1
|
Rodriguez C, Chocarro L, Echaide M, Ausin K, Escors D, Kochan G. Fractalkine in Health and Disease. Int J Mol Sci 2024; 25:8007. [PMID: 39125578 PMCID: PMC11311528 DOI: 10.3390/ijms25158007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.
Collapse
Grants
- FIS PI23/00196 Instituto de Salud Carlos III-FEDER
- FIS PI20/00010 Instituto de Salud Carlos III-FEDER
- BMED 036-2023 Departamento de Salud del Gobierno de Navarra-FEDER, Spain
- LINTERNA, Ref. 0011-1411-2020-000033 Departamento de Industria, Gobierno de Navarra, Spain
- ARNMUNE, 0011-1411-2023-000111 Departamento de Industria, Gobierno de Navarra, Spain
- ISOLDA project, under grant agreement ID: 848166. Horizon 2020, European Union
- PFIS, FI21/00080 Instituto de Salud Carlos III-FEDER
Collapse
Affiliation(s)
| | | | | | | | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| |
Collapse
|
2
|
Naessens F, Demuynck R, Vershinina O, Efimova I, Saviuk M, De Smet G, Mishchenko TA, Vedunova MV, Krysko O, Catanzaro E, Krysko DV. CX3CL1 release during immunogenic apoptosis is associated with enhanced anti-tumour immunity. Front Immunol 2024; 15:1396349. [PMID: 39011040 PMCID: PMC11246865 DOI: 10.3389/fimmu.2024.1396349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Immunogenic cell death (ICD) has emerged as a novel option for cancer immunotherapy. The key determinants of ICD encompass antigenicity (the presence of antigens) and adjuvanticity, which involves the release of damage-associated molecular patterns (DAMPs) and various cytokines and chemokines. CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in cellular signalling and immune cell interactions. CX3CL1 has been denoted as a "find me" signal that stimulates chemotaxis of immune cells towards dying cells, facilitating efferocytosis and antigen presentation. However, in the context of ICD, it is uncertain whether CX3CL1 is an important mediator of the effects of ICD. Methods In this study, we investigated the intricate role of CX3CL1 in immunogenic apoptosis induced by mitoxantrone (MTX) in cancer cells. The Luminex xMAP technology was used to quantify murine cytokines, chemokines and growth factors to identify pivotal regulatory cytokines released by murine fibrosarcoma MCA205 and melanoma B16-F10 cells undergoing ICD. Moreover, a murine tumour prophylactic vaccination model was employed to analyse the effect of CX3CL1 on the activation of an adaptive immune response against MCA205 cells undergoing ICD. Furthermore, thorough analysis of the TCGA-SKCM public dataset from 98 melanoma patients revealed the role of CX3CL1 and its receptor CX3CR1 in melanoma patients. Results Our findings demonstrate enhanced CX3CL1 release from apoptotic MCA205 and B16-F10 cells (regardless of the cell type) but not if they are undergoing ferroptosis or accidental necrosis. Moreover, the addition of recombinant CX3CL1 to non-immunogenic doses of MTX-treated, apoptotically dying cancer cells in the murine prophylactic tumour vaccination model induced a robust immunogenic response, effectively increasing the survival of the mice. Furthermore, analysis of melanoma patient data revealed enhanced survival rates in individuals exhibiting elevated levels of CD8+ T cells expressing CX3CR1. Conclusion These data collectively underscore the importance of the release of CX3CL1 in eliciting an immunogenic response against dying cancer cells and suggest that CX3CL1 may serve as a key switch in conferring immunogenicity to apoptosis.
Collapse
Affiliation(s)
- Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Olga Vershinina
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Mariia Saviuk
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Greet De Smet
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
3
|
Eain HS, Kawai H, Nakayama M, Oo MW, Ohara T, Fukuhara Y, Takabatake K, Shan Q, Soe Y, Ono K, Nakano K, Mizukawa N, Iida S, Nagatsuka H. Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma. JCI Insight 2024; 9:e174618. [PMID: 38775151 PMCID: PMC11141908 DOI: 10.1172/jci.insight.174618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/05/2024] [Indexed: 06/02/2024] Open
Abstract
Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro-tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph-circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.
