score and metastasis. Conclusion: Autophagy-related genes were identified as pivotal prognostic signatures, which could guide the clinical decision making in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wei Qi
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Qian Yan
- Department of Information Section, Zibo Central Hospital, Zibo, China
| | - Ming Lv
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Delei Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Xianbin Wang
- Department of Eastern Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Kangsong Tian
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| |
Collapse
|
10
|
Tang RZ, Li ZZ, Hu D, Kanwal F, Yuan CB, Mustaqeem M, Batool AI, Rehman MFU. Sanjie Yiliu Formula Inhibits Colorectal Cancer Growth by Suppression of Proliferation and Induction of Apoptosis. ACS OMEGA 2021; 6:7761-7770. [PMID: 33778287 PMCID: PMC7992181 DOI: 10.1021/acsomega.0c05565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. As current therapies toward CRC, including chemotherapy and radiotherapy, pose limitations, such as multidrug resistance (MDR) as well as the intrinsic and potential cytotoxic effects, necessitating to find more effective treatment options with fewer side effects, traditional Chinese medicine (TCM) has an advantage in complementary therapies. In the present study, 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assays), trypan blue staining, colony formation, 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, cell cycle determination, and Annexin V-FITC/PI staining were used to examine the efficacy of Sanjie Yiliu Formula (SJYLF) against CRC proliferation and to investigate its underlying molecular mechanisms through protein expression of various proapoptotic factors by quantitative polymerase chain reaction (q-PCR) and Western blotting. This four-herb-TCM SJYLF can be suggested as one of the decoctions clinically effective in late-stage cancer treatment. Our results suggest that SJYLF robustly decreased the viability of only CRC cell lines (HCT-8, SW-480, HT-29, and DLD-1) and not the normal human kidney cells (HK-2). Moreover, SJYLF significantly suppressed proliferation and induced apoptosis in HCT-8 and downregulated cyclin D1, CDK4, and BCL-2, while Bax expression was upregulated at both mRNA and protein expression levels.
Collapse
Affiliation(s)
- Rong Zhu Tang
- Department
of Gastroenterology, Seventh People’s
Hospital of Shanghai University of Traditional Chinese Medicine, NO.358, Datong Road, Pudong New
Area, Shanghai 200137, P. R. China
| | - Zhang Zhi Li
- Department
of Hematology, Taihe Hospital Affiliated
to the Hubei University of Medicine, Shiyan, China
| | - Dan Hu
- Department
of Neurology, The Central Hospital of Xiaogan, Xiaogan, Hubei 432100, P. R. China
| | - Fariha Kanwal
- Med-X
Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, P. R.
China
| | - Cheng Bin Yuan
- Department
of Critical Care Medicine, Shanghai General
Hospital, Shanghai 200080, P. R. China
- School
of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P. R. China
| | - Muhammad Mustaqeem
- Department
of Chemistry, University of Sargodha, Sub-Campus Bhakkar, Bhakkar 30000, Pakistan
| | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | | |
Collapse
|
11
|
Liu JF, Chen PC, Chang TM, Hou CH. Monocyte Chemoattractant Protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:254. [PMID: 33228783 PMCID: PMC7684958 DOI: 10.1186/s13046-020-01756-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023]
Abstract
Background Osteosarcoma is generally reported among younger individuals and has a very poor prognosis, particularly for the development of metastasis. However, more effective metastatic biomarkers and therapeutic methods are absent. Monocyte chemoattractant protein-1 (MCP-1) is involved in cancer progression and inflammatory recruitment. Although previous studies have reported higher serum MCP-1 levels in patients with osteosarcoma, the role of MCP-1 in osteosarcoma progression remains to be addressed. Methods The osteosarcoma cell migratory ability was assessed by transwell migration assay. The MCP-1 and MMP-9 expression levels were analyzed by Western blot and qPCR. The signal activation was conducted by Western blot. The in vivo mouse experiment and tumor tissue array were performed to confirm our findings in vitro. Results The present study demonstrates that MCP-1 regulates cell mobility through matrix metalloproteinase (MMP)-9 expression in osteosarcoma cells. Moreover, MCP-1 promotes MMP-9 expression, cell migration, and cell invasion by mediating CCR2, c-Raf, MAPK, and AP-1 signal transduction. Using MCP-1 knockdown stable cell lines, we found that MCP-1 knockdown reduces MMP-9 expression and cell mobility. Finally, we found high MCP-1 expression levels in osteosarcoma specimens. Conclusions Our results provide prognostic value of MCP-1 in osteosarcoma by promoting MMP-9 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01756-y.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Po-Chun Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.,Translational medicine center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, 11101, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City, 11221, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, 100, NO. 1, Jen-Ai Road, Taipei City, 11102, Taiwan, ROC.
