1
|
Apte A, Bardill JR, Canchis J, Skopp SM, Fauser T, Lyttle B, Vaughn AE, Seal S, Jackson DM, Liechty KW, Zgheib C. Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn's Colitis Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:894. [PMID: 38786849 PMCID: PMC11124096 DOI: 10.3390/nano14100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Inflammation and oxidative stress are implicated in the pathogenesis of Crohn's disease. Cerium oxide nanoparticle (CNP) conjugated to microRNA 146a (miR146a) (CNP-miR146a) is a novel compound with anti-inflammatory and antioxidative properties. We hypothesized that local administration of CNP-miR146a would improve colitis in a 2,4,6-Trinitrobenzenesulfonic acid (TNBS) mouse model for Crohn's disease by decreasing colonic inflammation. Balb/c mice were instilled with TNBS enemas to induce colitis. Two days later, the mice received cellulose gel enema, cellulose gel with CNP-miR146a enema, or no treatment. Control mice received initial enemas of 50% ethanol and PBS enemas on day two. The mice were monitored daily for weight loss and clinical disease activity. The mice were euthanized on days two or five to evaluate their miR146a expression, inflammation on histology, and colonic IL-6 and TNF gene expressions and protein concentrations. CNP-miR146a enema successfully increased colonic miR146a expression at 12 h following delivery. At the end of five days from TNBS instillation, the mice treated with CNP-miR146a demonstrated reduced weight loss, improved inflammation scores on histology, and reduced gene expressions and protein concentrations of IL-6 and TNF. The local delivery of CNP-miR146a in a TNBS mouse model of acute Crohn's colitis dramatically decreased inflammatory signaling, resulting in improved clinical disease.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - James R. Bardill
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Bailey Lyttle
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Alyssa E. Vaughn
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32827, USA
| | | | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Zhu F, Yang T, Ning M, Liu Y, Xia W, Fu Y, Wen T, Zheng M, Xia R, Qian R, Li Y, Sun M, Liu J, Tian L, Zhou Q, Yu X, Peng C. MiR-146a alleviates inflammatory bowel disease in mice through systematic regulation of multiple genetic networks. Front Immunol 2024; 15:1366319. [PMID: 38799464 PMCID: PMC11116640 DOI: 10.3389/fimmu.2024.1366319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a chronic disease involving multiple genes, and the current available targeted drugs for IBD only deliver moderate efficacy. Whether there is a single gene that systematically regulates IBD is not yet known. MiR-146a plays a pivotal role in repression of innate immunity, but its function in the intestinal inflammation is sort of controversy, and the genetic regulatory networks regulated by miR-146a in IBD has not been revealed. Methods RT-qPCR was employed to detect the expression of miR-146a in IBD patients and in a mouse IBD model induced by dextran sulfate sodium (DSS), and then we generated a miR-146a knock-out mouse line with C57/Bl6N background. The disease activity index was scored in DSS-treated miR-146a deficiency mice and their wild type (WT) littermates. Bulk RNA-sequencing, RT-qPCR and immunostaining were done to illustrate the downstream genetic regulatory networks of miR-146a in flamed colon. Finally, the modified miR-146a mimics were used to treat DSS-induced IBD in miR-146a knock-out and WT IBD mice. Results We showed that the expression of miR-146a in the colon was elevated in dextran sulfate sodium (DSS)-induced IBD mice and patients with IBD. DSS induced dramatic body weight loss and more significant rectal bleeding, shorter colon length, and colitis in miR-146a knock-out mice than WT mice. The miR-146a mimics alleviated DSS-induced symptoms in both miR-146a-/- and WT mice. Further RNA sequencing illustrated that the deficiency of miR-146a de-repressed majority of DSS-induced IBD-related genes that cover multiple genetic regulatory networks in IBD, and supplementation with miR-146a mimics inhibited the expression of many IBD-related genes. Quantitative RT-PCR or immunostaining confirmed that Ccl3, Saa3, Csf3, Lcn2, Serpine1, Serpine2, MMP3, MMP8, MMP10, IL1A, IL1B, IL6, CXCL2, CXCL3, S100A8, S100A9, TRAF6, P65, p-P65, and IRAK1 were regulated by miR-146a in DSS induced IBD. Among them, MMP3, MMP10, IL6, IL1B, S100A8, S100A9, SERPINE1, CSF3, and IL1A were involved in the active stage of IBD in humans. Discussion Our date demonstrated that miR-146a acts as a top regulator in C57/BL6N mice to systematically repress multiple genetic regulatory networks involved in immune response of intestine to environment factors, and combinatory treatment with miR-146a-5p and miR-146a-3p mimics attenuates DSS-induced IBD in mice through down-regulating multiple genetic regulatory networks which were increased in colon tissue from IBD patients. Our findings suggests that miR-146a is a top inhibitor of IBD, and that miR-146a-5p and miR-146a-3p mimics might be potential drug for IBD.
