1
|
Duan X, Nie Y, Xie X, Zhang Q, Zhu C, Zhu H, Chen R, Xu J, Zhang J, Yang C, Yu Q, Cai K, Wang Y, Tian W. Sex differences and testosterone interfere with the structure of the gut microbiota through the bile acid signaling pathway. Front Microbiol 2024; 15:1421608. [PMID: 39493843 PMCID: PMC11527610 DOI: 10.3389/fmicb.2024.1421608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background The gut microbiome has a significant impact on human wellness, contributing to the emergence and progression of a range of health issues including inflammatory and autoimmune conditions, metabolic disorders, cardiovascular problems, and psychiatric disorders. Notably, clinical observations have revealed that these illnesses can display differences in incidence and presentation between genders. The present study aimed to evaluate whether the composition of gut microbiota is associated with sex-specific differences and to elucidate the mechanism. Methods 16S-rRNA-sequencing technology, hormone analysis, gut microbiota transplantation, gonadectomy, and hormone treatment were employed to investigate the correlation between the gut microbiome and sex or sex hormones. Meanwhile, genes and proteins involved bile acid signaling pathway were analyzed both in the liver and ileum tissues. Results The composition and diversity of the microbiota from the jejunum and feces and the level of sex hormones in the serum differed between the sexes in young and middle-aged Sprague Dawley (SD) rats. However, no similar phenomenon was found in geriatric rats. Interestingly, whether in young, middle-aged, or old rats, the composition of the microbiota and bacterial diversity differed between the jejunum and feces in rats. Gut microbiota transplantation, gonadectomy, and hormone replacement also suggested that hormones, particularly testosterone (T), influenced the composition of the gut microbiota in rats. Meanwhile, the mRNA and protein level of genes involved bile acid signaling pathway (specifically SHP, FXR, CYP7A1, and ASBT) exhibited gender-specific differences, and T may play a significant role in mediating the expression of this pathway. Conclusion Sex-specific differences in the structure of the gut microbiota are mediated by T through the bile acid signaling pathway, pointing to potential targets for disease prevention and management techniques by indicating that sex differences and T levels may alter the composition of the gut microbiota via the bile acid signaling pathway.
Collapse
Affiliation(s)
- Xueqing Duan
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yinli Nie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Xin Xie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Chen Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Han Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Rui Chen
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jun Xu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jinqiang Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Changfu Yang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Yu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Kun Cai
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Tian
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| |
Collapse
|
2
|
Xu Y, Zhou C, Zong M, Zhu J, Guo X, Sun Z. High-protein high-konjac glucomannan diets changed glucose and lipid metabolism by modulating colonic microflora and bile acid profiles in healthy mouse models. Food Funct 2024; 15:4446-4461. [PMID: 38563504 DOI: 10.1039/d4fo00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
High protein and fiber diets are becoming increasingly popular for weight loss; however, the benefits or risks of high protein and fiber diets with a normal calorie level for healthy individuals still need to be elucidated. In this study, we explored the role and mechanisms of long-term high protein and/or konjac glucomannan diets on the metabolic health of healthy mouse models. We found that high konjac glucomannan contents improved the glucose tolerance of mice and both high protein and high konjac glucomannan contents improved the serum lipid profile but increased the TNF-α levels. In the liver, high dietary protein contents reduced the expression of the FASN gene related to fatty acid synthesis. Interactions of dietary protein and fiber were shown in the signaling pathways related to lipid and glucose metabolism of the liver and the inflammatory status of the colon, wherein the high protein and high konjac glucomannan diet downregulated the expression of the SREBF1 and FXR genes in the liver and downregulated the expression of TNF-α genes in the colon compared to the high protein diet. High konjac glucomannan contents reduced the colonic secondary bile acid levels including DCA and LCA; this was largely associated with the changed microbiota profile and also contributed to improved lipid and glucose homeostasis. In conclusion, high protein diets improved lipid homeostasis and were not a risk to metabolic health, while high fiber diets improved glucose and lipid homeostasis by modulating colonic microbiota and bile acid profiles, and a high protein diet supplemented with konjac glucomannan might improve hepatic lipid homeostasis and colonic inflammation in healthy mouse models through long-term intervention.
