1
|
Mayer G, Frohnhofen H, Jokisch M, Hermann DM, Gronewold J. Associations of sleep disorders with all-cause MCI/dementia and different types of dementia - clinical evidence, potential pathomechanisms and treatment options: A narrative review. Front Neurosci 2024; 18:1372326. [PMID: 38586191 PMCID: PMC10995403 DOI: 10.3389/fnins.2024.1372326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Due to worldwide demographic change, the number of older persons in the population is increasing. Aging is accompanied by changes of sleep structure, deposition of beta-amyloid (Aß) and tau proteins and vascular changes and can turn into mild cognitive impairment (MCI) as well as dementia. Sleep disorders are discussed both as a risk factor for and as a consequence of MCI/dementia. Cross-sectional and longitudinal population-based as well as case-control studies revealed sleep disorders, especially sleep-disorderded breathing (SDB) and excessive or insufficient sleep durations, as risk factors for all-cause MCI/dementia. Regarding different dementia types, SDB was especially associated with vascular dementia while insomnia/insufficient sleep was related to an increased risk of Alzheimer's disease (AD). Scarce and still inconsistent evidence suggests that therapy of sleep disorders, especially continuous positive airway pressure (CPAP) in SDB, can improve cognition in patients with sleep disorders with and without comorbid dementia and delay onset of MCI/dementia in patients with sleep disorders without previous cognitive impairment. Regarding potential pathomechanisms via which sleep disorders lead to MCI/dementia, disturbed sleep, chronic sleep deficit and SDB can impair glymphatic clearance of beta-amyloid (Aß) and tau which lead to amyloid deposition and tau aggregation resulting in changes of brain structures responsible for cognition. Orexins are discussed to modulate sleep and Aß pathology. Their diurnal fluctuation is suppressed by sleep fragmentation and the expression suppressed at the point of hippocampal atrophy, contributing to the progression of dementia. Additionally, sleep disorders can lead to an increased vascular risk profile and vascular changes such as inflammation, endothelial dysfunction and atherosclerosis which can foster neurodegenerative pathology. There is ample evidence indicating that changes of sleep structure in aging persons can lead to dementia and also evidence that therapy of sleep disorder can improve cognition. Therefore, sleep disorders should be identified and treated early.
Collapse
Affiliation(s)
- Geert Mayer
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Helmut Frohnhofen
- Department of Orthopedics and Trauma Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine, Geriatrics, Faculty of Health, University Witten-Herdecke, Witten, Germany
| | - Martha Jokisch
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk M. Hermann
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Janine Gronewold
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Mayer G, Stenmanns C, Doeppner TR, Hermann DM, Gronewold J. [Sleep and dementia]. Z Gerontol Geriatr 2023; 56:556-560. [PMID: 37676320 DOI: 10.1007/s00391-023-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Aging is associated with changes in sleep structure and cerebral deposition of amyloid beta and tau proteins. Sleep disturbances precede the onset of dementia by years. Comorbid sleep disorders, such as insomnia and sleep-disordered breathing, a family history of dementia and epigenetic factors can contribute to the development of dementia. This article explores the question of the interaction between sleep and dementia based on the existing literature. Alterations caused by slow wave sleep lead to changes in the glymphatic clearance of amyloid beta, tau proteins and other proteins. Transient and chronic sleep disorders cause disturbances in the brain areas responsible for cognition and behavior. Sleep-regulating brain areas are the first to be affected in the neurodegenerative process and accelerate the risk of dementia. Circadian age-related changes in amyloid beta and tau proteins affect the amount and depth of sleep and vice versa. Amyloid beta in cerebrospinal fluid shows an inverse correlation with sleep. Orexins modulate amyloid beta and sleep.
Collapse
Affiliation(s)
- Geert Mayer
- Philipps-Universität Marburg, Marburg, Deutschland.