Collapse
Affiliation(s)
- Fengting Zhu
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Taotan Yang
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- Xiang-Xing College, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Mengmeng Ning
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Yang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xia
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Yan Fu
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ting Wen
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Mei Zheng
- Department of Clinical Laboratory, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Ruilong Xia
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ran Qian
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Yang Li
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Liu
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Tian
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhou
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Clinic Center for Brain and Spinal Cord Research, School of Medicine and Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Kolahi SN, Salehi Z, Sasani ST, Mashayekhi F, Aminian K. Polymorphisms of miR-146a and susceptibility to ulcerative colitis risk: a case-control study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:206-216. [PMID: 36075029 DOI: 10.1080/15257770.2022.2118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering the role of miR-146a in the control of inflammation, we assessed the importance of two miR-146a polymorphisms (rs2910164 and rs57095329) in the development and severity of ulcerative colitis (UC) in Iran. Genomic DNA of 150 cases with UC and 200 healthy individuals were genotyped using the PCR-RFLP technique. Statistical analyses were performed using Med Calc software. The miR-146a rs2910164 C allele was significantly associated with increased risk of UC. Individuals carrying the CC (rs2910164) were more than fourfold higher risk of UC relative to wild type homozygotes. The combined GC + CC genotypes were also associated with increased UC risk. We also found that the rs2910164 CC genotype was associated with a severe form of the disease However, the distribution of variant allele and genotypes of rs57095329 did not differ between the cases and controls. In conclusion, miR-146a rs2910164 polymorphism may play a role in UC. To confirm our findings, additional well-designed studies in diverse ethnic populations are required.
Collapse
Affiliation(s)
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Keyvan Aminian
- Department of Forensic Pathology, School of Medicine, Research Center for Gastroenterology and Liver Diseases, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
5
|
Meta-Analysis of miRNA Variants Associated with Susceptibility to Autoimmune Disease. DISEASE MARKERS 2021; 2021:9978460. [PMID: 34659590 PMCID: PMC8519726 DOI: 10.1155/2021/9978460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Purpose Various studies have shown an association between miRNA polymorphisms and susceptibility to autoimmune disease (AD); however, the results are inconclusive. To evaluate whether miRNA polymorphisms account for a significant risk of AD, a total of 87 articles, including 39431 patients and 56708 controls, were identified to estimate their association with 12 AD subtypes. Methods Several electronic databases were searched to analyze population-based studies on the relationship between miRNA variants and AD risk. Fixed effects or random effect models were used in the meta-analysis for the risk assessment. Results In our meta-analysis, miR-146a rs2910164/rs57095329 conferred a marginally elevated risk for AD (allele model, OR = 1.08, 95% CI: 1.01-1.15, P = 0.019; allele model, OR = 1.09, 95 CI: 1.05-1.15, P < 0.001, respectively). Furthermore, miR-196a2 rs11614913 was also associated with AD risk (allele model, OR = 0.92, 95% CI: 0.88-0.97, P = 0.001) as well as miR-499 rs3746444 (allele model, OR = 1.16, 95% CI: 1.03-1.29, P = 0.011). In addition, associations were observed between miR-149 rs2292832/miR-27a rs895819 and AD susceptibility in the overall population (allele model, OR = 1.15, 95% CI: 1.06-1.24, P < 0.001; allele model, OR = 1.11, 95% CI:1.01-1.22, P = 0.043, respectively). Conclusions Evidence from our systematic review suggests that miR-146a, miR-196a2, miR-499, miR-149, and miR-27a polymorphisms are associated with susceptibility to AD.