Collapse
Affiliation(s)
- Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Minyue Zong
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Junwei Zhu
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Xutong Guo
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, Department of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
3
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Effects of Resveratrol Supplementation and Exercise on Apoptosis, Lipid Profile, and Expression of Farnesoid X Receptor, Liver X Receptor and Sirtuin 1 Genes in the Liver of Type 1 Diabetic Rats. MEDICAL LABORATORY JOURNAL 2022. [DOI: 10.52547/mlj.16.4.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Chakaroun R, Massier L, Musat N, Kovacs P. New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Exp Clin Endocrinol Diabetes 2022; 130:313-326. [PMID: 35320847 DOI: 10.1055/a-1756-4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the strongly accumulating evidence for microbial signatures in metabolic tissues, including the blood, suggesting a novel paradigm for metabolic disease development, the notion of a core blood bacterial signature in health and disease remains a contentious concept. Recent studies clearly demonstrate that under a strict contamination-free environment, methods such as 16 S rRNA gene sequencing, fluorescence in-situ hybridization, transmission electron microscopy, and several more, allied with advanced bioinformatics tools, allow unambiguous detection and quantification of bacteria and bacterial DNA in human tissues. Bacterial load and compositional changes in the blood have been reported for numerous disease states, suggesting that bacteria and their components may partially induce systemic inflammation in cardiometabolic disease. This concept has been so far primarily based on measurements of surrogate parameters. It is now highly desirable to translate the current knowledge into diagnostic, prognostic, and therapeutic approaches.This review addresses the potential clinical relevance of a blood bacterial signature pertinent to cardiometabolic diseases and outcomes and new avenues for translational approaches. It discusses pitfalls related to research in low bacterial biomass while proposing mitigation strategies for future research and application approaches.
Collapse
Affiliation(s)
- Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| |
Collapse
|
6
|
Farnesoid X Receptor Deficiency Induces Hepatic Lipid and Glucose Metabolism Disorder via Regulation of Pyruvate Dehydrogenase Kinase 4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3589525. [PMID: 35251469 PMCID: PMC8896157 DOI: 10.1155/2022/3589525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Farnesoid X receptors (FXR) are bile acid receptors that play roles in lipid, glucose, and energy homeostasis. Synthetic FXR-specific agonists have been developed for treating nonalcoholic fatty liver disease (NAFLD) patients. However, the detailed mechanism remains unclear. To investigate the effects of FXR on NAFLD and the possible mechanism, FXR-null mice were fed either a normal or a high-fat diet. The FXR-null mice developed hepatomegaly, steatosis, accumulation of lipid droplets in liver cells, glucose metabolism disorder, and elevated serum lipid levels. Transcriptomic results showed increased expression of key lipid synthesis and glucose metabolism-related proteins. We focused on pyruvate dehydrogenase kinase 4 (PDK4), a key enzyme involved in the regulation of glucose and fatty acid (FA) metabolism and homeostasis. Subsequently, we confirmed an increase in PDK4 expression in FXR knockout cells. Moreover, inhibition of PDK4 expression alleviated lipid accumulation in hepatocytes caused by FXR deficiency in vivo and in vitro. Our results identify FXR as a nuclear transcription factor that regulates glucose and lipid metabolism balance through PDK4, providing further insights into the mechanism of FXR agonists in the treatment of metabolic diseases.