- , Privatweg 2, 34582, Borken, Deutschland.
| | - Carla Stenmanns
- Klinik für Orthopädie und Unfallchirurgie, Altersmedizin, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Thorsten R Doeppner
- Klinik für Neurologie, Universitätsklinkum Gießen und Marburg, Gießen, Deutschland
| | - Dirk M Hermann
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Janine Gronewold
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
3
|
Ahmad F, Sachdeva P, Sarkar J, Izhaar R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 2023; 6:71-81. [PMID: 36911088 PMCID: PMC10000289 DOI: 10.1002/agm2.12221] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is considered to be the most typical form of dementia that provokes irreversible cognitive impairment. Along with cognitive impairment, circadian rhythm dysfunction is a fundamental factor in aggravating AD. A link among circadian rhythms, sleep, and AD has been well-documented. The etiopathogenesis of circadian system disruptions and AD serves some general characteristics that also open up the possibility of viewing them as a mutually reliant path. In this review, we have focused on different factors that are related to circadian rhythm dysfunction. The various pathogenic factors, such as amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, and circadian rhythm dysfunction may all contribute to AD. In this review, we also tried to focus on melatonin which is produced from the pineal gland and can be used to treat circadian dysfunction in AD. Aside from amyloid beta, tau pathology may have a notable influence on sleep. Conclusively, the center of this review is primarily based on the principal mechanistic complexities associated with circadian rhythm disruption, sleep deprivation, and AD, and it also emphasizes the potential therapeutic strategies to treat and prevent the progression of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Jasmine Sarkar
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | | |
Collapse
|
4
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
5
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
6
|
Weil T, Daly KM, Yarur Castillo H, Thomsen MB, Wang H, Mercau ME, Hattar S, Tejeda H, Fernandez DC. Daily changes in light influence mood via inhibitory networks within the thalamic perihabenular nucleus. SCIENCE ADVANCES 2022; 8:eabn3567. [PMID: 35687680 PMCID: PMC9187232 DOI: 10.1126/sciadv.abn3567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Collapse
Affiliation(s)
- Tenley Weil
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - K. M. Daly
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael B. Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria E. Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugo Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diego C. Fernandez
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Mirzaei N, Shi H, Oviatt M, Doustar J, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Koronyo Y, Koronyo-Hamaoui M. Alzheimer's Retinopathy: Seeing Disease in the Eyes. Front Neurosci 2020; 14:921. [PMID: 33041751 PMCID: PMC7523471 DOI: 10.3389/fnins.2020.00921] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
The neurosensory retina emerges as a prominent site of Alzheimer's disease (AD) pathology. As a CNS extension of the brain, the neuro retina is easily accessible for noninvasive, high-resolution imaging. Studies have shown that along with cognitive decline, patients with mild cognitive impairment (MCI) and AD often suffer from visual impairments, abnormal electroretinogram patterns, and circadian rhythm disturbances that can, at least in part, be attributed to retinal damage. Over a decade ago, our group identified the main pathological hallmark of AD, amyloid β-protein (Aβ) plaques, in the retina of patients including early-stage clinical cases. Subsequent histological, biochemical and in vivo retinal imaging studies in animal models and in humans corroborated these findings and further revealed other signs of AD neuropathology in the retina. Among these signs, hyperphosphorylated tau, neuronal degeneration, retinal thinning, vascular abnormalities and gliosis were documented. Further, linear correlations between the severity of retinal and brain Aβ concentrations and plaque pathology were described. More recently, extensive retinal pericyte loss along with vascular platelet-derived growth factor receptor-β deficiency were discovered in postmortem retinas of MCI and AD patients. This progressive loss was closely associated with increased retinal vascular amyloidosis and predicted cerebral amyloid angiopathy scores. These studies brought excitement to the field of retinal exploration in AD. Indeed, many questions still remain open, such as queries related to the temporal progression of AD-related pathology in the retina compared to the brain, the relations between retinal and cerebral changes and whether retinal signs can predict cognitive decline. The extent to which AD affects the retina, including the susceptibility of certain topographical regions and cell types, is currently under intense investigation. Advances in retinal amyloid imaging, hyperspectral imaging, optical coherence tomography, and OCT-angiography encourage the use of such modalities to achieve more accurate, patient- and user-friendly, noninvasive detection and monitoring of AD. In this review, we summarize the current status in the field while addressing the many unknowns regarding Alzheimer's retinopathy.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mia Oviatt
