1
|
Ozdemi̇r C, Isik B, Koca G, Inan MA. Effects of mid‑gestational sevoflurane and magnesium sulfate on maternal oxidative stress, inflammation and fetal brain histopathology. Exp Ther Med 2024; 28:286. [PMID: 38827470 PMCID: PMC11140313 DOI: 10.3892/etm.2024.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Models of inflammation, oxidative stress, hyperoxia and hypoxia have demonstrated that magnesium sulfate (MgSO4), a commonly used drug in obstetrics, has neuroprotective potential. In the present study, the effects of MgSO4 treatment on inflammation, oxidative stress and fetal brain histopathology were evaluated in an experimental rat model following sevoflurane (Sv) exposure during the mid-gestational period. Rats were randomly divided into groups: C (control; no injections or anesthesia), Sv (exposure to 2.5% Sv for 2 h), MgSO4 (administered 270 mg/kg MgSO4 intraperitoneally) and Sv + MgSO4 (Sv administered 30 min after MgSO4 injection). Inflammatory and oxidative stress markers were measured in the serum and neurotoxicity was investigated histopathologically in fetal brain tissue. Short-term mid-gestational exposure to a 1.1 minimum alveolar concentration of Sv did not significantly increase the levels of any of the measured biochemical markers, except for TNF-α. Histopathological evaluations demonstrated no findings suggestive of pathological apoptosis, neuroinflammation or oxidative stress-induced cell damage. MgSO4 injection prior to anesthesia caused no significant differences in biochemical or histopathological marker levels compared to the C and Sv groups. The present study indicated that short-term exposure to Sv could potentially be considered a harmless external stimulus to the fetal brain.
Collapse
Affiliation(s)
- Cagri Ozdemi̇r
- Department of Anesthesiology and Reanimation, Mamak State Hospital, 06270 Ankara, Turkey
| | - Berrin Isik
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Gulce Koca
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Medical Pathology, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
2
|
Areias J, Sola C, Chastagnier Y, Pico J, Bouquier N, Dadure C, Perroy J, Szabo V. Whole-brain characterization of apoptosis after sevoflurane anesthesia reveals neuronal cell death patterns in the mouse neonatal neocortex. Sci Rep 2023; 13:14763. [PMID: 37679476 PMCID: PMC10484929 DOI: 10.1038/s41598-023-41750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
In the last two decades, safety concerns about general anesthesia (GA) arose from studies documenting brain cell death in various pharmacological conditions and animal models. Nowadays, a thorough characterization of sevoflurane-induced apoptosis in the entire neonatal mouse brain would help identify and further focus on underlying mechanisms. We performed whole-brain mapping of sevoflurane-induced apoptosis in post-natal day (P) 7 mice using tissue clearing and immunohistochemistry. We found an anatomically heterogenous increase in cleaved-caspase-3 staining. The use of a novel P7 brain atlas showed that the neocortex was the most affected area, followed by the striatum and the metencephalon. Histological characterization in cortical slices determined that post-mitotic neurons were the most affected cell type and followed inter- and intracortical gradients with maximal apoptosis in the superficial layers of the posterodorsal cortex. The unbiased anatomical mapping used here allowed us to confirm sevoflurane-induced apoptosis in the perinatal period, neocortical involvement, and indicated striatal and metencephalic damage while suggesting moderate hippocampal one. The identification of neocortical gradients is consistent with a maturity-dependent mechanism. Further research could then focus on the interference of sevoflurane with neuronal migration and survival during development.
Collapse
Affiliation(s)
- Julie Areias
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Chrystelle Sola
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Pico
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | | | - Christophe Dadure
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Vivien Szabo
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France.
| |
Collapse
|
3
|
Lyu N, Li X. Sevoflurane Postconditioning Attenuates Cerebral Ischemia-Reperfusion Injury by Inhibiting SP1/ACSL4-Mediated Ferroptosis. Hum Exp Toxicol 2023; 42:9603271231160477. [PMID: 36842993 DOI: 10.1177/09603271231160477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Sevoflurane is the most commonly used anesthetic in clinical practice and exerts a protective effect on cerebral ischemia-reperfusion (I/R) injury. This study aims to elucidate the molecular mechanism by which sevoflurane postconditioning protects against cerebral I/R injury. Oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro and the middle cerebral artery occlusion (MCAO) model in vivo were established to simulate cerebral I/R injury. Sevoflurane postconditioning reduced neurological deficits, cerebral infarction, and ferroptosis after I/R injury. Interestingly, sevoflurane significantly inhibited specificity protein 1 (SP1) expression in MACO rats and HT22 cells exposed to OGD/R. SP1 overexpression attenuated the neuroprotective effects of sevoflurane on OGD/R-treated HT22 cells, evidenced by reduced cell viability, increased apoptosis, and cleaved caspase-3 expression. Furthermore, chromatin immunoprecipitation and luciferase experiments verified that SP1 bound directly to the ACSL4 promoter region to increase its expression. In addition, sevoflurane inhibited ferroptosis via SP1/ACSL4 axis. Generally, our study describes an anti-ferroptosis effect of sevoflurane against cerebral I/R injury via downregulating the SP1/ASCL4 axis. These findings suggest a novel sight for cerebral protection against cerebral I/R injury and indicate a potential therapeutic approach for a variety of cerebral diseases.
