1
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y, Liu S. The emerging role of long non-coding RNAs in schizophrenia. Front Psychiatry 2022; 13:995956. [PMID: 36226104 PMCID: PMC9548578 DOI: 10.3389/fpsyt.2022.995956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder which is contributed by both genetic and environmental factors. However, at present, its specific pathogenesis is still not very clear, and there is a lack of objective and reliable biomarkers. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathophysiology of several psychiatric disorders, including SZ, and hold promise as potential biomarkers and therapeutic targets for psychiatric disorders. In this review, we summarize and discuss the role of lncRNAs in the pathogenesis of SZ and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanhong Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jinzhi Lv
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Neuroepigenetics of psychiatric disorders: Focus on lncRNA. Neurochem Int 2021; 149:105140. [PMID: 34298078 DOI: 10.1016/j.neuint.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Understanding the pathology of psychiatric disorders is challenging due to their complexity and multifactorial origin. However, development of high-throughput technologies has allowed for better insight into their molecular signatures. Advancement of sequencing methodologies have made it possible to study not only the protein-coding but also the noncoding genome. It is now clear that besides the genetic component, different epigenetic mechanisms play major roles in the onset and development of psychiatric disorders. Among them, examining the role of long noncoding RNAs (lncRNAs) is a relatively new field. Here, we present an overview of what is currently known about the involvement of lncRNAs in schizophrenia, major depressive and bipolar disorders, as well as suicide. The diagnosis of psychiatric disorders mainly relies on clinical evaluation without using measurable biomarkers. In this regard, lncRNA may open new opportunities for development of molecular tests. However, so far only a small set of known lncRNAs have been characterized at molecular level, which means they have a long way to go before clinical implementation. Understanding how changes in lncRNAs affect the appearance and development of psychiatric disorders may lead to a more classified and objective diagnostic system, but also open up new therapeutic targets for these patients.
Collapse
|
4
|
Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. Eur Psychiatry 2020; 44:39-46. [DOI: 10.1016/j.eurpsy.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
AbstractAs an epigenetic modification, DNA methylation may reflect the interaction between genetic and environmental factors in the development of schizophrenia (SCZ). Catechol-O-methyltransferase (COMT) gene is a promising candidate gene of SCZ. In the present study, we investigate the association of COMT methylation with the risk of SCZ using bisulfite pyrosequencing technology. Significant association between DNA methylation of COMT and the risk of SCZ is identified (P = 1.618e−007). A breakdown analysis by gender shows that the significance is driven by males (P = 3.310e−009), but not by females. DNA methylation of COMT is not significantly associated with SCZ clinical phenotypes, including p300 and cysteine level. No interaction is found between COMT genotypes and the percent methylation of this gene. Receiver operating characteristic (ROC) curve shows that DNA methylation of COMT is able to predict the SCZ risk in males (area under curve [AUC] = 0.802, P = 1.91e−007). The current study indicates the clinical value of COMT methylation as a potential male-specific biomarker in SCZ diagnosis.
Collapse
|
5
|
Zheng X, Lei B, Lin Y, Sui M, Zhang M, Zhuang Z, Dong J, Jin D, Yan T. Long noncoding RNA MEG3 silencing protects against hypoxia‐induced pheochromocytoma‐12 cell injury through inhibition of TIMP2 promoter methylation. J Cell Physiol 2019; 235:1649-1662. [PMID: 31392726 DOI: 10.1002/jcp.29085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Xiu‐Yuan Zheng
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Bing‐Xi Lei
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Yang‐Yang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Ming‐Hong Sui
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital (The Sixth People's Hospital of Shenzhen) Shenzhen University Shenzhen P.R. China
| | - Ma‐Lan Zhang
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Zhi‐Qiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Jun‐Tao Dong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Dong‐Mei Jin
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Tie‐Bin Yan
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| |
Collapse
|
6
|
Zhang S, Cao H, Ye L, Wen X, Wang S, Zheng W, Zhang Y, Huang D, Gao Y, Liu H, He H, Gao X, Chen Y, Chen M, Xiang Y, Wang F. Cancer-associated methylated lncRNAs in patients with bladder cancer. Am J Transl Res 2019; 11:3790-3800. [PMID: 31312389 PMCID: PMC6614623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Epigenetic modifications via DNA methylation and long non-coding RNAs (lncRNAs) have been identified in bladder cancer (BC). However, DNA methylation of lncRNAs involved in BC has not been elucidated. Here, DNA immunoprecipitation-sequencing (MeDIP-seq) and RNA-sequencing (RNA-seq) were carried out using eight paired tumor and adjacent normal tissue samples from patients with BC. Differences in methylation patterns between tumors and controls were compared and the percentage of differentially methylated genes, including lncRNA genes, was calculated. RNA-seq data were subjected to gene ontology (GO), Kyoto encyclopedia of genes, and genomes (KEGG) analysis. The association between DNA methylation modification and lncRNA expression was determined by pairwise analysis of MeDIP-seq and RNA-seq data. The most enriched motifs in the promoter region, as well as the methylated density in the 3 kb region surrounding super-enhancers of lncRNA genes, were analyzed. A peak of 5mC methylation in the region 2 kb upstream of the transcription start site (TSS), with the lowest point in the TSS region, was observed. In total, 436 and 239 genes were identified to be hyper and hypomethylated, respectively, in BC tissue around the TSS region. RNA-seq revealed differentially expressed lncRNAs between tumor and normal tissues, many of which were cancer-associated lncRNAs based on GO and KEGG pathway analysis. Combined MeDIP-seq and RNA-seq analysis revealed that expression of 26 lncRNAs were candidates of 5mC controlled genes. The possible link between 5mC modification and differential lncRNAs may relate to enrichment of 5mC reads in the region surrounding super-enhancers of lncRNA. Survival analysis indicated that the methylated lncRNA, LINC00574, was associated with shorter overall survival time in patients with BC (HR = 1.7, p-value = 0.035). Taken together, these findings indicate that lncRNAs genes are under control of DNA methylation. Methylated lncRNA genes, which are transcripted to LINC00574, may serve as biomarkers for BC prognosis.
