1
|
Zhao B, Liang Z, Zhang L, Jiang L, Xu Y, Zhang Y, Zhang R, Wang C, Liu Z. Ponicidin Promotes Hepatocellular Carcinoma Mitochondrial Apoptosis by Stabilizing Keap1-PGAM5 Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406080. [PMID: 39116422 PMCID: PMC11481384 DOI: 10.1002/advs.202406080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Ponicidin is a diterpenoid with demonstrated antitumor activity in clinical trials. However, the specific function and mechanism of action against hepatocellular carcinoma (HCC) remain unknown. In this study, it is found that ponicidin significantly inhibited the proliferation and migration of HCC cells. It is shown that ponicidin targets Keap1 and promotes the formation of the Keap1-PGAM5 complex, leading to the ubiquitination of PGAM5, using biotin-labeled ponicidin for target fishing and the HuProtTM Human Proteome Microarray V4.0. Ponicidin is found to activate the cysteine-dependent mitochondrial pathway via PGAM5, resulting in mitochondrial damage and ROS production, thereby promoting mitochondrial apoptosis in HepG2 cells. The first in vitro cocrystal structure of the PGAM5 IE 12-mer peptide and the Keap1 Kelch domain is obtained. Using molecular dynamics simulations to confirm the binding of ponicidin to the Keap1-PGAM5 complex. Based on the depth-based dynamic simulation, it is found that ponicidin can induce the tightening of the Keap1-PGAM5 interaction pocket, thereby stabilizing the formation of the protein complex. Finally, it is observed that ponicidin effectively inhibited tumor growth and promoted tumor cell apoptosis in a BALB/c nude mouse xenograft tumor model. The results provide insight into the anti-HCC properties of ponicidin based on a mechanism involving the Keap1-PGAM5 complex.
Collapse
Affiliation(s)
- Bixin Zhao
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Lisheng Zhang
- Research Center of Integrative MedicineSchool of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Lin Jiang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Ying Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
2
|
Ranjbary AG, Bagherzadeh A, Sabbaghi SS, Faghihi A, Karimi DN, Naji S, Kardani M. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells. Mol Biol Rep 2023; 50:9845-9857. [PMID: 37847443 DOI: 10.1007/s11033-023-08854-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Apoptotic agents from natural products like phenolic compounds can be used effectively in the treatment of cancer. Chlorogenic acid (CGA) is one of the phenolic compounds in medicinal plants with anti-cancer properties. In this research, we aimed to explore the anti-cancer mode of action of CGA on colorectal cancer (CRC) cells in vitro conditions. METHODS HT-29 and HEK-293 cells were cultured after MTT assay for 24 h with CGA 100 µM, and without CGA. Then, flow cytometry assays and the expression of apoptosis-related genes including caspase 3 and 9, Bcl-2 and Bax, and cell cycle-related genes including P21, P53 and NF-κB at mRNA and protein levels were examined. Finally, we measured the amount of intracellular reactive oxygen species (ROS). RESULTS The cell viability of all two-cell lines decreased in a dose-dependent manner. Moreover, CGA induces cell cycle arrest in HT-29 cells by increasing the expression of P21 and P53. It also induces apoptosis in HT-29 cells by mitigating Bcl-2 and NF-κB expression and elevating caspase 3 and 9 expression and ROS levels. CONCLUSIONS Considering the cytotoxicity and cell cycle arrest and induction of apoptosis in the colon cancer cell line by CGA, it can be concluded that CGA is a suitable option for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Ali Bagherzadeh
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Seyed Sina Sabbaghi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Arshida Faghihi
- Department of Chemistry, Faculty of Science Shiraz University, Shiraz, Iran
| | - Delaram Nassaj Karimi
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| | - Shahryar Naji
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Kardani
- Department of Immunology and Oncology, Faculty of Veterinary Medicine, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| |
Collapse
|
3
|