Collapse
Affiliation(s)
- Htoo Shwe Eain
- Department of Oral Pathology and Medicine
- Department of Oral and Maxillofacial Reconstructive Surgery, and
| | | | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine
- Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University, Okayama, Japan
| | | | | | | | | | - Yamin Soe
- Department of Oral Pathology and Medicine
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, and
| | | |
Collapse
|
4
|
Hagan CE, Snyder AG, Headley M, Oberst A. Apoptotic cells promote circulating tumor cell survival and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595217. [PMID: 38826267 PMCID: PMC11142129 DOI: 10.1101/2024.05.21.595217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
During tumor progression and especially following cytotoxic therapy, cell death of both tumor and stromal cells is widespread. Despite clinical observations that high levels of apoptotic cells correlate with poorer patient outcomes, the physiological effects of dying cells on tumor progression remain incompletely understood. Here, we report that circulating apoptotic cells robustly enhance tumor cell metastasis to the lungs. Using intravenous metastasis models, we observed that the presence of apoptotic cells, but not cells dying by other mechanisms, supports circulating tumor cell (CTC) survival following arrest in the lung vasculature. Apoptotic cells promote CTC survival by recruiting platelets to the forming metastatic niche. Apoptotic cells externalize the phospholipid phosphatidylserine to the outer leaflet of the plasma membrane, which we found increased the activity of the coagulation initiator Tissue Factor, thereby triggering the formation of platelet clots that protect proximal CTCs. Inhibiting the ability of apoptotic cells to induce coagulation by knocking out Tissue Factor, blocking phosphatidylserine, or administering the anticoagulant heparin abrogated the pro-metastatic effect of apoptotic cells. This work demonstrates a previously unappreciated role for apoptotic cells in facilitating metastasis by establishing CTC-supportive emboli, and suggests points of intervention that may reduce the pro-metastatic effect of apoptotic cells. GRAPHICAL ABSTRACT
Collapse
|
5
|
Mehmandar-Oskuie A, Tohidfar M, Hajikhani B, Karimi F. Anticancer effects of cell-free culture supernatant of Escherichia coli in bladder cancer cell line: New insight into the regulation of inflammation. Gene 2023; 889:147795. [PMID: 37708921 DOI: 10.1016/j.gene.2023.147795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Bladder cancer (BC) is the 10th most common malignancy in worldwide, with substantial mortality and morbidity if not treated effectively. According to various research, inflammatory circumstances majorly impact the microenvironment of bladder cancer, and the chronic presence of cytokines and chemokines promotes tumor progression. In this investigation, we explored the impact of cell-free culture supernatant ofEscherichia colistrain 536 on inflammatory cytokines and chemokines in bladder cancer model microarray data (GSE162251). Then we examined in silico outcomes on human bladder cancer cell line 5637 to verify and extrapolate findings. This investigation revealed for the first time that this compound has potent suppressor effects on interleukin 1 beta (IL-1β), C-C motif chemokine ligand 2 (CCL2), and C-X3-C motif chemokine ligand 1 (CX3CL1) gene expression as well as increased NAD(P)H quinone dehydrogenase 1 (NQO1), as an anti-oxidant agent, gene expression in 4, 8, and 24 h. Moreover, we confirmed that c-MYC, a member of the MYC proto-oncogene family, gene expression reduced in 5637 cells in 4 h and then followed up its expression in 8 and 24 h. In addition, our investigation demonstrated that the supernatant raised the BCL2-Associated X Protein/B-cell lymphoma 2 (BAX/BCL2) ratio, and subsequent flow cytometry analysis demonstrated that the supernatant induction apoptosis and necrosis. In conclusion, our findings demonstrate that this compound is a potential candidate for the suppression of bladder cancer progression.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Tohidfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Karimi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ben-Mordechai T, Lawrence YR, Symon Z, Shimoni-Sebag A, Amit U. CX3CR1-Expressing Immune Cells Infiltrate the Tumor Microenvironment and Promote Radiation Resistance in a Mouse Model of Lung Cancer. Cancers (Basel) 2023; 15:5472. [PMID: 38001732 PMCID: PMC10669975 DOI: 10.3390/cancers15225472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Chemokine (C-X3-C Motif) Receptor 1 (CX3CR1) is present in a subset of the immune cells in the tumor microenvironment (TME) and plays an essential and diverse role in cancer progression. However, its potential function in the irradiated TME remains unknown. MATERIALS AND METHODS A mouse lung cancer model was performed by subcutaneously inoculating Lewis Lung Carcinoma (LLC) cells expressing luciferase (Luc-2) and mCherry cells in CX3CR1GFP/GFP, CX3CR1DTR/+, and wild-type (WT) mice. Bioluminescence imaging, clonogenic assay, and flow cytometry were used to assess tumor progression, proliferation, and cell composition after radiation. RESULTS Radiation provoked a significant influx of CX3CR1-expressing immune cells, notably monocytes and macrophages, into the TME. Co-culturing irradiated LLC cells with CX3CR1-deficient monocytes, and macrophages resulted in reduced clonogenic survival and increased apoptosis of the cancer cells. Interestingly, deficiency of CX3CR1 in macrophages led to a redistribution of the irradiated LLC cells in the S-phase, parallel to increased expression of cyclin E1, required for cell cycle G1/S transition. In addition, the deficiency of CX3CR1 expression in macrophages altered the cytokine secretion with a decrease in interleukin 6, a crucial mediator of cancer cell survival and proliferation. Next, LLC cells were injected subcutaneously into CX3CR1DTR/+ mice, sensitive to diphtheria toxin (DT), and WT mice. After injection, tumors were irradiated with 8 Gy, and mice were treated with DT, leading to conditional ablation of CX3CR1-expressing cells. After three weeks, CX3CR1-depleted mice displayed reduced tumor progression. Furthermore, combining the S-phase-specific chemotherapeutic gemcitabine with CX3CR1 cell ablation resulted in additional attenuation of tumor progression. CONCLUSIONS CX3CR1-expressing mononuclear cells invade the TME after radiation therapy in a mouse lung cancer model. CX3CR1 cell depletion attenuates tumor progression following radiation and sensitizes the tumor to S-phase-specific chemotherapy. Thus, we propose a novel strategy to improve radiation sensitivity by targeting the CX3CR1-expressing immune cells.
Collapse
Affiliation(s)
- Tamar Ben-Mordechai
- Radiation Oncology Department, Chaim Sheba Medical Center, Ramat Gan 52621, Israel; (T.B.-M.); (Y.R.L.); (Z.S.); (A.S.-S.)
| | - Yaacov R. Lawrence
- Radiation Oncology Department, Chaim Sheba Medical Center, Ramat Gan 52621, Israel; (T.B.-M.); (Y.R.L.); (Z.S.); (A.S.-S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Symon
- Radiation Oncology Department, Chaim Sheba Medical Center, Ramat Gan 52621, Israel; (T.B.-M.); (Y.R.L.); (Z.S.); (A.S.-S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Shimoni-Sebag
- Radiation Oncology Department, Chaim Sheba Medical Center, Ramat Gan 52621, Israel; (T.B.-M.); (Y.R.L.); (Z.S.); (A.S.-S.)
| | - Uri Amit
- Radiation Oncology Department, Tel Aviv Medical Center, Tel Aviv 64239, Israel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, TRC 2 West Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
8
|
O'Reilly D, Buchanan PJ. Hypoxic Signaling Is Modulated by Calcium Channel, CaV1.3, in Androgen-Resistant Prostate Cancer. Bioelectricity 2022; 4:81-91. [PMID: 39350777 PMCID: PMC11441368 DOI: 10.1089/bioe.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Androgen deprivation therapy (ADT) remains a key treatment for advance prostate cancer (PCa), but resistance leads to terminal castrate-resistant prostate cancer (CRPC). Its development is linked to the emergence of a hypoxic tumor microenvironment and associated hypoxia inducible factor (HIF) signaling, which is known to be modulated by intracellular calcium. ADT is also known to upregulate store-operated calcium entry (SOCE) through voltage-gated calcium channel, CaV1.3. Consequently, the role of CaV1.3 in supporting hypoxic signaling and CRPC biology was explored. Materials Androgen-sensitive PCa LNCaP cells were cultured with and without ADT bicalutamide, alongside ADT-resistant CRPC cells (LNCaP-ABL), either in normal or low oxygen (O2) (1%) conditions. HIF-1α, CaV1.3, and androgen receptor (AR) gene expression was measured by qPCR and protein expression with Western blot in the presence or absence of siCaV1.3. SOCE was determined through Fura-2AM fluorescence measurement. Cell proliferation was quantified by WST-1 assay and survival by colony formation. Results CaV1.3 expression was increased during ADT but not hypoxia, correlating with an associated increase in SOCE. HIF-1α expression was upregulated by ADT under normal O2 conditions and increased during hypoxia across all cells but with a higher fold change in early ADT-resistant and CRPC cells. Under hypoxic conditions CaV1.3 small interfering RNA resulted in a significant reduction in HIF-1α expression for ADT-sensitive cells but increased in CRPC. A similar pattern was also observed for AR expression. Cell survival was found significantly reduced by siCaV1.3 under hypoxic conditions for all cells, with and without ADT. Whereas cell proliferation under the same conditions was reduced in CRPC only. Conclusion This study highlights that CaV1.3 can modulated HIF signaling and impact on PCa tumor biology under hypoxia, but further investigation is required to ascertain if this mediated through SOCE or a noncanonical mechanism.