Collapse
Affiliation(s)
- Ning Lyu
- Department of Anesthesiology, 56659Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Xiaoyun Li
- Department of Anesthesiology, 144991The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Liu Y, Yang H, Fu Y, Pan Z, Qiu F, Xu Y, Yang X, Chen Q, Ma D, Liu Z. TRPV1 Antagonist Prevents Neonatal Sevoflurane-Induced Synaptic Abnormality and Cognitive Impairment in Mice Through Regulating the Src/Cofilin Signaling Pathway. Front Cell Dev Biol 2021; 9:684516. [PMID: 34307363 PMCID: PMC8293754 DOI: 10.3389/fcell.2021.684516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term neurodevelopmental disorders following neonatal anesthesia have been reported both in young animals and in children. The activation of transient receptor potential vanilloid 1 (TRPV1) channels in hippocampus adversely affects neurodevelopment. The current study explored the underlying mechanism of TRPV1 channels on long-lasting cognitive dysfunction induced by anesthetic exposure to the developing brain. we demonstrated that TRPV1 expression was increased after sevoflurane exposure both in vitro and in vivo. Sevoflurane exposure to hippocampal neurons decreased the synaptic density and the surface GluA1 expression, as well as increased co-localization of internalized AMPAR in early and recycling endosomes. Sevoflurane exposure to newborn mice impaired learning and memory in adulthood, and reduced AMPAR subunit GluA1, 2 and 3 expressions in the crude synaptosomal fractions from mouse hippocampus. The inhibition of TRPV1 reversed the phenotypic changes induced by sevoflurane. Moreover, sevoflurane exposure increased Src phosphorylation at tyrosine 416 site thereby reducing cofilin phosphorylation. TRPV1 blockade reversed these suppressive effects of sevoflurane. Our data suggested that TRPV1 antagonist may protect against synaptic damage and cognitive dysfunction induced by sevoflurane exposure during the brain developing stage.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yanwen Xu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qian Chen
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
6
|
Kang W, Lu D, Yang X, Ma W, Chen X, Chen K, Xu X, Zhou X, Zhou L, Feng X. Sevoflurane Induces Hippocampal Neuronal Apoptosis by Altering the Level of Neuropeptide Y in Neonatal Rats. Neurochem Res 2020; 45:1986-1996. [PMID: 32378074 DOI: 10.1007/s11064-020-03028-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Numerous studies have shown that the inhaled general anesthetic sevoflurane imposes toxicity on the central nervous system during the developmental period but the underlying mechanisms remain unclear. Neuropeptide Y (NPY) was reported to have important neuroprotective effects, which can attenuate neuronal loss under pathological conditions. However, the effects of NPY on sevoflurane-induced hippocampal neuronal apoptosis have not been investigated. In this study, postnatal day 7 (PND7) Sprague-Dawley rats and primary cultured cells separated from hippocampi were exposed to sevoflurane (2.4% for 4 h) and the NPY expression levels after treatment were analyzed. Furthermore, neuronal apoptosis assay was conducted via immunofluorescence staining of cleaved caspase-3 and flow cytometry after exogenous NPY administration to PND7 rats as well as cultured hippocampal neurons to elucidate the role of NPY in sevoflurane-induced neurotoxicity. Our results showed the level of NPY gradually decreased within 24 h after sevoflurane exposure in both the hippocampus of PND7 rats and cultured hippocampal neurons, but not in cultured astrocytes. In the exogenous NPY pretreatment study, the proportion of cleaved caspase-3 positive cells in the CA1 region of the hippocampus was increased significantly at 24 h after sevoflurane treatment, while NPY pretreatment could reduce it. Similarly, NPY could also reverse the apoptogenic effect of sevoflurane on cultured neurons. Herein, our results showed that sevoflurane caused a significant decrease in NPY expression, whereas exogenous NPY supplementation could reduce sevoflurane-induced hippocampal neuronal apoptosis both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenbin Kang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Dihan Lu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaoyu Yang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wudi Ma
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Keyu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xuanxian Xu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xue Zhou