Collapse
|
6
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett 2020; 227:8-27. [PMID: 32810557 DOI: 10.1016/j.imlet.2020.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are single-strand endogenous and non-coding RNA molecules with a length of about 22 nucleotides, which regulate genes expression, through modulating the translation and stability of their target mRNAs. miR-146a is one of the most studied miRNAs, due to its central role in immune system homeostasis and control of the innate and acquired immune responses. Accordingly, abnormal expression or function of miR-146a results in the incidence and progression of immune and non-immune inflammatory diseases. Its deregulated expression pattern and inefficient function have been reported in a wide spectrum of these illnesses. Based on the existing evidence, this miRNA qualifies as an ideal biomarker for diagnosis, prognosis, and activity evaluation of immune and non-immune inflammatory disorders. Moreover, much attention has recently been paid to therapeutic potential of miR-146a and several researchers have assessed the effects of different drugs on expression and function of this miRNA at diverse experimental, animal, besides human levels, reporting motivating results in the treatment of the diseases. Here, in this comprehensive review, we provide an overview of miR-146a role in the pathogenesis and progression of several immune and non-immune inflammatory diseases such as Rheumatoid arthritis, Systemic lupus erythematosus, Inflammatory bowel disease, Multiple sclerosis, Psoriasis, Graves' disease, Atherosclerosis, Hepatitis, Chronic obstructive pulmonary disease, etc., discuss about its eligibility for being a desirable biomarker for these disorders, and also highlight its therapeutic potential. Understanding these mechanisms underlies the selecting and designing the proper therapeutic targets and medications, which eventually facilitate the treatment process.
Collapse
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Marschner D, Falk M, Javorniczky NR, Hanke-Müller K, Rawluk J, Schmitt-Graeff A, Simonetta F, Haring E, Dicks S, Ku M, Duquesne S, Aumann K, Rafei-Shamsabadi D, Meiss F, Marschner P, Boerries M, Negrin RS, Duyster J, Zeiser R, Köhler N. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 2020; 5:132334. [PMID: 32125286 DOI: 10.1172/jci.insight.132334] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown a significant benefit in the treatment of a variety of cancer entities. However, immune-related adverse events (irAEs) occur frequently and can lead to ICI treatment termination. MicroRNA-146a (miR-146a) has regulatory functions in immune cells. We observed that mice lacking miR-146a developed markedly more severe irAEs compared with WT mice in several irAE target organs in 2 different murine models. miR-146a-/- mice exhibited increased T cell activation and effector function upon ICI treatment. Moreover, neutrophil numbers in the spleen and the inflamed intestine were highly increased in ICI-treated miR-146a-/- mice. Therapeutic administration of a miR-146a mimic reduced irAE severity. To validate our preclinical findings in patients, we analyzed the effect of a SNP in the MIR146A gene on irAE severity in 167 patients treated with ICIs. We found that the SNP rs2910164 leading to reduced miR-146a expression was associated with an increased risk of developing severe irAEs, reduced progression-free survival, and increased neutrophil counts both at baseline and during ICI therapy. In conclusion, we characterized miR-146a as a molecular target for preventing ICI-mediated autoimmune dysregulation. Furthermore, we identified the MIR146A SNP rs2910164 as a biomarker to predict severe irAE development in ICI-treated patients.
