1
|
Chen J, Zhong K, Jing Y, Liu S, Qin S, Peng F, Li D, Peng C. Procyanidin B2: A promising multi-functional food-derived pigment for human diseases. Food Chem 2023; 420:136101. [PMID: 37059021 DOI: 10.1016/j.foodchem.2023.136101] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Natural edible pigments play a paramount part in the food industry. Procyanidin B2 (PB2), one of the most representative naturally occurring edible pigments, is usually isolated from the seeds, fruits, and leaves of lots of common plants, such as grapes, Hawthorn, black soybean, as well as blueberry, and functions as a food additive in daily life. Notably, PB2 has numerous bioactivities and possesses the potential to treat/prevent a wide range of human diseases, such as diabetes mellitus, diabetic complications, atherosclerosis, and non-alcoholic fatty liver disease, and the underlying mechanisms were partially elucidated, including mediating signaling pathways like NF-κB, MAPK, PI3K/Akt, apoptotic axis, and Nrf-2/HO-1. This paper presents a review of the natural sources, bioactivities, and the therapeutic/preventive potential of PB2 and the possible mechanisms, with the aim of promoting the development of PB2 as a functional food and providing references for its clinical application in the treatment of diseases.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Qaed E, Almoiliqy M, Al-Hamyari B, Qaid A, Alademy H, Al-Maamari A, Alyafeai E, Geng Z, Tang Z, Ma X. Procyanidins: A promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Repair Regen 2023; 31:688-699. [PMID: 37553788 DOI: 10.1111/wrr.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Collapse
Affiliation(s)
- Eskandar Qaed
- Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Taizz, Yemen
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Tang C, Wang M, Liu J, Zhang C, Li L, Wu Y, Chu Y, Wu D, Liu H, Yuan X. A Cyclopentanone Compound Attenuates the Over-Accumulation of Extracellular Matrix and Fibrosis in Diabetic Nephropathy via Downregulating the TGF-β/p38MAPK Axis. Biomedicines 2022; 10:biomedicines10123270. [PMID: 36552026 PMCID: PMC9775671 DOI: 10.3390/biomedicines10123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Excessive accumulation of the extracellular matrix (ECM) is a crucial pathological process in chronic kidney diseases, such as diabetic nephropathy, etc. The underlying mechanisms of how to decrease ECM deposition to improve diabetic nephropathy remain elusive. The present study investigated whether cyclopentanone compound H8 alleviated ECM over-deposition and fibrosis to prevent and treat diabetic nephropathy. HK-2 cell viability after treatment with H8 was measured by an MTT assay. ECM alterations and renal fibrosis were identified in vitro and in vivo. A pharmacological antagonist was used to detect associations between H8 and the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway. H8 binding was identified through computer simulation methods. Studies conducted on high glucose and transforming growth factor β1 (TGF-β1)-stimulated HK-2 cells revealed that the p38MAPK inhibitor SB 202190 and H8 had similar pharmacological effects. In addition, excessive ECM accumulation and fibrosis in diabetic nephropathy were remarkably improved after H8 administration in vivo and in vitro. Finally, the two molecular docking models further proved that H8 is a specific p38MAPK inhibitor that forms a hydrogen bond with the LYS-53 residue of p38MAPK. The cyclopentanone compound H8 alleviated the over-deposition of ECM and the development of fibrosis in diabetic nephropathy by suppressing the TGF-β/p38MAPK axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haifeng Liu
- Correspondence: (H.L.); (X.Y.); Tel.: +86-0453-6984403 (H.L.); +86-0453-6984401 (X.Y.)
| | - Xiaohuan Yuan
- Correspondence: (H.L.); (X.Y.); Tel.: +86-0453-6984403 (H.L.); +86-0453-6984401 (X.Y.)
