1
|
Chen Z, Zheng R, Jiang H, Zhang X, Peng M, Jiang T, Zhang X, Shang H. Therapeutic efficacy of Xuebijing injection in treating severe acute pancreatitis and its mechanisms of action: A comprehensive survey. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156629. [PMID: 40101453 DOI: 10.1016/j.phymed.2025.156629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a life-threatening condition associated with high mortality and limited therapeutic options. Current management strategies focus on infection prevention, immune regulation, and anticoagulation. Xuebijing Injection (XBJ), a widely used traditional Chinese medicine-derived intravenous preparation, has shown promising therapeutic effects in SAP. Herein, we sought to evaluate clinical and preclinical evidence on XBJ to reveal its potential mechanisms of action, and provide insights to guide future research and clinical applications. METHODS We conducted a comprehensive survey of studies on XBJ in the treatment of SAP across PubMed, Embase, Cochrane Library, CBM, CNKI, Wanfang and VIP databases from their inception to March 21st, 2024. RESULTS A total of 239 studies were included, comprising 12 animal experiments, 7 systematic reviews, 220 clinical trials. Mechanistic studies suggest that XBJ downregulates the expression of inflammatory mediators, improves immune function, and alleviates oxidative stress via multiple signaling pathways, including the TLR4/NF-κB, p38-MAPK, HMGB1/TLR, TLR4/NF-κB, FPR1/NLRP3, and JAK/STAT pathways. These effects contribute to reducing organ damage. Compared to standard treatment, XBJ has more effective at reducing mortality and complications, improving overall clinical outcomes, shortening ventilator use time, and hospital stay in SAP patients. CONCLUSIONS Preclinical evidence and clinical trial data indicated that XBJ can simultaneously regulate inflammatory responses, immune function, microcirculatory disorders, oxidative stress, and apoptosis. However, further research is required to elucidate the specific mechanisms of action, clinical characteristics and safety of XBJ.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton L8N 1Y3, Canada.
| | - Huiru Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Xinyi Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Mengqi Peng
- Shandong Second Medical University, Weifang 261053, China
| | - Tong Jiang
- Binzhou medical university, YanTai 264000, China
| | - Xiaowei Zhang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Dong-Fang Hospital of Beijing University of Chinese Medicine, No. 6 The First District of Fang-Xing-Yuan, Fengtai District, Beijing100078, China.
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI. Therapeutic potential of plant polyphenols in acute pancreatitis. Inflammopharmacology 2025; 33:785-798. [PMID: 39497005 DOI: 10.1007/s10787-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Acute pancreatitis is a potentially life-threatening inflammatory disorder of the exocrine pancreas characterized by early activation of pancreatic enzymes followed by macrophage-driven inflammation, and pancreatic acinar cell death. The most common causes are gallstones and excessive alcohol consumption. Inflammation and oxidative stress play critical roles in its pathogenesis. Despite increasing incidence, currently, no specific drug therapy is available to treat or prevent acute pancreatitis, in particular severe acute pancreatitis. New therapeutic agents are very much needed. Plant polyphenols have attracted extensive attention in the field of acute pancreatitis due to their diverse pharmacological properties. In this review, we discuss the potential of plant polyphenols in inhibiting the occurrence and development of acute pancreatitis via modulation of inflammation, oxidative stress, calcium overload, autophagy, and apoptosis, based on the currently available in vitro, in vivo animal and very few clinical human studies. We also outline the opportunities and challenges in the clinical translation of plant polyphenols for the treatment of the disease. We concluded that plant polyphenols have a potential therapeutic effect in the management and treatment of acute pancreatitis. Knowledge gained from this review will hopefully inspire new research ideas and directions for the development and application of plant polyphenols for treating this disease.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, 24014, USA
| |
Collapse
|
3
|