Collapse
Affiliation(s)
- Dominik Marschner
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Martina Falk
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany.,Faculty of Biology, ALU, Freiburg, Germany
| | - Nora Rebeka Javorniczky
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Kathrin Hanke-Müller
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Justyna Rawluk
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | | | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany.,Faculty of Biology, ALU, Freiburg, Germany
| | - Severin Dicks
- Faculty of Biology, ALU, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Konrad Aumann
- Institute of Surgical Pathology, Freiburg University Medical Center, ALU, Freiburg, Germany
| | - David Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany
| | - Patrick Marschner
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany.,Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
9
|
Zhang S, Chen L, Wang Y, Tang W, Chen Y, Liu L. Investigation of the Association of miRNA-499, miRNA-146a, miRNA-196a2 Loci with Hepatocellular Carcinoma Risk: A Case-Control Study Involving 1507 Subjects. DNA Cell Biol 2020; 39:379-388. [PMID: 32031872 DOI: 10.1089/dna.2019.5145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
microRNAs' (miRNAs) loci may influence hepatocellular carcinoma (HCC) development. Many recent studies have assessed the relationship between miRNA-499, miRNA-146a, and miRNA-196a2 loci and HCC risk. However, the observed results are conflicting. A total of 584 HCC patients and 923 age- and sex-matched controls were recruited. The correlation of miRNA-499 rs3746444, miRNA-146a rs2910164, and miRNA-196a2 rs11614913 with HCC development was assessed. In the <53-year-old subgroup, a correlation of the rs2910164 locus with HCC risk was found (GG/CG vs. CC: adjusted p = 0.011, GG vs. CC: adjusted p = 0.021 and CG vs. CC: adjusted p = 0.027). The association between miRNA-146a rs2910164 and the risk of HCC was also found in the never smoking (GG/CG vs. CC: adjusted p = 0.011 and CG vs. CC: adjusted p = 0.018). Using false-positive report probability method and power value, we identified that miRNA-146a rs2910164 conferred a risk to HCC in the <53-year-old and never-smoking subgroups. In conclusion, this study indicates rs2910164 may be a risk factor for HCC, especially in the <53-year-old and never-smoking subgroups.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of General Surgery, Changzhou No. 3 People's Hospital, Changzhou, China
| | - Lizhu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Longgen Liu
- Department of Liver Disease, Changzhou No. 3 People's Hospital, Changzhou, China
| |
Collapse
|
10
|
Li J, Wang J, Su X, Jiang Z, Rong X, Gu X, Jia C, Zeng L, Zheng H, Gu X, Chu M. Association between the miRNA-149 rs2292832 T>C polymorphism and Kawasaki disease susceptibility in a southern Chinese population. J Clin Lab Anal 2019; 34:e23125. [PMID: 31785027 PMCID: PMC7171309 DOI: 10.1002/jcla.23125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Kawasaki disease (KD), which is characterized by vasculitis, is prone to occur in patients under 5 years of age, has an ambiguous etiology, and displays coronary artery lesions as the chief complication. Previous studies have linked miRNA‐149 to cancers, and rs2292832 T>C is related to allergic diseases and inflammatory bowel disease, which both show immune system disorders and coronary artery disease. Therefore, we performed a study concentrating on the association between the miRNA‐149 rs2292832 T>C polymorphism and KD susceptibility. Methods The subjects enrolled were 532 children with KD and 623 controls. We used TaqMan real‐time PCR to obtain the genotypes of the rs2292832 T>C polymorphism. Results Ultimately, no significant association was found between the miRNA‐149 rs2292832 T>C polymorphism and KD susceptibility, even in stratification analysis. Conclusion Our results indicated that in southern Chinese patients, the miRNA‐149 rs2292832 T>C polymorphism did not affect KD susceptibility, which needs to be further confirmed.