| |
Collapse
|
4
|
Yin J, Wang K, Zhu X, Lu G, Jin D, Qiu J, Zhou F. Procyanidin B2 suppresses hyperglycemia‑induced renal mesangial cell dysfunction by modulating CAV‑1‑dependent signaling. Exp Ther Med 2022; 24:496. [PMID: 35837062 PMCID: PMC9257762 DOI: 10.3892/etm.2022.11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
The dysfunction of renal mesangial cells (MCs) is a hallmark of diabetic kidney disease (DKD), which triggers glomerulosclerosis leading to end-stage renal disease. Procyanidin B2 (PB2), the main component of proanthocyanidin, is well known for its antioxidant and anti-inflammatory effects; however, it remains unclear as to whether it has protective effects on DKD. The present study investigated the protective effect of PB2 against hyperglycemia-induced renal MC dysfunction in mouse SV40-Mes13 (Mes13) cells. The Mes13 cells were treated with or without PB2 under HG conditions. Cell proliferation was assessed using an MTT assay and oxidative stress was assessed by examining intracellular ROS generation and H2O2 production. The changes in extracellular matrix accumulation- and cellular inflammation-related proteins were measured by western blot analysis, ELISA and immunofluorescence analysis. The results showed that PB2 treatment markedly attenuated hyperglycemia-induced cell proliferation, oxidative stress, extracellular matrix accumulation and cellular inflammation in Mes13 cells, which was accompanied by an inactivation of redoxosomes, TGF-β1/SMAD and IL-1β/TNF-α/NF-κB signaling pathways. The present study also demonstrated that hyperglycemia upregulated and activated caveolin-1 (CAV-1), whereas PB2 treatment potently reversed this effect. In accordance, CAV-1 overexpression abolished the protective effects of PB2 against hyperglycemia in Mes13 cells, indicating that the cytoprotective effect of PB2 was CAV-1-dependent. These findings form the basis of the potential clinical applications of PB2 in the treatment of DKD.
Collapse
Affiliation(s)
- Jun Yin
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, P.R. China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Donghua Jin
- Department of Nephrology, People's Hospital of Suzhou New District, Suzhou, Jiangsu 215129, P.R. China
| | - Junsi Qiu
- Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales A-2006, Australia
| |
Collapse
|
5
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
7
|
Epithelial-to-Mesenchymal Transition Is Not a Major Modulating Factor in the Cytotoxic Response to Natural Products in Cancer Cell Lines. Molecules 2021; 26:molecules26195858. [PMID: 34641401 PMCID: PMC8512490 DOI: 10.3390/molecules26195858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products exhibit antiproliferative activity against cancer cells by modulating various biological pathways. In this study, we investigated the potential use of eight natural compounds (apigenin, curcumin, epigallocatechin gallate, fisetin, forskolin, procyanidin B2, resveratrol, urolithin A) and two repurposed agents (fulvestrant and metformin) as chemotherapy enhancers and mesenchymal-to-epithelial (MET) inducers of cancer cells. Screening of these compounds in various colon, breast, and pancreatic cancer cell lines revealed anti-cancer activity for all compounds, with curcumin being the most effective among these in all cell lines. Although some of the natural products were able to induce MET in some cancer cell lines, the MET induction was not related to increased synergy with either 5-FU, irinotecan, gemcitabine, or gefitinib. When synergy was observed, for example with curcumin and irinotecan, this was unrelated to MET induction, as assessed by changes in E-cadherin and vimentin expression. Our results show that MET induction is compound and cell line specific, and that MET is not necessarily related to enhanced chemosensitivity.
Collapse
|
8
|
Harris BRE, Zhang Y, Tao J, Shen R, Zhao X, Cleary MP, Wang T, Yang D. ATM inhibitor KU‐55933 induces apoptosis and inhibits motility by blocking GLUT1‐mediated glucose uptake in aggressive cancer cells with sustained activation of Akt. FASEB J 2021; 35:e21264. [DOI: 10.1096/fj.202001415rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ye Zhang
- The Hormel Institute University of Minnesota Austin MN USA
- Wuxi People's Hospital Wuxi People's Republic of China
| | - Jianxin Tao
- The Hormel Institute University of Minnesota Austin MN USA
- Nanjing Medical University Nanjing People's Republic of China
| | - Renhui Shen
- The Hormel Institute University of Minnesota Austin MN USA
- Nanjing Medical University Nanjing People's Republic of China
| | - Xiaoqian Zhao
- Nanjing Medical University Nanjing People's Republic of China
| | - Margot P. Cleary
- The Hormel Institute University of Minnesota Austin MN USA
- The Masonic Cancer Center University of Minnesota Minneapolis MN USA
| | - Tong Wang
- Wuxi People's Hospital Wuxi People's Republic of China
- Nanjing Medical University Nanjing People's Republic of China
| | - Da‐Qing Yang