| |
Collapse
|
12
|
Li LQ, Zhang LH, Zhang Y, Lu XC, Zhang Y, Liu YK, Khader MA, Jia-Wen, Tao-Liu, Li JZ. Construction of immune-related gene pairs signature to predict the overall survival of osteosarcoma patients. Aging (Albany NY) 2020; 12:22906-22926. [PMID: 33203792 PMCID: PMC7746392 DOI: 10.18632/aging.104017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to establish the prognosis of osteosarcoma patients based on the characteristics of immune-related gene pairs. We used the lasso Cox regression model to construct and verify the signature consisting of 14 immune-related gene pairs. This signature can accurately predict the overall survival of osteosarcoma patients and is an independent prognostic factor for osteosarcoma patients. For this we constructed a signature-based nomogram. The results of the nomogram show that our signature can bring clinical net benefits. We then assessed the abundance of infiltrating immune cells in each sample, and combine the results of the gene set enrichment analysis of a single sample to explore the differences in the immune microenvironment between IRPG signature groups. The result of gene set enrichment analysis shows the strong relationship between signature and immune system. Finally, we evaluated the relationship between signature and immunotherapy efficiency using algorithms such as TIMI and SubMap to explore patients who might benefit from immunotherapy. In conclusion, our signature can predict the overall survival rate of osteosarcoma patients and provide potential guidance for exploring patients who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Long-Qing Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Liang-Hao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin-Chang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yong-Kui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Manhas Abdul Khader
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao-Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Zhen Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
13
|
TIPE1 suppresses osteosarcoma tumor growth by regulating macrophage infiltration. Clin Transl Oncol 2018; 21:334-341. [PMID: 30062520 DOI: 10.1007/s12094-018-1927-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteosarcoma is the most common primary malignancy of the bone, and macrophages play a promotional role during osteosarcoma development and progression. TIPE1 is known to function as a tumor suppressor in diverse cancers by inducing cell arrest and apoptosis. However, the biological function of TIPE1 in osteosarcoma is still unclear. PURPOSE The purpose of this study was to investigate the expression and function of TIPE1 in osteosarcoma. METHODS In the present study, TIPE1 expression in osteosarcoma cancer cells was determined by qPCR and western blotting. A subcutaneous tumor model was established to investigate the potential anti-tumor activity of TIPE1 in osteosarcoma. Further, flow cytometry, western blotting, immunofluorescence staining, and ELISA were performed to clarify the underlying mechanism by which TIPE1 regulates growth of osteosarcoma. RESULTS Our results suggest that TIPE1 is downregulated in osteosarcoma cancer cells, and ectopic expression TIPE1 significantly inhibited osteosarcoma tumor growth in vivo. Furthermore, TIPE1 inhibits the infiltration of macrophages in osteosarcoma tumor by suppressing MCP-1 expression in osteosarcoma cells. Further in vivo study revealed that inhibition of MCP-1/CCR2 axis by Bindarit blocked the inhibitory effect of TIPE1 on osteosarcoma growth. CONCLUSION Collectively, our results demonstrate the anti-tumor role of TIPE1 in osteosarcoma and reveal a novel therapy target for osteosarcoma.
Collapse
|
14
|
Pietrovito L, Leo A, Gori V, Lulli M, Parri M, Becherucci V, Piccini L, Bambi F, Taddei ML, Chiarugi P. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol Oncol 2018. [PMID: 29517849 PMCID: PMC5928379 DOI: 10.1002/1878-0261.12189] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence to suggest that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) are key players in tumour stroma. Here, we investigated the cross‐talk between BM‐MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM‐MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)‐1, growth‐regulated oncogene (GRO)‐α and transforming growth factor (TGF)‐β1 as pivotal factors for BM‐MSC chemotaxis. Once in contact with OS cells, BM‐MSCs trans‐differentiate into cancer‐associated fibroblasts, further increasing MCP‐1, GRO‐α, interleukin (IL)‐6 and IL‐8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM‐MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM‐MSC recruitment to the OS site and the consequent cytokine‐induced MAT are crucial events in OS malignancy.