Zhang X, Guo F, Cao D, Yan Y, Zhang N, Zhang K, Li X, Kumar P, Zhang X. Neuroprotective Effect of Ponicidin Alleviating the Diabetic Cognitive Impairment: Regulation of Gut Microbiota. Appl Biochem Biotechnol 2023; 195:735-752. [PMID: 36155887 DOI: 10.1007/s12010-022-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment is a major complication of diabetes mellitus, which is caused by constitutive hyperglycaemia. Ponicidin is a diterpenoid isolated from a Chinese traditional herb (Rabdosia rubescens) and demonstrates the various pharmacological effects. The goal of this study was to scrutinise the neuroprotective effect of ponicidin against diabetic nephropathy (DN) induced by streptozotocin (STZ). Intraperitoneal administration of STZ (55 mg/kg) was used for the induction of diabetes and rats were received oral administration of ponicidin (5, 10 and 15 mg/kg) until 28 days. The body weight, food intake, water intake and blood glucose level were assessed at regular time interval. Plasma insulin level, antioxidant, inflammatory cytokines, apoptosis marker and faecal gut microbiota compositions were estimated. DN-induced group rats revealed the augmented glucose level, water intake, food intake and reduced body weight. Ponicidin significantly (P < 0.001) repressed the glucose level and water food intake and improved the body weight and plasma insulin. Ponicidin significantly (P < 0.001) repressed the malonaldehyde (MDA) level and boosted the level of glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) in the brain and serum level. Ponicidin significantly (P < 0.001) repressed the level of interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and enhanced the level of interleukin-4 (IL-4), interleukin-10 (IL-10) in the brain and serum level. DN group rats exhibited the enhanced relative abundance of Firmicutes, along with enhancing the Firmicutes/Bacteroidetes ratio and repressing the Bacteroidetes relative abundance. Ponicidin effectually restored the relative abundance of Allobaculum, Lactobacillus and Ruminococcus genera. Our findings clearly demonstrated that ponicidin has a neuroprotective effect against diabetic cognitive impairment through modulating the gut microbiome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Guo
- People's Hospital of Lvliang, Shanxi, 033000, China
| | - Dujuan Cao
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinan Yan
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaili Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyi Li
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | - Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
4
|
Zhang X, Seshadri VD, Jiang Q. Ameliorative Effects of Ponicidin Against the Isoproterenol-induced Acute Myocardial Infarction in Rats. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221139010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background Cardiovascular disease (CVD) is a group of heart disorders, which is a major cause of noncommunicable disease-related mortalities worldwide. Myocardial infarction (MI) is an acute disorder due to the poor supply of oxygen and blood to the myocardium. MI is the foremost form of CVD, which is the primary cause of mortality worldwide. Objectives Here, we intended to discover the ameliorative properties of the ponicidin against the isoproterenol (ISO)-stimulated MI in rats. Methodology About 85 mg/kg of ISO was administered to the rats to trigger the MI and then treated with 25 and 50 mg/kg of ponicidin. The body weight and heart weight of all rats were determined. The total protein, c-reactive protein (CRP), and uric acid levels were examined. The activities of cardiac function markers such as creatine kinase (CK), ALT, AST, and gamma-glutamyl transferase (GGT) were examined. The antioxidants such as glutathione (GSH), GST, and GPx were examined by the previous methods. The status of Na+/K+, Mg2+, and Ca2+ ATPase activities was assessed using kits. The status of Na+, K+, and Ca2+ ions and inflammatory makers such as TNF-α and IL-6 were investigated using respective kits. The histopathological analysis was performed on the heart tissues to detect the histological changes. Results The results revealed that ponicidin increased body weight and decreased heart weight in MI rats. The status of CRP and uric acid was decreased and total protein was augmented in the ponicidin-treated MI rats. The AST, ALT, CK, and GGT activities were appreciably decreased in serum and elevated in the cardiac tissues of the ponicidin-administered MI rats. Furthermore, the ponicidin improved the antioxidant levels, decreased the TNF-α and IL-6, and regulated the Na+, K+, and Ca2+ ion transports in the MI rats. The activities of Na+/K+, Mg2+, and Ca2+ ATPase enzymes were remarkably increased in the heart tissues by the ponicidin-treated MI rats. Ponicidin treatment also ameliorated the ISO-stimulated histological alterations in the heart tissue of the MI rats. Conclusion Ponicidin treatment appreciably improved the antioxidants, Na+/K+, Mg2+, and Ca2+ ATPase enzyme activities, decreased the inflammatory markers, and regulated the cardiac marker enzyme activities in the MI rats. Hence, it can be a talented therapeutic candidate in the future to treat MI.