Collapse
Affiliation(s)
- Debbie O'Reilly
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| | - Paul J Buchanan
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
9
|
Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers (Basel) 2021; 13:cancers13236132. [PMID: 34885241 PMCID: PMC8656932 DOI: 10.3390/cancers13236132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Various immune cells are involved in host immune responses to cancer. T-helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are essential for their function and critically regulated by the chemokine superfamily. In this review, we summarize the roles of various immune cells in tumor immunity and their migratory regulation by the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and chemokine receptors in cancer immunotherapy. Abstract Various immune cells are involved in host tumor immune responses. In particular, there are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory responses and may play a role in tumor progression. However, recent studies have also shown that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity. Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs), natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host immune responses to cancer. The migratory properties of various immune cells are critical for their functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine receptors play vital roles in the orchestration of host immune responses to cancer. In this review, we overview the various immune cells involved in host responses to cancer and their migratory properties regulated by the chemokine superfamily. Understanding the roles of chemokines and chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities for cancer immunotherapy.
Collapse
|
10
|
Jiang G, Wang H, Huang D, Wu Y, Ding W, Zhou Q, Ding Q, Zhang N, Na R, Xu K. The Clinical Implications and Molecular Mechanism of CX3CL1 Expression in Urothelial Bladder Cancer. Front Oncol 2021; 11:752860. [PMID: 34671562 PMCID: PMC8521074 DOI: 10.3389/fonc.2021.752860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background CX3CL1 is a chemokine that may play important roles in cancer immune regulation. Its mechanism in bladder cancer (BCa) is poorly understood. The objective of the current study was to evaluate the association between CX3CL1 and BCa and the related biological mechanisms. Methods A total of 277 patients with BCa were enrolled in the present study. The association between CX3CL1 expression and disease outcome was evaluated. In vitro and in vivo experiments were performed using the TCCSUP cell line to investigate the function of CX3CL1 in BCa. Results Compared with low expression, high expression of CX3CL1 was significantly associated with poorer progression-free survival (hazard ratio [HR]=2.03, 95% confidence interval [95% CI]: 1.26-3.27, P=0.006), cancer-specific survival (HR=2.16, 95% CI: 1.59-2.93, P<0.001), and overall survival (HR=1.55, 95% CI: 1.08-2.24, P=0.039). Multivariable Cox regression analysis suggested that CX3CL1 was an independent prognostic factor for BCa outcomes. In vitro and in vivo experiments indicated that high expression of CX3CL1 was significantly associated with cell proliferation (P<0.001) and invasion (P<0.001). Gene expression profiling results showed that after CX3CL1 knockdown, CDH1 was significantly upregulated, while ETS1, RAF1, and EIF4E were significantly downregulated. Pathway enrichment analysis suggested that the ERK/MAPK signaling pathway was significantly inhibited (P<0.001). Conclusions CX3CL1 is an independent predictor of a poor prognosis in BCa and can promote the proliferation and invasion of BCa cells.
Collapse
Affiliation(s)
- Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qidong Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021; 26:512-533. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Sapana Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
12
|
Castillo Ferrer C, Berthenet K, Ichim G. Apoptosis - Fueling the oncogenic fire. FEBS J 2021; 288:4445-4463. [PMID: 33179432 PMCID: PMC8451771 DOI: 10.1111/febs.15624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Apoptosis, the most extensively studied form of programmed cell death, is essential for organismal homeostasis. Apoptotic cell death has widely been reported as a tumor suppressor mechanism. However, recent studies have shown that apoptosis exerts noncanonical functions and may paradoxically promote tumor growth and metastasis. The hijacking of apoptosis by cancer cells may arise at different levels, either via the interaction of apoptotic cells with their local or distant microenvironment, or through the abnormal pro-oncogenic roles of the main apoptosis effectors, namely caspases and mitochondria, particularly upon failed apoptosis. In this review, we highlight some of the recently described mechanisms by which apoptosis and these effectors may promote cancer aggressiveness. We believe that a better understanding of the noncanonical roles of apoptosis may be crucial for developing more efficient cancer therapies.