Collapse
Affiliation(s)
- Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Valentina Gori
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Valentina Becherucci
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Luisa Piccini
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy, Meyer Children's Hospital, Florence, Italy
| | | | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
15
|
Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, Terada K, Mizuta H, Oike Y. TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene 2018. [DOI: 10.1038/s41388-018-0160-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Johnson ZI, Shapiro IM, Risbud MV. RNA Sequencing Reveals a Role of TonEBP Transcription Factor in Regulation of Pro-inflammatory Genes in Response to Hyperosmolarity in Healthy Nucleus Pulposus Cells: A HOMEOSTATIC RESPONSE? J Biol Chem 2016; 291:26686-26697. [PMID: 27875309 DOI: 10.1074/jbc.m116.757732] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
Transcription factor tonicity-responsive enhancer-binding protein (TonEBP/NFAT5) is critical for osmo-adaptation and extracellular matrix homeostasis of nucleus pulposus (NP) cells in their hypertonic tissue niche. Recent studies implicate TonEBP signaling in inflammatory disease and rheumatoid arthritis pathogenesis. However, broader functions of TonEBP in the disc remain unknown. RNA sequencing was performed on NP cells with TonEBP knockdown under hypertonic conditions. 1140 TonEBP-dependent genes were identified and categorized using Ingenuity Pathway Analysis. Bioinformatic analysis showed enrichment of matrix homeostasis and cytokine/chemokine signaling pathways. C-C motif chemokine ligand 2 (CCL2), interleukin 6 (IL6), tumor necrosis factor (TNF), and nitric oxide synthase 2 (NOS2) were studied further. Knockdown experiments showed that TonEBP was necessary to maintain expression levels of these genes. Gain- and loss-of-function experiments and site-directed mutagenesis demonstrated that TonEBP binding to a specific site in the CCL2 promoter is required for hypertonic inducibility. Despite inhibition by dominant-negative TonEBP, IL6 and NOS2 promoters were not hypertonicity-inducible. Whole-disc response to hypertonicity was studied in an ex vivo organ culture model, using wild-type and haploinsufficient TonEBP mice. Pro-inflammatory targets were induced by hypertonicity in discs from wild-type but not TonEBP-haploinsufficient mice. Mechanistically, NF-κB activity increased with hypertonicity and was necessary for hypertonic induction of target genes IL6, TNF, and NOS2 but not CCL2 Although TonEBP maintains transcription of genes traditionally considered pro-inflammatory, it is important to note that some of these genes also serve anabolic and pro-survival roles. Therefore, in NP cells, this phenomenon may reflect a physiological adaptation to diurnal osmotic loading of the intervertebral disc.
Collapse
Affiliation(s)
- Zariel I Johnson
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irving M Shapiro
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,From the Department of Orthopaedic Surgery and
| | - Makarand V Risbud
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 .,From the Department of Orthopaedic Surgery and
| |
Collapse
|
17
|
Qian L, Lin L, Du Y, Hao X, Zhao Y, Liu X. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol Med Rep 2016; 14:3021-8. [PMID: 27571908 PMCID: PMC5042737 DOI: 10.3892/mmr.2016.5643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be critical in regulating tumor development and progression. The present study investigated the expression of miR-588 using reverse transcription-quantitative polymerase chain reaction analysis in 85 cases of lung squamous cell carcinoma (SCC), and observed the correlation between the expression of miR-588 with clinical pathologic features. The results indicated that the expression of miR-588 was predominantly lower in the tumor samples, compared with non-tumorous samples, and was negatively associated with tumor stages and lymph node invasion. The present study also examined the significance of the expression of miR-588 in SCC using gain- and loss-of-function analyses. It was found that miR-588 inhibited tumor cell migration and invasion. In addition, it was revealed that the overexpression of miR-588 in SCC cells reduced the mRNA and protein levels of progranulin (GRN), whereas miR-588 silencing increased the expression of GRN. A luciferase activity assay showed that miR-588 was able to directly bind to the 3′untranslated region of GRN and regulate its expression. Furthermore, it was found that the expression of GRN was inversely correlated with the expression of miR-588 in 85 paired SCC samples. These results indicated that GRN was involved in the miR-588-mediated suppressive functions in the progression of SCC.
Collapse
Affiliation(s)
- Li Qian
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Longlong Lin
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Yufeng Du
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuze Zhao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xuejun Liu
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|