Collapse
|
7
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chaudhari SN, McCurry MD, Devlin AS. Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nat Chem Biol 2021; 17:1046-1056. [PMID: 34552222 PMCID: PMC8480537 DOI: 10.1038/s41589-021-00861-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/16/2021] [Indexed: 12/27/2022]
Abstract
Human-associated microorganisms play a vital role in human health, and microbial imbalance has been linked to a wide range of disease states. In this Review, we explore recent efforts to progress from correlative studies that identify microorganisms associated with human disease to experiments that establish causal relationships between microbial products and host phenotypes. We propose that successful efforts to uncover phenotypes often follow a chain of evidence that proceeds from (1) association studies; to (2) observations in germ-free animals and antibiotic-treated animals and humans; to (3) fecal microbiota transplants (FMTs); to (4) identification of strains; and then (5) molecules that elicit a phenotype. Using this experimental 'funnel' as our guide, we explore how the microbiota contributes to metabolic disorders and hypertension, infections, and neurological conditions. We discuss the potential to use FMTs and microbiota-inspired therapies to treat human disease as well as the limitations of these approaches.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Megan D McCurry
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
10
|
Lu J, Wang S, Li M, Gao Z, Xu Y, Zhao X, Hu C, Zhang Y, Liu R, Hu R, Shi L, Zheng R, Du R, Su Q, Wang J, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Wang X, Li Q, Qin G, Wan Q, Chen G, Xu M, Dai M, Zhang D, Tang X, Wang G, Shen F, Luo Z, Qin Y, Chen L, Huo Y, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Li D, Lai S, Mu Y, Chen L, Zhao J, Xu G, Ning G, Bi Y, Wang W. Association of Serum Bile Acids Profile and Pathway Dysregulation With the Risk of Developing Diabetes Among Normoglycemic Chinese Adults: Findings From the 4C Study. Diabetes Care 2021; 44:499-510. [PMID: 33355246 DOI: 10.2337/dc20-0884] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/29/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comprehensive assessment of serum bile acids (BAs) aberrations before diabetes onset remains inconclusive. We examined the association of serum BA profile and coregulation with the risk of developing type 2 diabetes mellitus (T2DM) among normoglycemic Chinese adults. RESEARCH DESIGN AND METHODS We tested 23 serum BA species in subjects with incident diabetes (n = 1,707) and control subjects (n = 1,707) matched by propensity score (including age, sex, BMI, and fasting glucose) from the China Cardiometabolic Disease and Cancer Cohort (4C) Study, which was composed of 54,807 normoglycemic Chinese adults with a median follow-up of 3.03 years. Multivariable-adjusted odds ratios (ORs) for associations of BAs with T2DM were estimated using conditional logistic regression. RESULTS In multivariable-adjusted logistic regression analysis, per SD increment of unconjugated primary and secondary BAs were inversely associated with incident diabetes, with an OR (95% CI) of 0.89 (0.83-0.96) for cholic acid, 0.90 (0.84-0.97) for chenodeoxycholic acid, and 0.90 (0.83-0.96) for deoxycholic acid (P < 0.05 and false discovery rate <0.05). On the other hand, conjugated primary BAs (glycocholic acid, taurocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, and sulfated glycochenodeoxycholic acid) and secondary BA (tauroursodeoxycholic acid) were positively related with incident diabetes, with ORs ranging from 1.11 to 1.19 (95% CIs ranging between 1.05 and 1.28). In a fully adjusted model additionally adjusted for liver enzymes, HDL cholesterol, diet, 2-h postload glucose, HOMA-insulin resistance, and waist circumference, the risk estimates were similar. Differential correlation network analysis revealed that perturbations in intraclass (i.e., primary and secondary) and interclass (i.e., unconjugated and conjugated) BA coregulation preexisted before diabetes onset. CONCLUSIONS These findings reveal novel changes in BAs exist before incident T2DM and support a potential role of BA metabolism in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhengnan Gao
- Dalian Municipal Central Hospital, Dalian, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lixin Shi
- Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rui Du
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qi Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Chen
- Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Feixia Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuojie Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Huo
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Qiang Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yinfei Zhang
- Central Hospital of Shanghai Jiading District, Shanghai, China
| | - Chao Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Youmin Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengli Wu
- Karamay Municipal People's Hospital, Xinjiang, China
| | - Tao Yang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huacong Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shenghan Lai
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yiming Mu
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
11
|