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Uleman JF, Melis RJF, Quax R, van der Zee EA, Thijssen D, Dresler M, van de Rest O, van der Velpen IF, Adams HHH, Schmand B, de Kok IMCM, de Bresser J, Richard E, Verbeek M, Hoekstra AG, Rouwette EAJA, Olde Rikkert MGM. Mapping the multicausality of Alzheimer's disease through group model building. GeroScience 2020; 43:829-843. [PMID: 32780293 PMCID: PMC8110634 DOI: 10.1007/s11357-020-00228-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex, multicausal disorder involving several spatiotemporal scales and scientific domains. While many studies focus on specific parts of this system, the complexity of AD is rarely studied as a whole. In this work, we apply systems thinking to map out known causal mechanisms and risk factors ranging from intracellular to psychosocial scales in sporadic AD. We report on the first systemic causal loop diagram (CLD) for AD, which is the result of an interdisciplinary group model building (GMB) process. The GMB was based on the input of experts from multiple domains and all proposed mechanisms were supported by scientific literature. The CLD elucidates interaction and feedback mechanisms that contribute to cognitive decline from midlife onward as described by the experts. As an immediate outcome, we observed several non-trivial reinforcing feedback loops involving factors at multiple spatial scales, which are rarely considered within the same theoretical framework. We also observed high centrality for modifiable risk factors such as social relationships and physical activity, which suggests they may be promising leverage points for interventions. This illustrates how a CLD from an interdisciplinary GMB process may lead to novel insights into complex disorders. Furthermore, the CLD is the first step in the development of a computational model for simulating the effects of risk factors on AD.
Collapse
Affiliation(s)
- Jeroen F Uleman
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525GC, Nijmegen, The Netherlands. .,Institute for Advanced Study, Amsterdam, The Netherlands.
| | - René J F Melis
- Institute for Advanced Study, Amsterdam, The Netherlands.,Department of Geriatric Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Quax
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Dick Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Liverpool John Moores University, Liverpool, United Kingdom
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University, Research, Wageningen, The Netherlands
| | - Isabelle F van der Velpen
- Department of Epidemiology, Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ben Schmand
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge M C M de Kok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marcel Verbeek
- Departments of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alfons G Hoekstra
- Institute for Advanced Study, Amsterdam, The Netherlands.,Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525GC, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Uddin MS, Tewari D, Mamun AA, Kabir MT, Niaz K, Wahed MII, Barreto GE, Ashraf GM. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev 2020; 60:101046. [PMID: 32171783 DOI: 10.1016/j.arr.2020.101046] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating and irreversible cognitive impairment and the most common type of dementia. Along with progressive cognitive impairment, dysfunction of the circadian rhythms also plays a pivotal role in the progression of AD. A mutual relationship among circadian rhythms, sleep, and AD has been well-recommended. The etiopathogenesis of the disturbances of the circadian system and AD share some general features that also unlock the outlook of observing them as a mutually dependent pathway. Indeed, the burden of amyloid β (Aβ), neurofibrillary tangles (NFTs), neuroinflammation, oxidative stress, and dysfunction of circadian rhythms may lead to AD. Aging can alter both sleep timings and quality that can be strongly disrupted in AD. Increased production of Aβ and reduced Aβ clearance are caused by a close interplay of Aβ, sleep disturbance and raised wakefulness. Besides Aβ, the impact of tau pathology is possibly noteworthy to the sleep deprivation found in AD. Hence, this review is focused on the primary mechanistic complexities linked to disruption of circadian rhythms, sleep deprivation, and AD. Furthermore, this review also highlights the potential therapeutic strategies to abate AD pathogenesis.