Collapse
Affiliation(s)
- Jiawen Li
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| | - Jinxin Wang
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| | - Xiaoping Su
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical LabGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xing Rong
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| | - Xueping Gu
- Department of Blood Transfusion and Clinical LabGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Chang Jia
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| | - Lanlan Zeng
- Department of Clinical LabGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hao Zheng
- Department of Clinical LabGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqiong Gu
- Department of Blood TransfusionClinical Biological Resource Bank and Clinical LabGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Maoping Chu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's HospitalInstitute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
11
|
Sun F, Liang W, Tang K, Hong M, Qian J. Profiling the lncRNA-miRNA-mRNA ceRNA network to reveal potential crosstalk between inflammatory bowel disease and colorectal cancer. PeerJ 2019; 7:e7451. [PMID: 31523496 PMCID: PMC6714963 DOI: 10.7717/peerj.7451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background Because of the increasing dysplasia rate in the lifelong course of inflammatory bowel disease (IBD) patients, it is imperative to characterize the crosstalk between IBD and colorectal cancer (CRC). However, there have been no reports revealing the occurrence of the ceRNA network in IBD-related CRC. Methods In this study, we conducted gene expression profile studies of databases and performed an integrated analysis to detect the potential of lncRNA-miRNA-mRNA ceRNA in regulating disease transformation. R packages were used to screen differentially expressed mRNA, lncRNA and miRNA among CRC, IBD and normal tissue. The lncRNA-miRNA-mRNA network was constructed based on predicted miRNA-targeted lncRNAs and miRNA-targeted mRNAs. Functional analyses were then conducted to identify genes involved in the ceRNA network, and key lncRNAs were evaluated based on several clinical outcomes. Results A total of three lncRNAs, 15 miRNAs, and 138 mRNAs were identified as potential mediators in the pathophysiological processes of IBD-related CRC. Gene Ontology annotation enrichment analysis confirmed that the dysplasia process was strongly associated with immune response, response to lipopolysaccharide, and inflammatory response. Survival analysis showed that LINC01106 (HR = 1.7; p < 0.05) were strongly associated with overall survival of colorectal cancer patients. The current study identified a series of IBD-related mRNAs, miRNA, and lncRNAs, and highlighted the important role of ceRNAs in the pathogenesis of IBD-related CRC. Among them, the LINC01106-miRNA-mRNA axis was identified as vital targets for further research.
Collapse
Affiliation(s)
- Fangfang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejun Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Mengying Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jing Qian
- Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China.,College of Pharmaceutical Sciences, Zhejiang University, Pharmaceutical Informatics Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Li Z, Wang Y, Zhu Y. Association of miRNA-146a rs2910164 and miRNA-196 rs11614913 polymorphisms in patients with ulcerative colitis: A meta-analysis and review. Medicine (Baltimore) 2018; 97:e12294. [PMID: 30278502 PMCID: PMC6181578 DOI: 10.1097/md.0000000000012294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND It has been reported that the single nucleotide polymorphisms (SNPs) miRNA-196 (miR-196) rs11614913 and miRNA-146a (miR-146a) rs2910164 are related to susceptibility to ulcerative colitis (UC). Because the previously reported results have been mixed and uncertain, the aim of this study was to perform a meta-analysis and review to assess the relationship between these 2 SNPs and UC risk. METHODS In this analysis, 5 studies involving 1023 cases and 1769 controls for miR-196 rs11614913 and 4 studies involving 827 cases and 1451 controls for miR-146 rs2910164 were included. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool the effect size. RESULTS A decreased risk of UC was identified in homozygote comparison (GG vs CC: OR = 0.69, 95% CI: 0.52-0.93, P = .02), recessive comparison (GG vs CG + CC: OR = 0.74, 95% CI: 0.59-0.92, P = .007), and dominant comparison (GG + CG vs CC: OR = 0.79, 95% CI: 0.65-0.97, P = .02) of miR-146 rs2910164 in Asian but not Caucasian population. No evidence of an association was shown between the rs11614913 polymorphism and UC risk in allelic, heterozygote, homozygote, recessive, and dominant models in both Caucasian and Asian populations (P > .05). CONCLUSIONS MiR-146 rs2910164, but not miR-196 rs11614913, was associated with a decreased risk of UC in Asian population. However, the results should be treated with caution because of the limited sample size and heterogeneity. Well-designed studies with large sample sizes and more ethnic groups are needed to validate the risks identified in the current meta-analysis and review.