Collapse
Affiliation(s)
- Camila Castillo Ferrer
- Cancer Target and Experimental TherapeuticsInstitute for Advanced BiosciencesINSERM U1209CNRS UMR5309Grenoble Alpes UniversityFrance
- EPHEPSL Research UniversityParisFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| |
Collapse
|
13
|
Tang M, Bolderson E, O’Byrne KJ, Richard DJ. Tumor Hypoxia Drives Genomic Instability. Front Cell Dev Biol 2021; 9:626229. [PMID: 33796526 PMCID: PMC8007910 DOI: 10.3389/fcell.2021.626229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a leading cause of death worldwide. As a common characteristic of cancer, hypoxia is associated with poor prognosis due to enhanced tumor malignancy and therapeutic resistance. The enhanced tumor aggressiveness stems at least partially from hypoxia-induced genomic instability. Therefore, a clear understanding of how tumor hypoxia induces genomic instability is crucial for the improvement of cancer therapeutics. This review summarizes recent developments highlighting the association of tumor hypoxia with genomic instability and the mechanisms by which tumor hypoxia drives genomic instability, followed by how hypoxic tumors can be specifically targeted to maximize efficacy.
Collapse
Affiliation(s)
- Ming Tang
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
15
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
16
|
Zhang H, Liang F, Yue J, Liu P, Wang J, Wang Z, Li H, Cheng D, Du J, Zhang K, Du P. MicroRNA‑137 regulates hypoxia‑mediated migration and epithelial‑mesenchymal transition in prostate cancer by targeting LGR4 via the EGFR/ERK signaling pathway. Int J Oncol 2020; 57:540-549. [PMID: 32626928 DOI: 10.3892/ijo.2020.5064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 04/15/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) serve an integral role in prostate cancer. The present study aimed to investigate the effects and mechanisms of miR‑137 in hypoxia‑mediated migration and epithelial‑mesenchymal transition (EMT). PC3 and DU145 prostate cancer cells were exposed to hypoxia for 24 h, after which the expression of miR‑137 was determined by reverse transcription‑quantitative PCR (RT‑qPCR). The cells were transfected with a miR‑137 mimic or inhibitor, followed by hypoxia exposure. The results demonstrated that hypoxia reduced miR‑137 expression. Further results from the Cell Counting Kit‑8, Cell Death Detection ELISA plus kit, Transwell assay, RT‑qPCR and western blotting assays revealed that the miR‑137 mimic prevented cell proliferation, facilitated apoptosis and repressed cell migration, invasiveness, and expression of N‑cadherin, vimentin and matrix metalloproteinase 2; the miR‑137 inhibitor exerted the opposite effects. A dual‑-luciferase reporter assay determined that miR‑137 directly targeted leucine‑rich repeat‑containing G protein‑coupled receptor 4 (LGR4). Additionally, miR‑137 negatively regulated the epidermal growth factor receptor/extracellular signal‑-regulated kinase (EGFR/ERK) signaling pathway by targeting LGR4. LGR4 silencing or EGFR/ERK inhibition abolished the effects of miR‑137 inhibitor on cell migration and EMT. In conclusion, by targeting LGR4 via the EGFR/ERK signaling pathway, miR‑137 inhibited prostate cancer cell migration and EMT.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Peng Liu
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Junyong Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Zhaoyang Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Hongxing Li
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Duo Cheng
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Jie Du
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Kai Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital), Zhengzhou, Henan 450007, P.R. China
| | - Peng Du
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing ), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
17
|
Stöhr D, Jeltsch A, Rehm M. TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:57-99. [PMID: 32247582 DOI: 10.1016/bs.ircmb.2020.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytokine tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the large TNF superfamily that can trigger apoptosis in transformed or infected cells by binding and activating two receptors, TRAIL receptor 1 (TRAILR1) and TRAIL receptor 2 (TRAILR2). Compared to other death ligands of the same family, TRAIL induces apoptosis preferentially in malignant cells while sparing normal tissue and has therefore been extensively investigated for its suitability as an anti-cancer agent. Recently, it was noticed that TRAIL receptor signaling is also linked to endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The role of TRAIL receptors in regulating cellular apoptosis susceptibility therefore is broader than previously thought. Here, we provide an overview of TRAIL-induced signaling, covering the core signal transduction during extrinsic apoptosis as well as its link to alternative outcomes, such as necroptosis or NF-κB activation. We discuss how environmental factors, transcriptional regulators, and genetic or epigenetic alterations regulate TRAIL receptors and thus alter cellular TRAIL susceptibility. Finally, we provide insight into the role of TRAIL receptors in signaling scenarios that engage the unfolded protein response and discuss how these findings might be translated into new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Daniela Stöhr