Collapse
|
10
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
11
|
Oh AJ, Amore G, Sultan W, Asanad S, Park JC, Romagnoli M, La Morgia C, Karanjia R, Harrington MG, Sadun AA. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer's disease. PLoS One 2019; 14:e0226197. [PMID: 31821378 PMCID: PMC6903762 DOI: 10.1371/journal.pone.0226197] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanopsin-expressing retinal ganglion cells (mRGCs), intrinsically photosensitive RGCs, mediate the light-based pupil response and the light entrainment of the body's circadian rhythms through their connection to the pretectal nucleus and hypothalamus, respectively. Increased awareness of circadian rhythm dysfunction in neurological conditions including Alzheimer's disease (AD), has led to a wave of research focusing on the role of mRGCs in these diseases. Postmortem retinal analyses in AD patients demonstrated a significant loss of mRGCs, and in vivo measurements of mRGC function with chromatic pupillometry may be a potential biomarker for early diagnosis and progression of AD. METHODS We performed a prospective case-control study in 20 cognitively healthy study participants: 10 individuals with pre-symptomatic AD pathology (pre-AD), identified by the presence of abnormal levels of amyloid β42 and total Tau proteins in the cerebrospinal fluid, and 10 age-matched controls with normal CSF amyloid β42 and Tau levels. To evaluate mRGC function, we used a standardized protocol of chromatic pupillometry on a Ganzfeld system using red (640 nm) and blue (450 nm) light stimuli and measured the pupillary light response (PLR). Non-invasive wrist actigraphy and standardized sleep questionnaires were also completed to evaluate rest-activity circadian rhythm. RESULTS Our results did not demonstrate a significant difference of the PLR between pre-AD and controls but showed a variability of the PLR in the pre-AD group compared with controls on chromatic pupillometry. Wrist actigraphy showed variable sleep-wake patterns and irregular circadian rhythms in the pre-AD group compared with controls. CONCLUSIONS The variability seen in measurements of mRGC function and sleep-wake cycle in the pre-AD group suggests that mRGC dysfunction occurs in the pre-symptomatic AD stages, preceding cognitive decline. Future longitudinal studies following progression of these participants can help in elucidating the relationship between mRGCs and circadian rhythm dysfunction in AD.
Collapse
Affiliation(s)
- Angela J. Oh
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- * E-mail:
| | - Giulia Amore
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - William Sultan
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Samuel Asanad
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Jason C. Park
- Columbia University, Department of Psychology, New York, New York, United States of America
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rustum Karanjia
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- University of Ottawa Eye Institute, Department of Ophthalmology, Ottawa, Ontario, Canada
| | - Michael G. Harrington
- The Huntington Medical Research Institutes and Molecular Neurology Program, Pasadena, California, United States of America
| | - Alfredo A. Sadun
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Yap TE, Balendra SI, Almonte MT, Cordeiro MF. Retinal correlates of neurological disorders. Ther Adv Chronic Dis 2019; 10:2040622319882205. [PMID: 31832125 PMCID: PMC6887800 DOI: 10.1177/2040622319882205] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Considering the retina as an extension of the brain provides a platform from which to study diseases of the nervous system. Taking advantage of the clear optical media of the eye and ever-increasing resolution of modern imaging techniques, retinal morphology can now be visualized at a cellular level in vivo. This has provided a multitude of possible biomarkers and investigative surrogates that may be used to identify, monitor and study diseases until now limited to the brain. In many neurodegenerative conditions, early diagnosis is often very challenging due to the lack of tests with high sensitivity and specificity, but, once made, opens the door to patients accessing the correct treatment that can potentially improve functional outcomes. Using retinal biomarkers in vivo as an additional diagnostic tool may help overcome the need for invasive tests and histological specimens, and offers the opportunity to longitudinally monitor individuals over time. This review aims to summarise retinal biomarkers associated with a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and prion diseases from a clinical perspective. By comparing their similarities and differences according to primary pathological processes, we hope to show how retinal correlates can aid clinical decisions, and accelerate the study of this rapidly developing area of research.
Collapse
Affiliation(s)
- Timothy E. Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - Shiama I. Balendra
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - Melanie T. Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - M. Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, NW1 5QH, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
13
|
|
14
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
15
|
Mitolo M, Tonon C, La Morgia C, Testa C, Carelli V, Lodi R. Effects of Light Treatment on Sleep, Cognition, Mood, and Behavior in Alzheimer's Disease: A Systematic Review. Dement Geriatr Cogn Disord 2019; 46:371-384. [PMID: 30537760 DOI: 10.1159/000494921] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bright light treatment is a therapeutic intervention mainly used to treat sleep and circadian disturbances in Alzheimer's disease (AD) patients. Recently, a handful of studies also focused on the effect on cognition and behavior. Conflicting findings are reported in the literature, and no definite conclusions have been drawn about its specific therapeutic effect. SUMMARY The aim of this review is to provide a critical evaluation of available evidence in this field, highlighting the specific characteristics of effective bright light treatment. Eligible studies were required to assess at least one of the following outcome measures: sleep, cognition, mood, and/or behavior (e.g., depression, agitation). A total of 32 articles were included in this systematic review and identified as research intervention studies about light treatment in AD. The quality of the papers was evaluated based on the US Preventive Service Task Force guidelines. Key Messages: Overall, the current literature suggests that the effects of light treatment in AD patients are mixed and may be influenced by several factors, but with a general trend toward a positive effect. Bright light seems to be a promising intervention treatment without significant adverse effects; therefore, further well-designed randomized controlled trials are needed taking into account the highlighted recommendations.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | - Chiara La Morgia
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy, .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italy,
| |
Collapse
|
16
|
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019; 10:100133. [PMID: 30937343 PMCID: PMC6279965 DOI: 10.1016/j.ynstr.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.