- The Hormel Institute University of Minnesota Austin MN USA
- The Masonic Cancer Center University of Minnesota Minneapolis MN USA
| |
Collapse
|
9
|
Álvarez Cilleros D, López-Oliva ME, Martín MÁ, Ramos S. (-)-Epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid protect against high glucose and lipopolysaccharide-induced inflammation in renal proximal tubular cells through NOX-4/p38 signalling. Food Funct 2020; 11:8811-8824. [PMID: 32959859 DOI: 10.1039/d0fo01805h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hyperglycaemia and inflammation are present in diabetes and both processes have been related to the pathogenesis of diabetic kidney disease. Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake, such as 2,3-dihydroxybenzoic acid (DHBA), 3,4-dihydroxyphenylacetic acid (DHPAA) and 3-hydroxyphenylpropionic acid (HPPA), have been suggested to exert beneficial effects in diabetes. This study was aimed at investigating whether the mentioned compounds could prevent inflammation in renal proximal tubular NRK-52E cells induced by high glucose and lipopolysaccharide (LPS). Pre-treatment of cells with EC and DHBA (5 μM) reverted the enhanced levels of pro-inflammatory cytokines, such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1), activated by high glucose and LPS. Additionally, EC and DHBA pre-incubation reduced the increased values of adhesion molecules, namely, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as those of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinase (ERK), -c-jun N-terminal kinase (JNK) and -p38 protein kinase (p38)] activated by the high glucose and LPS challenge. Thus, in EC and DHBA pre-treated cells ICAM-1, p-ERK and p-JNK were returned to control values, and VCAM-1 and p-p38 levels were reduced by ∼20 and 25%, respectively, when compared to high glucose plus LPS-stimulated cells. Likewise, pre-treatment with EC and DHBA protected against high glucose plus LPS-triggered oxidative stress by preventing increased ROS and NADPH oxidase 4 (NOX-4) levels (∼25 and 45% reduction, respectively). By using specific inhibitors of p38 and NOX-4, the participation of both proteins in EC- and DHBA-mediated protection against inflammation and associated oxidative stress was shown. Taken together, EC and DHBA exert beneficial effects in renal proximal tubular cells, as they contribute to preventing the inflammatory-induced milieu and the accompanying redox imbalance, playing NOX-4/p38 a crucial role.
Collapse
Affiliation(s)
- David Álvarez Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain. and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Zhang H, Wei X, Lu S, Lin X, Huang J, Chen L, Huang X, Jiang L, Li Y, Qin L, Wei J, Huang R. Protective effect of DMDD, isolated from the root of Averrhoa carambola L., on high glucose induced EMT in HK-2 cells by inhibiting the TLR4-BAMBI-Smad2/3 signaling pathway. Biomed Pharmacother 2019; 113:108705. [PMID: 30877882 DOI: 10.1016/j.biopha.2019.108705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hyperglycemia stimulated epithelial-mesenchymal transition (EMT) plays a critical role in initiating and progressing renal fibrosis in diabetic kidney disease (DKD). It is crucial to explore novel renal protective drugs for the treatment of DKD. OBJECTIVE The present study is to confirm our hypothesis and to accumulate the information for the application of DMDD (2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione) as a novel therapeutic agent to potentially inhibit renal fibrogenesis and EMT in the DKD. METHODS High glucose induced renal proximal tubular epithelial cell line (HK-2 cells) was cultured and treated with DMDD. The cell viability and DMDD cytotoxicity were assessed by CCK8. Immunofluorescence was used for detection of TLR4 and downstream protein in normal and high glucose induced HK-2 cells. HK-2 cells were transfected with lentivirus codifying for BAMBI (BMP and activin membrane bound inhibitor) and interfering RNA for determination of the effect of BAMBI over-expression and silencing, respectively. TLR4-BAMBI-Smad2/3 pathway was analyzed by means of RT-PCR and western blot. RESULTS A high concentration (60mM) of glucose induced significant EMT process and TLR4 expression was increased obviously in this circumstance. DMDD inhibited high expressions of TLR4 and Smad2/3 in HG induced cells and decreased the expression of BAMBI. In addition, the effects of decreased BAMBI expression and increased Smad2/3 expression in HG cultured cells were reversed in the cells of TAK-242 (TLR4 signaling inhibitor) intervention. BAMBI gene silencing dramatically increased EMT process and the over-expression of BAMBI was opposite in HK-2 cells with HG condition. These observations of EMT were ameliorated when the HK-2 cells were pre-treated with DMDD. CONCLUSIONS Our study demonstrates that DMDD treatment improves EMT in the HG induced HK-2 cells. In addition, DMDD significantly inhibits EMT by TLR4-BAMBI-Smad2/3 pathway, which hints that DMDD may be an alternative approach in diabetic renal injury.