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Hypoxia, hypercarbia, and mortality reporting in studies of anaesthesia-related neonatal neurodevelopmental delay in rodent models. Eur J Anaesthesiol 2020; 37:70-84. [DOI: 10.1097/eja.0000000000001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Maloney SE, Creeley CE, Hartman RE, Yuede CM, Zorumski CF, Jevtovic-Todorovic V, Dikranian K, Noguchi KK, Farber NB, Wozniak DF. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol Learn Mem 2019; 165:106834. [PMID: 29550366 PMCID: PMC6179938 DOI: 10.1016/j.nlm.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community. The apoptotic degenerative response resulting from neonatal exposure to ASAs has been replicated in many studies in both rodents and non-human primates, suggesting that a similar effect may occur in humans. In both rodents and non-human primates, significantly increased levels of apoptotic degeneration are often associated with functional impairments later in life. However, behavioral deficits following developmental ASA exposure have not been consistently reported even when significantly elevated levels of apoptotic degeneration have been documented in animal models. In the present work, we review this literature and propose a rodent model for assessing potential functional deficits following neonatal ASA exposure with special reference to experimental design and procedural issues. Our intent is to improve test sensitivity and replicability for detecting subtle behavioral effects, and thus enhance the translational significance of ASA models.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - Catherine E Creeley
- Department of Psychology, The State University of New York at Fredonia, Fredonia, NY 14063, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, 11130 Anderson St., Loma Linda, CA 92354, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Krikor Dikranian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
9
|
Maloney SE, Yuede CM, Creeley CE, Williams SL, Huffman JN, Taylor GT, Noguchi KN, Wozniak DF. Repeated neonatal isoflurane exposures in the mouse induce apoptotic degenerative changes in the brain and relatively mild long-term behavioral deficits. Sci Rep 2019; 9:2779. [PMID: 30808927 PMCID: PMC6391407 DOI: 10.1038/s41598-019-39174-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies suggest exposures to anesthetic agents and/or sedative drugs (AASDs) in children under three years old, or pregnant women during the third trimester, may adversely affect brain development. Evidence suggests lengthy or repeated AASD exposures are associated with increased risk of neurobehavioral deficits. Animal models have been valuable in determining the type of acute damage in the developing brain induced by AASD exposures, as well as in elucidating long-term functional consequences. Few studies examining very early exposure to AASDs suggest this may be a critical period for inducing long-term functional consequences, but the impact of repeated exposures at these ages has not yet been assessed. To address this, we exposed mouse pups to a prototypical general anesthetic, isoflurane (ISO, 1.5% for 3 hr), at three early postnatal ages (P3, P5 and P7). We quantified the acute neuroapoptotic response to a single versus repeated exposure, and found age- and brain region-specific effects. We also found that repeated early exposures to ISO induced subtle, sex-specific disruptions to activity levels, motor coordination, anxiety-related behavior and social preference. Our findings provide evidence that repeated ISO exposures may induce behavioral disturbances that are subtle in nature following early repeated exposures to a single AASD.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Catherine E Creeley
- Department of Psychology, State University of New York at Fredonia, Fredonia, NY, 14063, USA
| | - Sasha L Williams
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacob N Huffman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - George T Taylor
- Department of Psychology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
| | - Kevin N Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
10
|
Liu Q, Shan P, Li H. Gambogic acid prevents angiotensin II‑induced abdominal aortic aneurysm through inflammatory and oxidative stress dependent targeting the PI3K/Akt/mTOR and NF‑κB signaling pathways. Mol Med Rep 2018; 19:1396-1402. [PMID: 30535428 DOI: 10.3892/mmr.2018.9720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Gamboge is the dry resin secreted by Garcinia hanbaryi Hook.f, with the function of promoting blood circulation and anti‑cancer effects, detoxification, hemostasis and killing insects. It is also used for the treatment of cancer, brain edema and other diseases. Gambogic acid is the main effective constituent of Gamboge. The present study tested the hypothesis that the effect of Gambogic acid prevents angiotensin II‑induced abdominal aortic aneurysm (AAA), and explored its underlying mechanism. It was demonstrated that gambogic acid significantly inhibited AAA