Collapse
Affiliation(s)
- Trongha X. Phan
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| | - Roneil G. Malkani
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
La Morgia C, Carelli V, Carbonelli M. Melanopsin Retinal Ganglion Cells and Pupil: Clinical Implications for Neuro-Ophthalmology. Front Neurol 2018; 9:1047. [PMID: 30581410 PMCID: PMC6292931 DOI: 10.3389/fneur.2018.01047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs that mediate many relevant non-image forming functions of the eye, including the pupillary light reflex, through the projections to the olivary pretectal nucleus. In particular, the post-illumination pupil response (PIPR), as evaluated by chromatic pupillometry, can be used as a reliable marker of mRGC function in vivo. In the last years, pupillometry has become a promising tool to assess mRGC dysfunction in various neurological and neuro-ophthalmological conditions. In this review we will present the most relevant findings of pupillometric studies in glaucoma, hereditary optic neuropathies, ischemic optic neuropathies, idiopathic intracranial hypertension, multiple sclerosis, Parkinson's disease, and mood disorders. The use of PIPR as a marker for mRGC function is also proposed for other neurodegenerative disorders in which circadian dysfunction is documented.
Collapse
Affiliation(s)
- Chiara La Morgia
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| |
Collapse
|
18
|
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 2018:2941783. [PMID: 30405709 PMCID: PMC6204169 DOI: 10.1155/2018/2941783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. It compromises patients' daily activities owing to progressive cognitive deterioration, which has elevated direct and indirect costs. Although AD has several risk factors, aging is considered the most important. Unfortunately, clinical diagnosis is usually performed at an advanced disease stage when dementia is established, making implementation of successful therapeutic interventions difficult. Current biomarkers tend to be expensive, insufficient, or invasive, raising the need for novel, improved tools aimed at early disease detection. AD is characterized by brain atrophy due to neuronal and synaptic loss, extracellular amyloid plaques composed of amyloid-beta peptide (Aβ), and neurofibrillary tangles of hyperphosphorylated tau protein. The visual system and central nervous system share many functional components. Thus, it is plausible that damage induced by Aβ, tau, and neuroinflammation may be observed in visual components such as the retina, even at an early disease stage. This underscores the importance of implementing ophthalmological examinations, less invasive and expensive than other biomarkers, as useful measures to assess disease progression and severity in individuals with or at risk of AD. Here, we review functional and morphological changes of the retina and visual pathway in AD from pathophysiological and clinical perspectives.
Collapse
Affiliation(s)
| | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Tellez-Conti
- Escuela Superior de Oftalmología-Instituto Barraquer de América, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Colligris P, Perez de Lara MJ, Colligris B, Pintor J. Ocular Manifestations of Alzheimer's and Other Neurodegenerative Diseases: The Prospect of the Eye as a Tool for the Early Diagnosis of Alzheimer's Disease. J Ophthalmol 2018; 2018:8538573. [PMID: 30151279 PMCID: PMC6091327 DOI: 10.1155/2018/8538573] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dementia, including Alzheimer's disease (AD), is a major disorder, leading to several ocular manifestations amongst the elderly population. These visual disorders may be due to retinal nerve degenerative changes, including nerve fibre layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. There is no cure for Alzheimer's, but medicines can slow down the development of many of the classic symptoms, such as loss of memory and communication skills, mood swings, and depression. The disease diagnosis is difficult, and it is only possible through PET scans of the brain, detecting evidence of the accumulation of amyloid and tau. PET is expensive and invasive, requiring the injection of radioactive tracers, which bind with these proteins and glow during scanning. Recently, scientists developed promising eye-scan techniques that may detect Alzheimer's disease at its earliest stage, before major symptoms appear, leading to improved management of the disease symptoms. In this review, we are discussing the visual abnormalities of Alzheimer's and other neurodegenerative diseases, focused on ocular functional-visual-structural biomarkers, retinal pathology, and potential novel diagnostic tools.