Collapse
|
5
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
6
|
Ge C, Wang P, Ji D, Xu Z. Green Synthesized Silver Nanoparticle via Cissus quadrangularis as a Theranostic Agent for Colon Cancer. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1047.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Ponicidin Treatment Improved the Cell Proliferation, Differentiation, and Calcium Mineralization on the Osteoblast-Like MG-63 Cells. Appl Biochem Biotechnol 2022; 194:3860-3870. [PMID: 35556208 DOI: 10.1007/s12010-022-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Osteoporosis is a general bone-related ailment characterized by reduced bone density and quality, elevated bone fragility, and fractures. It was reported that both aged men and women has an increased risks of osteoporosis. The current research work focused to unveil the beneficial roles of ponicidin treatment in the proliferation and calcium deposition on the osteoblast-like MG-63 cells. The effect of 5 and 10 µg/ml of ponicidin on the cell proliferation was assessed. The viability of ponicidin-supplemented MG-63 cells was inspected by MTT test. The contents of osteocalcin, collagen, and ALP activity in the ponicidin administered cells were assessed by kits. The level of calcium mineralization was examined by ARS staining technique. The ponicidin treatment remarkably improved the proliferation of MG-63 cells. The ponicidin did not affect the MG-63 cells viability but promoted its viability 24- and 48-h treatment. The contents of osteocalcin, collagen, and ALP activity in the 5 and 10 µg/ml of ponicidin-supplemented MG-63 cells were found increased than the control cells. The ponicidin also increased the level of calcium deposition in MG-63 cells, which is assessed by ARS staining. In conclusion, it was clear that ponicidin improved the proliferation and calcium mineralization in a MG-63 cells. Therefore, it was clear that ponicidin has helpful roles on the new bone development as a hopeful therapeutic candidate to treat the bone-related disease like osteoporosis.
Collapse
|
8
|
An S, Li Y, Jia X, Yang Y, Jia X, Jia X, Xue W. Ponicidin attenuates streptozotocin‐induced diabetic nephropathy in rats via modulating hyperlipidemia, oxidative stress, and inflammatory markers. J Biochem Mol Toxicol 2022; 36:e22988. [PMID: 35187780 DOI: 10.1002/jbt.22988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Shuqiang An
- Kidney Transplantation The First Affiliated Hospital of Xi'an Jiaotong University Xi'an City China
- Department of Nephropathy Shijiazhuang Pingan Hospital Shijiazhuang City China
| | - Yang Li
- Kidney Transplantation The First Affiliated Hospital of Xi'an Jiaotong University Xi'an City China
| | - Xiaojing Jia
- Department of Internal Medicine Zhaoxian Industrial Park Hospital Shijiazhuang City China
| | - Yaqin Yang
- Department of Blood Purification The First Affiliated Hospital of Hebei North University Zhangjiakou City China
| | - Xiaojuan Jia
- Department of Internal Medicine Zhaoxian Industrial Park Hospital Shijiazhuang City China
| | - Xiaozhao Jia
- Department of Internal Medicine Zhaoxian Industrial Park Hospital Shijiazhuang City China
| | - Wujun Xue
- Kidney Transplantation The First Affiliated Hospital of Xi'an Jiaotong University Xi'an City China
| |
Collapse
|
9
|
Ma Q, Li G, Wang J, Ye B. Ponicidin treatment attenuates ovalbumin-induced allergic rhinitis in mice and RBL-2H3 cell line models. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lin PC, Liu R, Alvin K, Wahyu S, Murgolo N, Ye J, Du Z, Song Z. Improving Antibody Production in Stably Transfected CHO Cells by CRISPR-Cas9-Mediated Inactivation of Genes Identified in a Large-Scale Screen with Chinese Hamster-Specific siRNAs. Biotechnol J 2020; 16:e2000267. [PMID: 33079482 DOI: 10.1002/biot.202000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/07/2022]
Abstract