Zhang C, Wang Z, Feng Q, Chen WD, Wang YD. Farnesoid X receptor: a potential therapeutic target in multiple organs. Histol Histopathol 2021; 35:1403-1414. [PMID: 33393073 DOI: 10.14670/hh-18-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor family, is a common receptor found in the intestine and liver, and helps to maintain systemic metabolic homeostasis through regulating bile acid, glucose, lipid metabolism, and energy homeostatsis. In addition, FXR regulates the functions of various organs, such as liver, intestine, kidney, breast, pancreas, cardiovascular system and brain. FXR also plays a key role in regulation of gut-microbiota through mediating the various signaling pathways. Accordingly, FXR has become an attractive therapeutic target in a variety of diseases. This review combines classical and recent research reports to introduce the basic information about FXR and its important roles in various organs of the body.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Qingqing Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, the People's Hospital of Hebi, School of Medicine, Henan University, Henan, PR China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
12
|
Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Ramudu SK, Kesireddy SR. Plant Compounds for the Treatment of Diabetes, a Metabolic Disorder: NF-κB as a Therapeutic Target. Curr Pharm Des 2020; 26:4955-4969. [DOI: 10.2174/1381612826666200730221035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Background:
The prevalence of diabetes in the world population hás reached 8.8 % and is expected to
rise to 10.4% by 2040. Hence, there is an urgent need for the discovery of drugs against therapeutic targets to
sojourn its prevalence. Previous studies proved that NF-κB serves as a central agent in the development of diabetic
complications.
Objectives:
This review intended to list the natural plant compounds that would act as inhibitors of NF-κB signalling
in different organs under the diabetic condition with their possible mechanism of action.
Methods:
Information on NF-κB, diabetes, natural products, and relation in between them, was gathered from
scientific literature databases such as Pubmed, Medline, Google scholar, Science Direct, Springer, Wiley online
library.
Results and Conclusion:
NF-κB plays a crucial role in the development of diabetic complications because of its
link in the expression of genes that are responsible for organs damage such as kidney, brain, eye, liver, heart,
muscle, endothelium, adipose tissue and pancreas by inflammation, apoptosis and oxidative stress. Activation of
PPAR-α, SIRT3/1, and FXR through many cascades by plant compounds such as terpenoids, iridoids, flavonoids,
alkaloids, phenols, tannins, carbohydrates, and phytocannabinoids recovers diabetic complications. These compounds
also exhibit the prevention of NF-κB translocation into the nucleus by inhibiting NF-κB activators, such
as VEGFR, RAGE and TLR4 receptors, which in turn, prevent the activation of many genes involved in tissue
damage. Current knowledge on the treatment of diabetes by targeting NF-κB is limited, so future studies would
enlighten accordingly.
Collapse
Affiliation(s)
- Ravi Sahukari
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Jyothi Punabaka
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Shanmugam Bhasha
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Venkata S. Ganjikunta
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Shanmugam K. Ramudu
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| | - Sathyavelu R. Kesireddy
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
13
|
Guo WL, Guo JB, Liu BY, Lu JQ, Chen M, Liu B, Bai WD, Rao PF, Ni L, Lv XC. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct 2020; 11:6818-6833. [PMID: 32686808 DOI: 10.1039/d0fo00436g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ganoderic acid A (GA) is one of the most abundant triterpenoids in Ganoderma lucidum, and has been proved to possess a wide range of beneficial health effects. The aim of the current study is to investigate the amelioration effects and mechanism of GA on improving hyperlipidemia in mice fed a high-fat diet (HFD). The results showed that GA intervention significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, and ameliorated the biochemical parameters of serum and liver related to lipid metabolism in HFD-fed mice. Histological analysis also showed that the excessive accumulation of lipid droplets in the liver induced by HFD-feeding was greatly alleviated by GA intervention. In addition, GA intervention also increased the level of short chain fatty acids (SCFAs) in the intestine and promoted the excretion of bile acids (BAs) through feces. High-throughput sequencing of bacterial full-length 16S rDNA revealed that daily supplementation with GA made significant structural changes in the gut microbial population of mice fed with HFD, in particular modulating the relative abundance of some function related microbial phylotypes. The relationships between lipid metabolic parameters and gut microbial phylotypes were also revealed by correlation analysis based on a heatmap and network. The result showed that 46 key gut microbial phylotypes (OTUs) were markedly correlated with at least one lipid metabolic parameter. Moreover, UPLC-QTOF/MS-based liver metabolomics showed that 111 biomarkers (47 up-regulated metabolites and 64 down-regulated metabolites) were significantly changed after high-dose GA intervention (75 mg kg-1 day-1), compared with the HFD-fed hyperlipidemic mice. Metabolic pathway enrichment analysis of the differential hepatic metabolites demonstrated that GA intervention had significant regulatory effects on primary bile acid biosynthesis, fatty acid biosynthesis, amino sugar and nucleotide sugar metabolism, inositol phosphate metabolism, and so on. In addition, GA intervention regulated the mRNA levels of hepatic genes involved in fatty acid metabolism and bile acid homeostasis. These findings present new evidence supporting that GA from G. lucidum has the potential to alleviate lipid metabolic disorders and ameliorate the imbalance of gut microflora in a positive way.