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany; University of Stuttgart, Stuttgart Centre for Simulation Science, Stuttgart, Germany
| |
Collapse
|
18
|
Physiological Hypoxia Enhances Stemness Preservation, Proliferation, and Bidifferentiation of Induced Hepatic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7618704. [PMID: 29643975 PMCID: PMC5831960 DOI: 10.1155/2018/7618704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/24/2017] [Indexed: 02/06/2023]
Abstract
Induced hepatic stem cells (iHepSCs) have great potential as donors for liver cell therapy due to their self-renewal and bipotential differentiation properties. However, the efficiency of bidifferentiation and repopulation efficiency of iHepSCs is relatively low. Recent evidence shows that physiological hypoxia, a vital factor within stem cell “niche” microenvironment, plays key roles in regulating tissue stem cell biological behaviors including proliferation and differentiation. In this study, we found that physiological hypoxia (10% O2) enhanced the stemness properties and promoted the proliferation ability of iHepSCs by accelerating G1/S transition via p53-p21 signaling pathway. In addition, short-term hypoxia preconditioning improved the efficiency of hepatic differentiation of iHepSCs, and long-term hypoxia promoted cholangiocytic differentiation but inhibited hepatic differentiation of iHepSCs. These results demonstrated the potential effects of hypoxia on stemness preservation, proliferation, and bidifferentiation of iHepSCs and promising perspective to explore appropriate culture conditions for therapeutic stem cells.
Collapse
|
19
|
Senavirathna LK, Huang C, Yang X, Munteanu MC, Sathiaseelan R, Xu D, Henke CA, Liu L. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci Rep 2018; 8:2709. [PMID: 29426911 PMCID: PMC5807313 DOI: 10.1038/s41598-018-21073-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3–6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.
Collapse
Affiliation(s)
- Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Maria Cristina Munteanu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Roshini Sathiaseelan
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA.,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Craig A Henke
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA. .,Department of Physiological Sciences, Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
20
|
Huang L, Ma B, Ma J, Wang F. Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway. Biochem Biophys Res Commun 2017; 493:1510-1517. [PMID: 28986258 DOI: 10.1016/j.bbrc.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy with an estimated 5 year survival rate of approximately 5% of all stages combined. High potential of PDAC metastasis is a leading cause for high mortality and poor prognosis. The majority of patients present with distant metastasis at diagnosis. Fractalkine (FKN) is recognized as a chemokine and a specific ligand of CX3CR1. It has been reported that FKN/CX3CR1 system was upregulated in many types of solid tumors. However, role of FKN/CX3CR1 in PDAC development remains unclear. In the current investigation, we found that FKN and CX3CR1 expression was significantly increased in PDAC tissues, especially in the metastatic samples, and was highly-correlated with severity of PDAC. Ectopic expression of FKN promoted the proliferation and migration of PDAC, while knockdown of CX3CR1 reversed the function of FKN. In addition, PDAC cells with FKN-deficiency showed impaired proliferation and migration activity. The underlying mechanism is that FKN/CX3CR1 activated JAK/STAT signaling, which in turn regulated cell growth. Consistently, in vivo tumorigenesis assay validated the regulatory role of FKN/CX3CR1 in PDAC growth. Our investigation helped understanding the pathogenesis of PDAC occurrence, and demonstrated critical role of FKN/CX3CR1 in PDAC development.
Collapse
Affiliation(s)
- LiYa Huang
- Department of Gastroenterology, General Hospital of NingXia Medical University, Yinchuan, NingXia, 750004, China.
| | - BinWu Ma
- Department of Neurology, General Hospital of NingXia Medical University, Yinchuan, NingXia, 750004, China
| | - JunWen Ma
- Department of Gastroenterology Surgery, General Hospital of NingXia Medical University, Yinchuan, NingXia, 750004, China
| | - Feng Wang
- Department of Hepatobiliary Surgery, General Hospital of NingXia Medical University, Yinchuan, NingXia, 750004, China
| |
Collapse
|
21
|
Abstract
Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.
Collapse
Affiliation(s)
- Gabriel Ichim
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|