Collapse
Affiliation(s)
- Pade Colligris
- Universidad Alfonso X, Madrid, Spain
- Ocupharm Diagnostics SL, Madrid, Spain
| | | | - Basilio Colligris
- Ocupharm Diagnostics SL, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Jesus Pintor
- Ocupharm Diagnostics SL, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Exp Eye Res 2018; 174:93-97. [PMID: 29856984 DOI: 10.1016/j.exer.2018.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
In this study we have compared the response to optic nerve crush (ONC) and to optic nerve transection (ONT) of the general population of retinal ganglion cells in charge of the image-forming visual functions that express Brn3a (Brn3a+RGCs) with that of the sub-population of non-image forming RGCs that express melanopsin (m+RGCs). Intact animals were used as control. ONT and ONC were performed at 0.5 mm from the optic disk, and retinas dissected 3, 5, 7, 14, 30, 45 or 90 days later (n = 5/injury/time point). In all the retinas, Brn3a+RGCs and m+RGCs were identified and their survival analyzed quantitatively and topographically. There were no differences in the course of RGC loss between lesions. The decrease of RGCs was significant at short time points (3 or 5 days for Brn3a+ or m+ RGCs, respectively) and, up to 14 days, the course of loss of both RGC populations was similar, surviving at this time point between 20 and 22% of their original population. However, while the loss of Brn3a+RGCs continues steadily up to 90 days when only 5-6% of them still remain, the loss of m+RGCs stops at 14 days, and the proportion of surviving m+RGCs remains constant up to 90 days (26-30%). In conclusion, m+RGC do not respond to axotomy in the same way than the rest of RGCs, and so whilst image-forming RGCs die in two exponential phases a quick one and a slow protracted one, non-image forming RGCs die only during the first quick phase.
Collapse
Affiliation(s)
- M C Sánchez-Migallón
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - F J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - F M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - J Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - M Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
21
|
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:255-266. [PMID: 28433458 DOI: 10.1016/j.pnpbp.2017.04.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Abstract
The pathophysiological underpinnings of neuroprogressive processes in recurrent major depressive disorder (rMDD) are reviewed. A wide array of biochemical processes underlie MDD presentations and their shift to a recurrent, neuroprogressive course, including: increased immune-inflammation, tryptophan catabolites (TRYCATs), mitochondrial dysfunction, aryl hydrocarbonn receptor activation, and oxidative and nitrosative stress (O&NS), as well as decreased sirtuins and melatonergic pathway activity. These biochemical changes may have their roots in central, systemic and/or peripheral sites, including in the gut, as well as in developmental processes, such as prenatal stressors and breastfeeding consequences. Consequently, conceptualizations of MDD have dramatically moved from simple psychological and central biochemical models, such as lowered brain serotonin, to a conceptualization that incorporates whole body processes over a lifespan developmental timescale. However, important hubs are proposed, including the gut-brain axis, and mitochondrial functioning, which may provide achievable common treatment targets despite considerable inter-individual variability in biochemical changes. This provides a more realistic model of the complexity of MDD and the pathophysiological processes that underpin the shift to rMDD and consequent cognitive deficits. Such accumulating data on the pathophysiological processes underpinning MDD highlights the need in psychiatry to shift to a classification system that is based on biochemical processes, rather than subjective phenomenology.
Collapse
|
22
|
Abstract
Alzheimer's disease (AD) is increasing in prevalence and has a significant impact on caregivers and the healthcare system. One of the many physiologic process affected by AD is the circadian system, with disruption reflected in abnormalities of the sleep-wake cycle. This interaction is bidirectional, with circadian and sleep disruption influencing disease progression. Understanding the bidirectional relationship between AD and circadian disruption may allow for earlier recognition of the potential to develop dementia as well as improved targeted approaches for therapy. Therapies including melatonin and bright light therapy may be advantageous in improving sleep and circadian rhythms and preventing the progression of disease. However, unfortunately, these modalities are not curative, and additional research is needed to improve treatment options for these individuals.