Collapse
Affiliation(s)
- Wei-Ling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Warmbrunn MV, Herrema H, Aron-Wisnewsky J, Soeters MR, Van Raalte DH, Nieuwdorp M. Gut microbiota: a promising target against cardiometabolic diseases. Expert Rev Endocrinol Metab 2020; 15:13-27. [PMID: 32066294 DOI: 10.1080/17446651.2020.1720511] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cardiometabolic diseases (CMD) are a group of interrelated disorders such as metabolic syndrome, type 2 diabetes mellitus and cardiovascular diseases (CVD). As the prevalence of these diseases increases globally, efficient new strategies are necessary to target CMD and modifiable risk factors. In the past decade, evidence has accumulated regarding the influence of gut microbiota (GM) on CMD, providing new targets for therapeutic interventions.Areas covered: This narrative review discusses the pathophysiologic link between CMD, GM, and potential microbiota-based targets against atherosclerosis and modifiable risk factors for atherosclerosis. Low-grade inflammation can be induced through GM and its derived metabolites. CMD are influenced by GM and microbiota-derived metabolites such as short-chain fatty acids (SCFA), secondary bile acids, trimethylamine N-oxide (TMAO), and the composition of GM can modulate host metabolism. All of the above can lead to promising therapeutic targets.Expert opinion: Most data are derived from animal models or human association studies; therefore, more translational and interventional research in humans is necessary to validate these promising findings. Reproduced findings such as aberrant microbiota patterns or circulating biomarkers could be targeted depending on individual metabolic profiles, moving toward personalized medicine in CMD.
Collapse
Affiliation(s)
- Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (Nutriomics), Paris, France
- Assistance Publique Hôpitaux De Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel H Van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Keshk WA, Soliman NA, Ali DA, Elseady WS. Mechanistic evaluation of AMPK/SIRT1/FXR signaling axis, inflammation, and redox status in thioacetamide-induced liver cirrhosis: The role of Cichorium intybus linn (chicory)-supplemented diet. J Food Biochem 2019; 43:e12938. [PMID: 31368578 DOI: 10.1111/jfbc.12938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Liver cirrhosis is a scene profitable to the advance of hepatocellular carcinoma (HCC). The current work was engrossed to weigh the potential role of Cichorium intybus linn against thioacetamide (TAA)-induced liver cirrhosis and their probable underlying biochemical and molecular mechanisms. farnesoid-X-receptor (FXR) expression, proliferating cell nuclear antigen (PCNA) immunoreactivity, and activated AMP protein kinase (pAMPK), sirtuin-1 (SIRT1), and interleukin-6 (IL6) levels were estimated in hepatic tissue by real-time PCR, immunohistochemistry, and immunoassay, respectively. C. intybus linn supplementation caused a significant improvement in serum liver enzymes, albumin, bilirubin levels, tissues redox status and hepatic histological features in addition to decreased IL6 level, hydroxylproline content, and PCNA immunoreactivity. On contrary, increased pAMPK/SIRT1 levels and upregulated FXR gene expression were observed. C. intybus linn could feasibly protect against TAA-induced hepatic damage, fibrosis, and cirrhosis by relieving oxidative stress and by interruption of the inflammatory pathway via AMPK/SIRT1/FXR signaling. PRACTICAL APPLICATIONS: No specific therapies are available until now to target the underlying mechanisms for protection against liver diseases. Herbal protection is widely available and cheap with no side effect. Cichorium intybus linn, a natural supplement, is proved in this current work to have the potential of being hepatoprotectant, antioxidant, and anti-inflammatory agents, thus reducing the risk of hepatic cirrhosis.