The Chinese hamster ovary (CHO) cell line is commonly used for the production of biotherapeutics. As cell productivity directly affects the cost of production, methods are developed to manipulate the expression of specific genes that are known to be involved in protein synthesis, folding, and secretion to increase productivity. However, there are no large-scale CHO-specific functional screens to identify novel gene targets that impact the production of secreted recombinant proteins. Here, a large-scale, CHO cell-specific small interfering RNA screen is performed to identify genes that consistently enhance antibody production when silenced in a panel of seven CHO cell lines. Four genes, namely, Cyp1a2, Atp5s, Dgki, and P3h2, are identified, and then selected for CRISPR-Cas9 knockout validation in recombinant CHO cell lines. Single knockout of Cyp1a2, Atp5s, or Dgki, but not P3h2, results in a more than 90% increase in specific antibody productivity. Overall, the knockout of Cyp1a2 demonstrates the most significant improvement of antibody production, with a minimal impact on cell growth.
Collapse
Affiliation(s)
- Pao-Chun Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Ren Liu
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Krista Alvin
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shahreel Wahyu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Nicholas Murgolo
- Bioinformatics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jianxin Ye
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhimei Du
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| |
Collapse
|
11
|
Ma W, Zhang Q, Li X, Ma Y, Liu Y, Hu S, Zhou Z, Zhang R, Du K, Syed A, Yao X, Chen P. IPM712, a vanillin derivative as potential antitumor agents, displays better antitumor activity in colorectal cancers cell lines. Eur J Pharm Sci 2020; 152:105464. [PMID: 32668313 DOI: 10.1016/j.ejps.2020.105464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC), a major health threat in the world, ranks third in incidence and second in mortality among cancers. Chemotherapy, an important treatment for colorectal cancer, have be limited in the clinic due to the resistance and side effect. Studies have shown that PI3K-related regulatory pathways play a colossal role in colorectal cancer. Therefore, it is a good strategy to find a new drug which works by affecting the PI3K signaling pathway. In this paper, we obtained a new vanillin derivative (IPM712) by modifying the structure of IPM711 and tested its anticancer activity in vitro and toxicity in vivo. Results showed that IPM712 has a better anticancer activity than 5-Fu in HCT116 and SW480 cell lines. Furthermore, IPM712 can inhibit cell proliferation, migration and induce the apoptosis by affecting PI3K-related protein expression. Acute toxicity experiments show that IPM712 has no significant toxicity at therapeutic concentrations. Based on these results, IPM712 is a promising anticancer drug candidate for human colorectal cancer therapy.
Collapse
Affiliation(s)
- Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ashikujaman Syed
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Mechanistic Pathways and Molecular Targets of Plant-Derived Anticancer ent-Kaurane Diterpenes. Biomolecules 2020; 10:biom10010144. [PMID: 31963204 PMCID: PMC7023344 DOI: 10.3390/biom10010144] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Since the first discovery in 1961, more than 1300 ent-kaurane diterpenoids have been isolated and identified from different plant sources, mainly the genus Isodon. Chemically, they consist of a perhydrophenanthrene subunit and a cyclopentane ring. A large number of reports describe the anticancer potential and mechanism of action of ent-kaurane compounds in a series of cancer cell lines. Oridonin is one of the prime anticancer ent-kaurane diterpenoids that is currently in a phase-I clinical trial in China. In this review, we have extensively summarized the anticancer activities of ent-kaurane diterpenoids according to their plant sources, mechanistic pathways, and biological targets. Literature analysis found that anticancer effect of ent-kauranes are mainly mediated through regulation of apoptosis, cell cycle arrest, autophagy, and metastasis. Induction of apoptosis is associated with modulation of BCL-2, BAX, PARP, cytochrome c, and cleaved caspase-3, -8, and -9, while cell cycle arrest is controlled by cyclin D1, c-Myc, p21, p53, and CDK-2 and -4. The most common metastatic target proteins of ent-kauranes are MMP-2, MMP-9, VEGF, and VEGFR whereas LC-II and mTOR are key regulators to induce autophagy.
