1
|
Shevtsov M, Stangl S, Nikolaev B, Yakovleva L, Marchenko Y, Tagaeva R, Sievert W, Pitkin E, Mazur A, Tolstoy P, Galibin O, Ryzhov V, Steiger K, Smirnov O, Khachatryan W, Chester K, Multhoff G. Granzyme B Functionalized Nanoparticles Targeting Membrane Hsp70-Positive Tumors for Multimodal Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900205. [PMID: 30828968 DOI: 10.1002/smll.201900205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Stefan Stangl
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Boris Nikolaev
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ludmila Yakovleva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Yaroslav Marchenko
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ruslana Tagaeva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Wolfgang Sievert
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Walnut Street 3730, Philadelphia, PA, 19104, USA
| | - Anton Mazur
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Peter Tolstoy
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Oleg Galibin
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
| | - Vyacheslav Ryzhov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Trogerstr. 18, 81675, Munich, Germany
| | - Oleg Smirnov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - William Khachatryan
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Kerry Chester
- UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6DD, London, UK
| | - Gabriele Multhoff
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| |
Collapse
|
2
|
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 2019; 74:18-30. [PMID: 30710597 DOI: 10.1016/j.plipres.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.
Collapse
|
3
|
Low levels of glycoprotein 96 indicate a worse prognosis in early-stage hepatocellular carcinoma patients after hepatectomy. Hum Pathol 2018; 86:193-202. [PMID: 30529751 DOI: 10.1016/j.humpath.2018.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Heat shock proteins are a highly conserved group of cellular proteins and are up-expressed in hepatocellular carcinoma (HCC). As a member of the heat shock protein-90 family, glycoprotein 96 (gp96) modulates immunity and tumorigenicity, is increased during the development of HCC from normal liver tissue, and is considered a pro-oncogenic chaperone. However, the prognostic value of gp96 has not been well clarified. The purpose of this study was to investigate the relationship between gp96 and survival of postoperative HCC patients. The expressions of gp96 protein and messenger RNA were measured by immunohistochemistry and real-time quantitative polymerase chain reaction, respectively. The relations between gp96 expression level and clinicopathological factors were analyzed. Kaplan-Meier survival and Cox regression analyses were used to identify factors associated with prognosis. All normal liver tissue exhibited low gp96 expression, whereas high gp96 expression was present in 54% of HCC tissues. The expression of gp96 protein was inversely correlated with TNM stage (P = .037) and tumor recurrence (P = .004). Low gp96 expression was an independent risk factor for poor postoperative disease-free survival (hazard ratio, 0.385; 95% confidence interval, 0.226-0.655; P < .001), and overall survival (hazard ratio, 0.345; 95% confidence interval, 0.187-0.637; P = .001). Stratification analysis indicated that high gp96 had better predictive value for tumor recurrence in HCC patients with normal serum α-fetoprotein levels or with TNM stage I and tumor differentiation I-II HCC. In conclusion, gp96 is a potential and reliable prognostic biomarker for tumor recurrence and overall survival in HCC patients after curative resection.
Collapse
|
4
|
Sánchez DI, González-Fernández B, Crespo I, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 2018; 65:e12506. [PMID: 29770483 DOI: 10.1111/jpi.12506] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Disruption of circadian rhythms, which are regulated by the circadian clock machinery, plays an important role in different long-term diseases including hepatocellular carcinoma (HCC). Melatonin has been reported to alleviate promotion and progression of HCC, but the potential contribution of circadian clock modulation is unknown. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight ip) once a week for 8 weeks. Melatonin was given at 5 or 10 mg kg-1 d-1 ip beginning 4 weeks after the onset of DEN administration and ending at the sacrifice time (10, 20, 30, or 40 weeks). Liver expression of Bmal1, Clock, Npas2, Rorα, and Sirt1 increased, whereas Cry1, Per1, Per2, Per3, CK1ε, Rev-erbα, and Rev-erbβ decreased following DEN administration. Melatonin treatment prevented changes in the expression of clock genes, and this effect was accompanied by an upregulation of the MT1 receptor and reduced levels of the hypoxia-inducible factors Hif-1α and Hif-2α. An increased expression of p21, p53, and PARP1/2, a higher Bax/Bcl-2 ratio, and a lower expression of Cyclin D1, CDK6, HSP70, HSP90, and GRP78 proteins were also observed in melatonin-treated mice. Melatonin significantly potentiated the suppression of proliferation and cell cycle arrest induced by the synthetic REV-ERB agonist SR9009 in human Hep3B cells, and BMAL1 knocking down attenuated the pro-apoptotic and antiproliferative effect of melatonin. Results support a contribution of changes in the circadian clock components to the beneficial effects of melatonin in HCC and highlight the usefulness of strategies modulating the circadian machinery in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
5
|
Shevtsov M, Huile G, Multhoff G. Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0526. [PMID: 29203711 PMCID: PMC5717526 DOI: 10.1098/rstb.2016.0526] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
Members of the 70 kDa stress protein family are found in nearly all subcellular compartments of nucleated cells where they fulfil a number of chaperoning functions. Heat shock protein 70 (HSP70), also termed HSPA1A, the major stress-inducible member of this family is overexpressed in a large variety of different tumour types. Apart from its intracellular localization, a tumour-selective HSP70 membrane expression has been determined. A membrane HSP70–positive tumour phenotype is associated with aggressiveness and therapy resistance, but also serves as a recognition structure for targeted therapies. Furthermore, membrane-bound and extracellularly residing HSP70 derived from tumour cells play pivotal roles in eliciting anti-tumour immune responses. Herein, we want to shed light on the multiplicity of different activities of HSP70, depending on its intracellular, membrane and extracellular localization with the goal to use membrane HSP70 as a target for novel therapies including nanoparticle-based approaches for the treatment of cancer. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, Ismaninger Strasse 22, Munich 81675, Germany.,Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue, 4, St Petersburg 194064, Russia
| | - Gao Huile
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Gabriele Multhoff
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
6
|
Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Marchenko YY, Parr MA, Rolich VI, Mikhrina AL, Dobrodumov AV, Pitkin E, Multhoff G. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1). NANOSCALE 2015; 7:20652-20664. [PMID: 26599206 DOI: 10.1039/c5nr06521f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T(2)-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of T*(2) values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M(2) measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|