Collapse
Affiliation(s)
- Hongliang Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China; Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaojie Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shunyu Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xing Lin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jianchun Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lixiu Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiang Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Luhui Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuchun Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Luhui Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Nie Y, Stürzenbaum SR. Proanthocyanidins of Natural Origin: Molecular Mechanisms and Implications for Lipid Disorder and Aging-Associated Diseases. Adv Nutr 2019; 10:464-478. [PMID: 30926997 PMCID: PMC6520035 DOI: 10.1093/advances/nmy118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Proanthocyanidins are phytonutrients formed by oligomerization or polymerization of subunits catechin, epicatechin, and their gallic acid esters. Proanthocyanidins are a component of many plants and thus form an integral part of the human diet. Oligomeric proanthocyanidins are currently marketed as medicinal products that target vascular disorders and chronic pathological conditions, many of which are age-associated. Proanthocyanidins are also characterized by their effects on energy homeostasis. Not dissimilar to their chemically synthesized counterparts, naturally extracted proanthocyanidins act via inhibition of lipases, stimulation of energy expenditure, or suppression of appetite. Here we review the current knowledge-base and highlight challenges and future impacts regarding involvement of proanthocyanidins in global lipid metabolism, with a focus on the molecular mechanisms and pathological conditions that progress with aging.
Collapse
Affiliation(s)
- Yu Nie
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:229-245. [PMID: 30668344 DOI: 10.1016/j.phymed.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder associated with persistent increased level of glucose in the blood. According to a report by World Health Organisation (WHO), prevalence of diabetes among adults over 18 years of age had reached to 8.5% in year 2014 which was 4.7% in 1980s. The Prolong increased level of glucose in blood leads to development of microvascular (blindness, nephropathy and neuropathy) and macrovascular (cardiovascular and stroke) degenerative complications because of uncontrolled level of glucose in blood. This also leads to the progression of oxidative stress and affecting metabolic, genetic and haemodynamic system by activation of polyol pathway, protein kinase C pathway, hexosamine pathway and increases advanced glycation end products (AGEs) formation. Diabetes mellitus and its associated complications are one of the major leading causes of mortality worldwide. Various natural products like alkaloids, glycosides, flavonoids, terpenoids and polyphenols are reported for their activity in management of diabetes and its associated diabetic complications. Tannins are systematically studied by many researchers in past few decades for their effect in diabetes and its complications. AIM The present review was designed to compile the data of tannins and their beneficial effects in the management of diabetic complications. METHOD Literature search was performed using various dataset like pubmed, EBSCO, proQuest Scopus and selected websites including the National Institutes of Health (NIH) and the World Health Organization (WHO). RESULTS Globally, more than 400 natural products have been investigated in diabetes and its complications. Tannins are the polyphenolic compounds present in many medicinal plants and various dietary sources like fruits, nuts, grains, spices and beverages. Various reports have shown that compounds like gallic acid, ellagic acid, catechin, epicatechin and procynidins from medicinal plants play major role in controlling progression of diabetes and its related complications by acting on molecular pathways and key targets involved in progression. Many chemists used above mentioned phyto-constituents as a pharmacophore for the developing new chemical entities having higher therapeutic benefits in management of diabetic complications. CONCLUSION This review focuses on the role of various tannins in prevention and management of diabetic complications like diabetic nephropathy, diabetic neuropathy, diabetic retinopathy and diabetic cardiomyopathy. It will help researchers to find some leads for the development of new cost effective therapy using dietary source for the management of diabetic complications.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
13
|
Zhang L, Shen ZY, Wang K, Li W, Shi JM, Osoro EK, Ullah N, Zhou Y, Ji SR. C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy. FASEB J 2019; 33:6551-6563. [PMID: 30794428 DOI: 10.1096/fj.201801865rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have reported the pathogenic role of C-reactive protein (CRP) during diabetic kidney disease (DKD) in human CRP transgenic and Crp-/- mice. However, because humans and mice have inverse acute phase expression patterns of CRP and serum amyloid P component, this could lead to the inaccurate evaluation of CRP function with the above-mentioned CRP transgenic mouse. But different from mice, rats have the same acute phase protein expression pattern as human, which might avoid this problem and be a better choice for CRP function studies. To dispel this doubt and accurately define the role of CRP during diabetic nephropathy, we created the first Crp-/- rat model, which we treated with streptozocin to induce DKD for in vivo studies. Moreover, an established cell line (human kidney 2) was used to further investigate the pathologic mechanisms of CRP. We found that CRP promotes epithelial-mesenchymal transition (EMT) through Wnt/β-catenin and ERK1/2 signaling, which are dependent on CRP binding to FcγRII on apoptotic cells. By promoting EMT, CRP was demonstrated to accelerate the development of DKD. We thus present convincing evidence demonstrating CRP as a therapeutic target for DKD treatment.-Zhang, L., Shen, Z.-Y., Wang, K., Li, W., Shi, J.-M., Osoro, E. K., Ullah, N., Zhou, Y., Ji, S.-R. C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/β-catenin and ERK signaling in streptozocin-induced diabetic nephropathy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Yuan Shen