Collapse
Affiliation(s)
- Zhongyi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University
| | - Yao Wang
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong Province
| | - Yi Zhu
- Department of Gastroenterological Surgery, First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| |
Collapse
|
13
|
Chayeb V, Mahjoub S, Zitouni H, Jrah-Harzallah H, Zouari K, Letaief R, Mahjoub T. Contribution of microRNA-149, microRNA-146a, and microRNA-196a2 SNPs in colorectal cancer risk and clinicopathological features in Tunisia. Gene 2018; 666:100-107. [DOI: 10.1016/j.gene.2018.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
|
14
|
Association of Three Polymorphisms rs11614913, rs2910146, and rs3746444 in miRNA-196a2, miRNA-146a, and miRNA-499 with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2018; 2018:7295131. [PMID: 29706994 PMCID: PMC5863352 DOI: 10.1155/2018/7295131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Background It has been found that single-nucleotide polymorphisms (SNPs) of microRNA might be involved in the development of inflammatory bowel diseases (IBDs). However, the related retrospective research has not been reported. In this work, we performed a meta-analysis to derive a more precise estimation of the associated relationship. Methods We searched the studies on the association of SNPs of microRNA with the hereditary susceptibility of IBD in PubMed and Embase; eligible research was selected by screening the abstract and full text. The meta-analysis was performed based on the statistical software Stata 14.0, and besides, the odds ratio and 95% confidence interval were calculated to evaluate the strength of the association. Results 159 papers were acquired from the PubMed and Embase databases, and five eligible articles containing nine case-control studies were selected. In the study, we first found that the association between miRNA-196a2 rs11614913 and IBD was insignificant. Then, the susceptibility of miRNA-146a rs2910146 to IBD increased significantly in allelic comparison, homozygote model, heterozygote model, and dominant model. Moreover, a positive relationship between miRNA-499 rs3746444 and IBD was identified in the homozygote model. Conclusion Our findings demonstrated that miRNA-146a rs2910146 (G>C) polymorphism was associated with the susceptibility to IBD and miRNA-196a2 rs11614913 (T>C) and miRNA-499 rs3746444 (A>G) did not reveal an obvious relationship with the IBD susceptibility.
Collapse
|
15
|
Ma Q, Lin L, Che Y, Ping G. Two single nucleotide polymorphisms within corresponding microRNAs and tuberculosis risk: A meta-analysis. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Papaconstantinou I, Kapizioni C, Legaki E, Xourgia E, Karamanolis G, Gklavas A, Gazouli M. Association of miR-146 rs2910164, miR-196a rs11614913, miR-221 rs113054794 and miR-224 rs188519172 polymorphisms with anti-TNF treatment response in a Greek population with Crohn’s disease. World J Gastrointest Pharmacol Ther 2017; 8:193-200. [PMID: 29152405 PMCID: PMC5680166 DOI: 10.4292/wjgpt.v8.i4.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the correlation between rs2910164, rs11 614913, rs113054794, and rs188519172 polymorphisms and response to anti-TNF treatment in patients with Crohn’s disease (CD).
METHODS One hundred seven patients with CD based on standard clinical, endoscopic, radiological, and pathological criteria were included in the study. They all received infliximab or adalimumab intravenously or subcutaneously at standard induction doses as per international guidelines. Clinical and biochemical response was assessed using the Harvey-Bradshaw index and CRP levels respectively. Endoscopic response was evaluated by ileocolonoscopy at week 12-20 of therapy. The changes in endoscopic appearance compared to baseline were classified into four categories, and patients were classified as responders and non-responders. Whole peripheral blood was extracted and genotyping was performed by PCR.
RESULTS One hundred and seven patients were included in the study. Seventy two (67.3%) patients were classified as complete responders, 22 (20.5%) as partial while 13 (12.1%) were primary non-responders. No correlation was detected between response to anti-TNF agents and patients’ characteristics such as gender, age and disease duration while clinical and biochemical indexes used were associated with endoscopic response. Concerning prevalence of rs2910164, rs11614913, and rs188519172 polymorphisms of miR-146, miR-196a and miR-224 respectively no statistically important difference was found between complete, partial, and non-responders to anti-TNF treatment. Actually CC genotype of rs2910164 was not detected in any patient. Regarding rs113054794 of miR-221, normal CC genotype was the only one detected in all studied patients, suggesting this polymorphism is highly rare in the studied population.