Collapse
Affiliation(s)
- Yumna Saeed
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sabra M Abbott
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
23
|
Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina. Front Aging Neurosci 2017; 9:79. [PMID: 28420980 PMCID: PMC5378720 DOI: 10.3389/fnagi.2017.00079] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
In mammals, melanopsin-expressing retinal ganglion cells (mRGCs) are, among other things, involved in several non-image-forming visual functions, including light entrainment of circadian rhythms. Considering the profound impact of aging on visual function and ophthalmic diseases, here we evaluate changes in mRGCs throughout the life span in humans. In 24 post-mortem retinas from anonymous human donors aged 10–81 years, we assessed the distribution, number and morphology of mRGCs by immunostaining vertical retinal sections and whole-mount retinas with antibodies against melanopsin. Human retinas showed melanopsin immunoreactivity in the cell body, axon and dendrites of a subset of ganglion cells at all ages tested. Nearly half of the mRGCs (51%) were located within the ganglion cell layer (GCL), and stratified in the outer (M1, 12%) or inner (M2, 16%) margin of the inner plexiform layer (IPL) or in both plexuses (M3, 23%). M1 and M2 cells conformed fairly irregular mosaics, while M3 cell distribution was slightly more regular. The rest of the mRGCs were more regularly arranged in the inner nuclear layer (INL) and stratified in the outer margin of the IPL (M1d, 49%). The quantity of each cell type decrease after age 70, when the total number of mRGCs was 31% lower than in donors aged 30–50 years. Moreover, in retinas with an age greater than 50 years, mRGCs evidenced a decrease in the dendritic area that was both progressive and age-dependent, as well as fewer branch points and terminal neurite tips per cell and a smaller Sholl area. After 70 years of age, the distribution profile of the mRGCs was closer to a random pattern than was observed in younger retinas. We conclude that advanced age is associated with a loss in density and dendritic arborization of the mRGCs in human retinas, possibly accounting for the more frequent occurrence of circadian rhythm disorders in elderly persons.
Collapse
Affiliation(s)
- Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain.,Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain
| | - Juan J Pérez-Santonja
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain.,Department of Ophthalmology, Alicante University General HospitalAlicante, Spain
| | - José M García-Fernández
- Department of Morphology and Cellular Biology, Institute of Neuroscience Principado de Asturias (INEUROPA), University of OviedoOviedo, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain.,Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation)Alicante, Spain.,Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
24
|
Degeneration and energy shortage in the suprachiasmatic nucleus underlies the circadian rhythm disturbance in ApoE -/- mice: implications for Alzheimer's disease. Sci Rep 2016; 6:36335. [PMID: 27824104 PMCID: PMC5099891 DOI: 10.1038/srep36335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) patients suffer sleep disorders and circadian rhythm disturbances (CRDs). The underlying mechanisms are incompletely understood, and treatments are lacking. In this study, we characterized the locomotor activity, clock gene expression, morphological degeneration and energy metabolism of suprachiasmatic nucleus (SCN), together with retinal light sensing, in ApoE-/- mice, a model for AD. Compared with the control C57BL/6J mice, ApoE-/- mice exhibited disordered circadian locomotor activity under dim light and constant darkness, with impaired re-entrainment to phase change schedules. Decreased retinal melanopsin expression, together with amyloidosis and tau deposition, was evident in ApoE-/- mice. Mitochondrial and synaptic deterioration, altered SIRT1-mediated energy metabolism and clock gene expression were also observed in ApoE-/- SCN. Supplementation with fat or ketone bodies but not glucose, or intraperitoneal administration of nicotinamide, restored the locomotor rhythmicity and circadian expression of SIRT1 and clock genes, as well as reducing neurodegeneration. Taken together, ApoE deficiency induced degeneration and a significant disturbance in the SCN rhythmicity. Decline of retinal light sensing and SCN structural and metabolic deteriorations represented the major pathologies accounting for the CRDs in ApoE-/- mice. Our curative experiments may help develop future therapies to treat the CRDs and sleep disorders in AD patients.
Collapse
|