Collapse
Affiliation(s)
- Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Lili Ye
- Clincal Laboratory, Jilin Cancer HospitalChangchun 130021, Jilin, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Shunlan Wang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510655, Guangdong, China
| | - Yingai Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Haowei He
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Xin Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Yinyi Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Yang Xiang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South UniversityHaikou 570208, Hainan, China
| | - Fei Wang
- Department of Urology, People’s Hospital of Hainan ProvinceHaikou 570311, Hainan, China
| |
Collapse
|
7
|
Luo G, Jing X, Yang S, Peng D, Dong J, Li L, Reinach PS, Yan D. DNA Methylation Regulates Corneal Epithelial Wound Healing by Targeting miR-200a and CDKN2B. Invest Ophthalmol Vis Sci 2019; 60:650-660. [PMID: 30785991 DOI: 10.1167/iovs.18-25443] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose DNA methylation is a key epigenetic modification involved in various biological processes and diseases. Corneal epithelial wound healing (CEWH) is essential for restoring corneal integrity and transparency after injury. However, the role of DNA methylation in CEWH remains elusive. Here, we investigate the function and underlying mechanism of DNA methylation in regulating CEWH. Methods Dot blots and global methylation assays determined DNA methylation levels during CEWH. Quantitative RT-PCR and Western blot analysis examined the expression of DNA methyltransferases (DNMTs), cyclin-dependent kinase inhibitor 2B (CDKN2B), and miR-200a during CEWH, respectively. MTS assays and flow cytometry were used to analyze human corneal epithelial cell (HCEC) proliferation and cell cycle, respectively. The in vitro scratch wound assay assessed HCEC migration and an in vivo murine corneal epithelial debridement model evaluated wound healing. Using bisulfite sequencing PCR, we determined the DNA methylation status of the candidate genes. Transfection of miR-200a mimic or inhibitor assessed the function of miR-200a in HCECs. Rescue experiments were performed to clarify the correlation between DNMT1 and miR-200a/CDKN2B during CEWH. Results DNMT1 and DNMT3B expression was significantly upregulated during CEWH, resulting in a significant global DNA hypermethylation. DNMT1 downregulation dramatically delayed CEWH in vivo, and suppressed HCEC proliferation and migration. MiR-200a inhibited HCEC migration. Furthermore, miR-200a and CDKN2B were identified as molecular targets of DNA methylation and as having a causal connection with DNMT1. Conclusions DNMT1-mediated DNA hypermethylation can enhance the process of CEWH by directly targeting miR-200a and CDKN2B. This insight pinpoints novel potential drug targets for promoting CEWH.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xia Jing
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shuai Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dewei Peng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jing Dong
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Li Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
9
|
Gianfrancesco O, Warburton A, Collier DA, Bubb VJ, Quinn JP. Novel brain expressed RNA identified at the MIR137 schizophrenia-associated locus. Schizophr Res 2017; 184:109-115. [PMID: 27913161 PMCID: PMC5477099 DOI: 10.1016/j.schres.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have identified a locus on chromosome 1p21.3 to be highly associated with schizophrenia. A microRNA, MIR137, within this locus has been proposed as the gene causally associated with schizophrenia, due to its known role as a regulator of neuronal development and function. However, the involvement of other genes within this region, including DPYD (dihydropyrimidine dehydrogenase), is also plausible. In this communication, we describe a previously uncharacterised, brain-expressed RNA, EU358092, within the schizophrenia-associated region at 1p21.3. As we observed for MIR137, EU358092 expression was modulated in response to psychoactive drug treatment in the human SH-SY5Y neuroblastoma cell line. Bioinformatic analysis of publically available CNS expression data indicates that MIR137 and EU358092 are often co-expressed in vivo. A potential regulatory domain for expression of EU358092 is identified by bioinformatic analysis and its regulatory function is confirmed by reporter gene assays. These data suggest a potentially important role for EU358092 in the aetiology of schizophrenia, either individually or in combination with other genes at this locus.
Collapse
Affiliation(s)
- Olympia Gianfrancesco
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Alix Warburton
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | | | - Vivien J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|