Collapse
|
13
|
Islam MT, Biswas S, Bagchi R, Khan MR, Khalipha ABR, Rouf R, Uddin SJ, Shilpi JA, Bardaweel SK, Sabbah DA, Mubarak MS. Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol Appl Biochem 2019; 66:434-444. [DOI: 10.1002/bab.1740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - Sajal Biswas
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Rajat Bagchi
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Md. Roich Khan
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Abul Bashar Ripon Khalipha
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Razina Rouf
- Department of PharmacyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy DisciplineLife Science SchoolKhulna University Khulna Bangladesh
| | - Jamil A. Shilpi
- Pharmacy DisciplineLife Science SchoolKhulna University Khulna Bangladesh
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical SciencesFaculty of PharmacyThe University of Jordan Amman Jordan
| | - Dima A. Sabbah
- Department of PharmacyFaculty of PharmacyAl‐Zaytoonah University of Jordan Amman Jordan
| | | |
Collapse
|
14
|
Sun HN, Luo YH, Meng LQ, Piao XJ, Wang Y, Wang JR, Wang H, Zhang Y, Li JQ, Xu WT, Liu Y, Zhang Y, Zhang T, Han YH, Jin MH, Shen GN, Zang YQ, Cao LK, Zhang DJ, Jin CH. Cryptotanshinone induces reactive oxygen species‑mediated apoptosis in human rheumatoid arthritis fibroblast‑like synoviocytes. Int J Mol Med 2018; 43:1067-1075. [PMID: 30535477 DOI: 10.3892/ijmm.2018.4012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/16/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the mechanisms of apoptosis induced by cryptotanshinone (CT) in human rheumatoid arthritis fibroblast‑like synoviocytes (RA‑FLSs). Cell Counting kit‑8 assay was performed to determine the cytotoxic effects of CT in human RA‑FLSs, including primary RA‑FLS, HFLS‑RA and MH7A cells, and in HFLS cells derived from normal synovial tissue. Annexin V‑FITC/PI staining was used to detect the apoptotic effects of CT in HFLS‑RA and MH7A cells. Flow cytometry was performed to detect the apoptotic and reactive oxygen species (ROS) levels induced by CT in HFLS‑RA cells. Western blotting was used to assess the expression levels of proteins associated with apoptosis and with the mitogen‑activated protein kinase (MAPK), protein kinase B (Akt), and signal transducer and activator of transcription‑3 (STAT3) signaling pathways. The results demonstrated that CT treatment significantly suppressed HFLS‑RA and MH7A cell growth, whereas no clear inhibitory effect was observed in normal HFLS cells. CT exposure downregulated the expression levels of B‑cell lymphoma 2 (Bcl‑2), p‑Akt, p‑extracellular signal‑related kinase and p‑STAT3, while it upregulated the expression levels of Bcl‑2‑associated death promoter (Bad), caspase‑3, poly (ADP‑ribose) polymerase (PARP), p‑p38 and p‑c‑Jun N‑terminal kinase. Following ROS scavenging, the CT‑induced apoptosis and altered expression levels of Bcl‑2, Bad, cleaved caspase‑3 and cleaved PARP were restored. Furthermore, the Akt, MAPK and STAT3 signaling pathways were regulated by intracellular ROS. These results suggest that ROS‑mediated Akt, MAPK and STAT3 signaling pathways serve important roles in the CT‑induced apoptosis of RA‑FLSs.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
15
|
Ponicidin inhibits pro-inflammatory cytokine TNF-α-induced epithelial-mesenchymal transition and metastasis of colorectal cancer cells via suppressing the AKT/GSK-3β/Snail pathway. Inflammopharmacology 2018; 27:627-638. [PMID: 30244296 DOI: 10.1007/s10787-018-0534-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Ponicidin (PON), a natural diterpenoid compound, has been shown to exhibit potent anticancer activities in a wide variety of cancers, including colorectal cancer (CRC). Nevertheless, the precise mechanisms underlying the anti-metastasis effect of PON have not yet been completely defined. The present study was designed to uncover the inhibitory effect