incidence rate, and reduced edge leading aortic diameter and aortic wall thickness in AAA mice. Gambogic acid treatment markedly decreased the levels of proinflammatory cytokines and oxidative stress factors, and transforming growth factor‑β (TGF‑β) and matrix metalloproteinase (MMP)‑2 and MMP‑9 protein expression in AAA mice. Furthermore, Gambogic acid decreased expression of phosphatidylinositol 3‑kinase (PI3K), and phosphorylation of protein kinase B (Akt), mechanistic target of rapamycin (mTOR) and p70‑S6 kinase 1. It also suppressed nuclear factor (NF)‑κB protein expression in AAA mice. The findings of the present study indicated that Gambogic acid prevents angiotensin II‑induced AAA through inflammatory and oxidative stress‑dependent targeting of the PI3K/Akt/mTOR and NF‑κB signaling pathways.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Vascular Surgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161021, P.R. China
| | - Peng Shan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150036, P.R. China
| | - Haibin Li
- Department of Vascular Surgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161021, P.R. China
| |
Collapse
|
11
|
Chai D, Cheng Y, Jiang H. Fundamentals of fetal toxicity relevant to sevoflurane exposures during pregnancy. Int J Dev Neurosci 2018; 72:31-35. [DOI: 10.1016/j.ijdevneu.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023] Open
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care MedicineShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanyong Cheng
- Department of Anesthesiology and Critical Care MedicineShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong Jiang
- Department of Anesthesiology and Critical Care MedicineShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Dong P, Zhang X, Zhao J, Li D, Li L, Yang B. Anti-microRNA-132 causes sevoflurane‑induced neuronal apoptosis via the PI3K/AKT/FOXO3a pathway. Int J Mol Med 2018; 42:3238-3246. [PMID: 30272258 PMCID: PMC6202078 DOI: 10.3892/ijmm.2018.3895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/10/2018] [Indexed: 01/06/2023] Open
Abstract
In the present study, the mechanisms underlying the protective effects of microRNA‑132 (miRNA‑132) on sevoflurane‑induced neuronal apoptosis were investigated. Reverse transcription‑quantitative polymerase chain reaction and gene microarray hybridization were used to analyze alterations in microRNA levels. Cell viability, apoptosis and caspase‑3/9 activity were measured using MTT, flow cytometry and caspase‑3/9 activity kits. Immunofluorescence staining and western blot analysis were used to measure protein expression of phosphoinositide 3‑kinase (PI3K) and phosphorylated (p‑)AKT, forkhead box O3a (FOXO3a). In sevoflurane‑induced rats, the expression of miRNA‑132 was downregulated, compared with that in negative control rats. The downregulation of miRNA‑132 increased neuronal apoptosis and the upregulation of miRNA‑132 inhibited neuronal apoptosis in the sevoflurane‑induced in vitro model. The downregulation of miRNA‑132 suppressed the protein expression of PI3K and p‑AKT, and suppressed the protein expression of FOXO3a in the sevoflurane‑induced in vitro model. The PI3K inhibitor increased the effects of anti‑miRNA‑132 on neuronal apoptosis through the AKT/FOXO3a pathway in the sevoflurane‑induced in vitro model. The promotion of FOXO3a inhibited the effects of anti‑miRNA‑132 on neuronal apoptosis through the AKT/FOXO3a pathway in the sevoflurane‑induced in vitro model. These data suggested that miRNA‑132 caused sevoflurane‑induced neuronal apoptosis via suppression of the PI3K/AKT/FOXO3a pathway.
Collapse
Affiliation(s)
- Ping Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Zhao
- Department of Anesthesiology, The People's Hospital of Chiping, Chiping, Shandong 252100, P.R. China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Abstract
Normal brain development in young children depends on a balance between excitation and inhibition of neurons, and alterations to this balance may cause apoptosis. During the perioperative period, both surgical stimuli and anesthetics can induce neurotoxicity. This article attempts to expand the perspective of a topical issue-anesthetic-induced neurotoxicity-by also considering the protective effect of general anesthetics against surgery-induced neurotoxicity, all of which may generate some controversy in the current literature. The "new" major factor influencing neurotoxicity-nociceptive stimulus-is discussed together with other factors to develop clinical and research strategies to obtain a balance between neurotoxicity and neuroprotection.
Collapse
|
14
|
Walters JL, Paule MG. Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicol Teratol 2017; 60:2-23. [DOI: 10.1016/j.ntt.2016.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|