Collapse
Affiliation(s)
- Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Darin A Ali
- Department of Histopathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Chenodeoxycholic Acid Ameliorates AlCl 3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules 2019; 24:molecules24101992. [PMID: 31137621 PMCID: PMC6571973 DOI: 10.3390/molecules24101992] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.
Collapse
|
17
|
Zhou X, Yang H, Yan Q, Ren A, Kong Z, Tang S, Han X, Tan Z, Salem AZM. Evidence for liver energy metabolism programming in offspring subjected to intrauterine undernutrition during midgestation. Nutr Metab (Lond) 2019; 16:20. [PMID: 30923555 PMCID: PMC6423887 DOI: 10.1186/s12986-019-0346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Maternal undernutrition programs fetal energy homeostasis and increases the risk of metabolic disorders later in life. This study aimed to identify the signs of hepatic metabolic programming in utero and during the juvenile phase after intrauterine undernutrition during midgestation. Methods Fifty-three pregnant goats were assigned to the control (100% of the maintenance requirement) or restricted (60% of the maintenance requirement from day 45 to day 100 of midgestation and realimentation thereafter) group to compare hepatic energy metabolism in the fetuses (day 100 of gestation) and kids (postnatal day 90). Results Undernutrition increased the glucagon concentration and hepatic hexokinase activity, decreased the body weight, liver weight and hepatic expression of G6PC, G6PD, and PGC1α mRNAs, and tended to decrease the hepatic glycogen content and ACOX1 mRNA level in the dams. Maternal undernutrition decreased the growth hormone (GH) and triglyceride concentrations, tended to decrease the body weight and hepatic hexokinase activity, increased the hepatic PCK1, PCK2 and PRKAA2 mRNAs levels and glucose-6-phosphatase activity, and tended to increase the hepatic PRKAB1 and CPT1α mRNAs levels in the male fetuses. In the restricted female fetuses, the hepatic hexokinase activity and G6PC mRNA level tended to be increased, but PKB1 mRNA expression was decreased and the ACACA, CPT1α, NR1H3 and STK11 mRNA levels tended to be decreased. Maternal undernutrition changed the hepatic metabolic profile and affected the metabolic pathway involved in amino acid, glycerophospholipid, bile acid, purine, and saccharide metabolism in the fetuses, but not the kids. Additionally, maternal undernutrition increased the concentrations of GH and cortisol, elevated the hepatic glucose-6-phosphate dehydrogenase activity, and tended to decrease the hepatic glycogen content in the male kids. No alterations in these variables were observed in the female kids. Conclusions Maternal undernutrition affects the metabolic status in a sex- and stage-specific manner by changing the metabolic profile, expression of genes involved in glucose homeostasis and enzyme activities in the liver of the fetuses. The changes in the hormone levels in the male fetuses and kids, but not the female offspring, represent a potential sign of metabolic programming.