CONCLUSION No correlation is detected between studied polymorphisms and patients’ response to anti-TNF treatment. Polymorphism rs113054794 is not detected in our population.
Collapse
Affiliation(s)
- Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Kapizioni
- Gastroenterology Department, Tzaneion General Hospital, 18536 Piraeus, Greece
| | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Xourgia
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonios Gklavas
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
17
|
McVeigh TP, Mulligan RJ, McVeigh UM, Owens PW, Miller N, Bell M, Sebag F, Guerin C, Quill DS, Weidhaas JB, Kerin MJ, Lowery AJ. Investigating the association of rs2910164 with cancer predisposition in an Irish cohort. Endocr Connect 2017; 6:614-624. [PMID: 28899898 PMCID: PMC5640569 DOI: 10.1530/ec-17-0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small noncoding RNA molecules that exert post-transcriptional effects on gene expression by binding with cis-regulatory regions in target messenger RNA (mRNA). Polymorphisms in genes encoding miRNAs or in miRNA-mRNA binding sites confer deleterious epigenetic effects on cancer risk. miR-146a has a role in inflammation and may have a role as a tumour suppressor. The polymorphism rs2910164 in the MIR146A gene encoding pre-miR-146a has been implicated in several inflammatory pathologies, including cancers of the breast and thyroid, although evidence for the associations has been conflicting in different populations. We aimed to further investigate the association of this variant with these two cancers in an Irish cohort. METHODS The study group comprised patients with breast cancer (BC), patients with differentiated thyroid cancer (DTC) and unaffected controls. Germline DNA was extracted from blood or from saliva collected using the DNA Genotek Oragene 575 collection kit, using crystallisation precipitation, and genotyped using TaqMan-based PCR. Data were analysed using SPSS, v22. RESULTS The total study group included 1516 participants. This comprised 1386 Irish participants; 724 unaffected individuals (controls), 523 patients with breast cancer (BC), 136 patients with differentiated thyroid cancer (DTC) and three patients with dual primary breast and thyroid cancer. An additional cohort of 130 patients with DTC from the South of France was also genotyped for the variant. The variant was detected with a minor allele frequency (MAF) of 0.19 in controls, 0.22 in BC and 0.27 and 0.26 in DTC cases from Ireland and France, respectively. The variant was not significantly associated with BC (per allele odds ratio = 1.20 (0.98-1.46), P = 0.07), but was associated with DTC in Irish patients (per allele OR = 1.59 (1.18-2.14), P = 0.002). CONCLUSION The rs2910164 variant in MIR146A is significantly associated with DTC, but is not significantly associated with BC in this cohort.