of PON on epithelial-mesenchymal transition (EMT), migration and invasion of HCT116 cells induced by pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in vitro, and liver metastasis in vivo. Briefly, cell proliferation was assessed by Cell Counting Kit-8 assay, followed by wound healing and transwell assays to evaluate cell migration and invasion. The EMT-related molecular markers were determined through quantitative real-time polymerase chain reaction (qPCR), immunofluorescence (IF), western blot (WB), and immunohistochemistry (IHC). Additionally, WB was used to assess the expression of AKT, phosphorylated AKT (p-AKT), GSK-3β, and phosphorylated GSK-3β (p-GSK-3β). As a result, PON could effectively suppress EMT, migration, and invasion in HCT116 cells in vitro, and liver metastasis of HCT116 cells in vivo. Additionally, PON administration also dramatically altered the expression of EMT-associated markers such as E-cadherin, N-cadherin, and Vimentin, and suppressed the expression of p-AKT, p-GSK-3β and transcription factor, Snail in a dose-dependent manner. Moreover, the incidence of liver metastasis in the control group was 100% and although the incidence of liver metastasis did not decrease, the number of metastatic nodules in the livers of each PON dose group decreased by (34 ± 4.2)%, (64 ± 3.6)%, and (76 ± 5.3)%, respectively, compared to the control group. Collectively, these findings indicated that targeting the AKT/GSK-3β/Snail pathway by PON might be a promising treatment for TNF-α-induced EMT and metastasis of CRC.
Collapse
|
16
|
Gene expression profiling and pathway network analysis of anti-tumor activity by Jaridon 6 in esophageal cancer. Eur J Pharmacol 2017; 815:478-486. [PMID: 28800883 DOI: 10.1016/j.ejphar.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Jaridon 6, a novel ent-kaurene diterpenoid derived from Rabdosia rubescens (Hemsl.) Hara, possesses strong anti-tumor activity in esophageal cancer cells. In this study, we explored the underlying molecular events of the anti-tumor activity of Jaridon 6. Cell viability and apoptosis results obtained by flow cytometry confirmed the tumor inhibitory effect of Jaridon 6 in esophageal cancer cells. A cDNA microarray was performed and the observations were validated using quantitative reverse transcription polymerase chain reaction. The microarray data showed that 151 genes were differentially expressed between the untreated group and the Jaridon 6-treated group, among these were 57 upregulated genes, and 94 downregulated genes (P < 0.01, fold change threshold: 2). These included genes such as Wnt, peroxisome, and genes involved in chemokine signaling pathways. In addition, Western blot analysis demonstrated that Jaridon 6 regulated the expression of Wnt pathway proteins, including reduced levels of Dvl 2, survivin and cyclin D1, and increased levels of p-β-catenin, and AXIN2 in EC109 and EC9706 esophageal cancer cells. In addition, recombinant murine Wnt3a could change the regulation of Jaridon 6 on Wnt pathway proteins. Immunohistochemical analysis indicated that the anti-tumor activity of Jaridon 6 was closely related to the Wnt signaling pathway in esophageal cancer cells.
Collapse
|
17
|
Abstract
Covering: December 2005 to June 2016. Previous review: Nat. Prod. Rep., 2006, 23, 673-698Over the last decade, great efforts have been made to conduct phytochemistry research on the genus Isodon, which have led to the isolation and identification of a number of diterpenoids. At the same time, these newly reported diterpenoids with diverse structures have led to new findings on their biological functions and chemical synthesis research. In this update, we review more than 600 new diterpenoids, including their structures, classifications, biogenetic pathways, bioactivities, and chemical synthesis.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China.
| | | | | | | |
Collapse
|
18
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|