Collapse
Affiliation(s)
- Xiaoling Zhou
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China.,3College of Animal Science, Tarim University, Alaer, 843300 China
| | - Hong Yang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China
| | - Qiongxian Yan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Ao Ren
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Zhiwei Kong
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China
| | - Shaoxun Tang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Xuefeng Han
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Zhiliang Tan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Abdelfattah Z M Salem
- 6Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Tlaphan, Mexico
| |
Collapse
|
18
|
Wang W, Zhao L, He Z, Wu N, Li Q, Qiu X, Zhou L, Wang D. Metabolomics-based evidence of the hypoglycemic effect of Ge-Gen-Jiao-Tai-Wan in type 2 diabetic rats via UHPLC-QTOF/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:299-318. [PMID: 29580854 DOI: 10.1016/j.jep.2018.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ge-Gen-Jiao-Tai-Wan (GGJTW) formula, derived from traditional Chinese herbal medicine, is composed of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (Ge-Gen in Chinese), Coptis chinensis Franch (Huang-Lian), and Cinnamomum cassia (L.) J. Presl (Rou-Gui). GGJTW is used for treatment of diabetes in China, reflecting the potent hypoglycemic effect of its ingredients. However, little is known of the hypoglycemic effect of GGJTW and the underlying metabolic mechanism. AIM OF THE STUDY This study aimed to investigate the hypoglycemic effect of GGJTW in type 2 diabetic rats and the metabolic mechanism of action. MATERIALS AND METHODS Ultra high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach was used for monitoring hyperglycaemia induced by high-sugar high-fat fodder and streptozotocin (STZ), and the protective effect of GGJTW. Dynamic fasting blood glucose (FBG) levels, body weight, and biochemical parameters, including lipid levels, hepatic-renal function, and hepatic histopathology were used to confirm the hyperglycaemic toxicity and attenuation effects. An orthogonal partial least squared-discriminant analysis (OPLS-DA) approach highlighted significant differences in the metabolome of the healthy control, diabetic, and drug-treated rats. The metabolomics pathway analysis (MetPA) and Kyoto encyclopedia of genes and genomes (KEGG) database were used to investigate the underlying metabolic pathways. RESULTS Metabolic profiling revealed 37 metabolites as the most potential biomarker metabolites distinguishing GGJTW-treated rats from model rats. Most of the metabolites were primarily associated with bile acid metabolism and lipid metabolism. The most critical pathway was primary bile acid biosynthesis pathway involving the up-regulation of the levels of cholic acid (CA), chenodeoxycholic acid (CDCA), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodesoxycholic acid (TCDCA), and taurine. CONCLUSIONS The significantly-altered metabolite levels indicated the hypoglycemic effect of GGJTW on diabetic rats and the underlying metabolic mechanism. This study will be meaningful for the clinical application of GGJTW and valuable for further exploration of the mechanism.
Collapse
Affiliation(s)
- Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Linlin Zhao
- Physical Examination Center, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China.
| | - Zhenyu He
- Institute of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208 Hunan, China.
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Qiuxia Li
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Xinjian Qiu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Lu Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China.
| |
Collapse
|
19
|
Effects of Sleeve Gastrectomy on Nonalcoholic Fatty Liver Disease in an Obese Rat Model. Obes Surg 2017; 28:1532-1539. [DOI: 10.1007/s11695-017-3052-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 2017; 9:102. [PMID: 29299069 PMCID: PMC5745752 DOI: 10.1186/s13098-017-0299-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
While basic and clinical research over the last several decades has recognized a number of modifiable risk factors associated with cardiometabolic disease progression, additional and alternative biological perspectives may offer novel targets for prevention and treatment of this disease set. There is mounting preclinical and emerging clinical evidence indicating that the mass of metabolically diverse microorganisms which inhabit the human gastrointestinal tract may be implicated in initiation and modulation of cardiovascular and metabolic disease outcomes. The following review will discuss this gut microbiome-host metabolism axis and address newly proposed bile-mediated signaling pathways through which dysregulation of this homeostatic axis may influence host cardiovascular risk. With a central focus on the major nuclear and membrane-bound bile acid receptor ligands, we aim to review the putative impact of microbial bile acid modification on several major phenotypes of metabolic syndrome, from obesity to heart failure. Finally, attempting to synthesize several separate but complementary hypotheses, we will review current directions in preclinical and clinical investigation in this evolving field.
Collapse
Affiliation(s)
- Paul M. Ryan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Noel M. Caplice
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| |
Collapse
|