Collapse
Affiliation(s)
- T P McVeigh
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - R J Mulligan
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - U M McVeigh
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - P W Owens
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - N Miller
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - M Bell
- Department of EndocrinologySchool of Medicine, NUI Galway, Galway, Ireland
| | - F Sebag
- Department of Endocrine Surgery Centre hospitalo-universitaire de La ConceptionAssistance Publique Hôpitaux de Marseille, Marseille, France
- Aix-Marseille UniversitéFaculté de Médecine, Marseille, France
| | - C Guerin
- Department of Endocrine Surgery Centre hospitalo-universitaire de La ConceptionAssistance Publique Hôpitaux de Marseille, Marseille, France
- Aix-Marseille UniversitéFaculté de Médecine, Marseille, France
| | - D S Quill
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - J B Weidhaas
- David Geffen School of MedicineUniversity of California, Los Angeles, USA
| | - M J Kerin
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| | - A J Lowery
- Discipline of SurgeryLambe Institute for Translational Research, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
18
|
Ciccacci C, Politi C, Biancone L, Latini A, Novelli G, Calabrese E, Borgiani P. Polymorphisms in MIR122, MIR196A2, and MIR124A Genes are Associated with Clinical Phenotypes in Inflammatory Bowel Diseases. Mol Diagn Ther 2017; 21:107-114. [PMID: 27718165 DOI: 10.1007/s40291-016-0240-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial disorders that result from a dysregulated inflammatory response to environmental factors in genetically predisposed individuals. Recently, microRNAs (miRNAs) have been shown to be involved in the development of IBDs. AIMS We investigated common variants in five miRNA genes in a cohort of Italian IBD patients, to evaluate their possible role in the disease's susceptibility and phenotype manifestations. METHODS The analysis included 267 CD patients, 207 UC patients, and 298 matched healthy controls. Polymorphisms in the MIR122, MIR499, MIR146A, MIR196A2, and MIR124A genes were evaluated by allelic discrimination assay. RESULTS We did not find associations between mir polymorphisms and IBD susceptibility. In both diseases, rs17669 and rs11614913 (MIR122 and MIR196A2) seem to contribute to clinical phenotypes: ileal location in CD (odds ratio [OR] = 1.82, p = 0.03; OR = 0.51, p = 0.01), and left-sided extent in UC (OR = 0.43, p = 0.05; OR = 0.28, p = 0.002). In CD, the MIR124A polymorphism (rs531564) contributed to colon location (p = 0.03, OR = 2.74). Finally, the variant allele of rs11614913 was associated with early age at onset in both diseases (p = 0.05 and p = 0.02). CONCLUSIONS We showed for the first time that polymorphisms in MIR122, MIR196A2, and MIR124A could play a role in clinical phenotype modulation in IBD.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Livia Biancone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Emma Calabrese
- Gastroenterology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
19
|
Feng B, Chen S, Gordon AD, Chakrabarti S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol 2017; 105:70-76. [DOI: 10.1016/j.yjmcc.2017.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/17/2023]
|
20
|
Jin X, Chen D, Zheng RH, Zhang H, Chen YP, Xiang Z. miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World J Gastroenterol 2017; 23:76-86. [PMID: 28104982 PMCID: PMC5221288 DOI: 10.3748/wjg.v23.i1.76] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/09/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of the miR-133a-UCP2 pathway in the pathogenesis of inflammatory bowel disease (IBD) and to explore the potential downstream mechanisms with respect to inflammation, oxidative stress and energy metabolism.
METHODS C57BL/6 mice were fed dextran sulfate sodium (DSS) liquid for 7 consecutive days, followed by the administration of saline to the DSS group, UCP2 siRNA to the UCP2 group and a miR-133a mimic to the miR-133a group on days 8 and 11. Body weight, stool consistency and rectal bleeding were recorded daily, and these composed the disease activity index (DAI) score for the assessment of disease severity. After cervical dislocation was performed on day 14, the length of the colon in each mouse was measured, and colonic tissue was collected for further study, which included the following: haematoxylin and eosin staining, UCP2 and miR-133a detection by immunohistochemical staining, western blot and quantitative real-time PCR, measurement of apoptosis by TUNEL assay, and the assessment of inflammation (TNF-α, IL-1β, IL-6 and MCP1), oxidative stress (H2O2 and MDA) and metabolic parameters (ATP) by ELISA and colorimetric methods.
RESULTS An animal model of IBD was successfully established, as shown by an increased DAI score, shortened colon length and specific pathologic changes, along with significantly increased UCP2 and decreased miR-133a levels. Compared with the DSS group, the severity of IBD was alleviated in the UCP2 and the miR-133a groups after successful UCP2 knockdown and miR-133a overexpression. The extent of apoptosis, as well as the levels of TNF-α, IL-1β, MDA and ATP, were significantly increased in both the UCP2 and miR-133a groups compared with the DSS group.
CONCLUSION The miR-133a-UCP2 pathway participates in IBD by altering downstream inflammation, oxidative stress and markers of energy metabolism, which provides novel clues and potential therapeutic targets for IBD.
Collapse
|