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ke Wang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jing-Ming Shi
- Department of Anatomy, School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Ezra Kombo Osoro
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Naeem Ullah
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shang-Rong Ji
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Song S, Qiu D, Luo F, Wei J, Wu M, Wu H, Du C, Du Y, Ren Y, Chen N, Duan H, Shi Y. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J Mol Endocrinol 2018; 61:101-113. [PMID: 30307163 DOI: 10.1530/jme-18-0069] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tubular injury is one of the crucial determinants of progressive renal failure in diabetic nephropathy (DN), while epithelial-to-mesenchymal transition (EMT) of tubular cells contributes to the accumulation of matrix protein in the diabetic kidney. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome leads to the maturation of interleukin (IL)-1B and is involved in the pathogenic mechanisms of diabetes. In this study, we explored the role of NLRP3 inflammasome on high glucose (HG) or transforming growth factor-B1 (TGFB1)-induced EMT in HK-2 cells. We evaluated EMT through the expression of α-smooth muscle actin (α-SMA) and E-cadherin as well as the induction of a myofibroblastic phenotype. Reactive oxygen species (ROS) was observed using the confocal microscopy. HG was shown to induce EMT at 48 h, which was blocked by NLRP3 silencing or antioxidant N-acetyl-L-cysteine (NAC). We found that NLRP3 interference could inhibit HG-induced ROS. Knockdown of NLRP3 could prevent HG-induced EMT by inhibiting the phosphorylation of SMAD3, P38 MAPK and ERK1/2. In addition, P38 MAPK and ERK1/2 might be involved in HG-induced NLRP3 inflammasome activation. Besides, TGFB1 induced the activation of NLRP3 inflammasome and the generation of ROS, which were blocked by NLRP3 interference or NAC. Tubular cells exposed to TGFB1 also underwent EMT, and this could be inhibited by NLRP3 shRNA or NAC. These results indicated that knockdown of NLRP3 antagonized HG-induced EMT by inhibiting ROS production, phosphorylation of SMAD3, P38MAPK and ERK1/2, highlighting NLRP3 as a potential therapy target for diabetic nephropathy.
Collapse
Affiliation(s)
- Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Duojun Qiu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Fengwei Luo
- Renal Division, Department of Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| |
Collapse
|
15
|
Álvarez-Cilleros D, Martín MÁ, Goya L, Ramos S. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Flores-López LA, Martínez-Hernández MG, Viedma-Rodríguez R, Díaz-Flores M, Baiza-Gutman LA. High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol (Dordr) 2016; 39:365-78. [PMID: 27106722 DOI: 10.1007/s13402-016-0282-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that type 2 diabetes is associated with an increased risk to develop breast cancer. This risk has been attributed to hyperglycemia, hyperinsulinemia and chronic inflammation. As yet, however, the mechanisms underlying this association are poorly understood. Here, we studied the effect of high glucose and insulin on breast cancer-derived cell proliferation, migration, epithelial-mesenchymal transition (EMT) and invasiveness, as well as its relationship to reactive oxygen species (ROS) production and the plasminogen activation system. METHODS MDA-MB-231 cell proliferation, migration and invasion were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch-wound and matrigel transwell assays, respectively. ROS production was determined using 2' 7'-dichlorodihydrofluorescein diacetate. The expression of E-cadherin, vimentin, fibronectin, urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) were assessed using qRT-PCR and/or Western blotting assays, respectively. uPA activity was determined using gel zymography. RESULTS We found that high glucose stimulated MDA-MB-231 cell proliferation, migration and invasion, together with an increased expression of mesenchymal markers (i.e., vimentin and fibronectin). These effects were further enhanced by the simultaneous administration of insulin. In both cases, the invasion and growth responses were found to be associated with an increased expression of uPA, uPAR and PAI-1, as well as an increase in active uPA. An osmolality effect of high glucose was excluded by using mannitol at an equimolar concentration. We also found that all changes induced by high glucose and insulin were attenuated by the anti-oxidant N-acetylcysteine (NAC) and, thus, depended on ROS production. CONCLUSIONS From our data we conclude that hyperglycemia and hyperinsulinemia can promote breast cancer cell proliferation, migration and invasion. We found that these features were associated with increased expression of the mesenchymal markers vimentin and fibronectin, as well as increased uPA expression and activation through a mechanism mediated by ROS.
Collapse
Affiliation(s)
- Luis Antonio Flores-López
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - María Guadalupe Martínez-Hernández
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - Rubí Viedma-Rodríguez
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del, Cuauhtémoc, DF, 06720, México
| | - Luis Arturo Baiza-Gutman
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México.
| |
Collapse
|