Cao JP, Piao XH, Zhu LX, Feng PF. Xuebijing and somatostatin against acute pancreatitis: A systematic review and network pharmacology. Medicine (Baltimore) 2024; 103:e40964. [PMID: 39686429 DOI: 10.1097/md.0000000000040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a common pancreatic disease. Xuebijing injection (XBJ) combined with somatostatin in the treatment of AP is frequently used in clinical practice. There is, however, a lack of high-quality evidence-based evidence and network pharmacology to regard the therapeutic efficacy and pharmacological mechanisms. PURPOSE The purpose of this study is to investigate the potential therapeutic targets and pharmacological mechanism of XBJ in AP using integrating evidence-based medicine and network pharmacology. METHODS PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Weipu, and Wanfang databases were searched. Randomized controlled trials of XBJ combined with somatostatin (experimental group) versus somatostatin alone (control group) in the treatment of AP were collected. After extracting data from the literature that meets the inclusion criteria, and using the Cochrane Scale to evaluate the quality of the literature, we used Rev Man 5.3.0 statistical software to perform meta-analysis of the effective rate, the disappearance time of abdominal pain and bloating, the recovery of gastrointestinal motility, serum-related indicators, inflammatory factors, ventilator evacuation time, and hospitalization time. A network pharmacology is used to analyze the potential active ingredients and related crucial targets of the XBJ in the treatment of AP, and we explored key regulatory pathways and potential biomarkers related to XBJ for AP with integrated bioinformatics analysis. RESULTS It was significant that the total effective rate in the study group was higher than that in the control group (P < .05). The time of recovery of gastrointestinal motility, serum-related indicators, inflammatory factors, ventilator withdrawal time, and hospitalization time were significantly lower than that of the control group. The differences were statistically significant (P < .05). Signal transducer and activator of transcription 3, tumor protein P53, interleukin 6, tumor necrosis factor, Jun Proto-Oncogene, SRC Proto-Oncogene, Heat Shock Protein 90 Alpha Family Class A Member 1, Vascular Endothelial Growth Factor A, Epidermal Growth Factor Receptor, and Mitogen-Activated Protein Kinase 1 were identified as the key hub of the protein-protein interaction network according to an analysis of network centrality. According to the Kyoto Encyclopedia of Genes and Genomes pathway analysis, the main pathways are involved in PI3K-Akt signaling pathway, HIF-1 signaling pathway, and tumor necrosis factor signaling pathway. CONCLUSIONS The effectiveness of combination therapy of XBJ and somatostatin on AP is likely to be better than somatostatin. In addition, XBJ and somatostatin synergistically treated AP through a multi-pathway network.
Collapse
Affiliation(s)
- Ji-Ping Cao
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, And First People's Hospital of Nantong City, Nantong, Jiangsu Province, P.R. China
| | - Xiang-Hua Piao
- Department of Pharmacy, Jiangwan Hospital of Shanghai Hongkou District, Shanghai, P.R. China
| | - Long-Xun Zhu
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, And First People's Hospital of Nantong City, Nantong, Jiangsu Province, P.R. China
| | - Pan-Feng Feng
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, And First People's Hospital of Nantong City, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
4
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
5
|
Wang J, Wang Y, Chen Z, Liu B, Wang W, Li Y. Study on the mechanism of Shugan Lidan Xiaoshi granule in preventing acute pancreatitis based on network pharmacology and molecular docking. Heliyon 2024; 10:e27365. [PMID: 38486764 PMCID: PMC10938120 DOI: 10.1016/j.heliyon.2024.e27365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Background Shugan Lidan Xiaoshi granules (SLXG) is a herbal granule formulation developed by extensively modifying multiple traditional Chinese medicine compound prescriptions known for their ability to dissolve stones. It is primarily used for the prevention and treatment of cholelithiasis and possesses significant therapeutic potential in both preventing and treating acute pancreatitis. However, the preventive effects of SLXG on cholelithiasis-related complications, such as acute pancreatitis (AP), have been inadequately researched. Methods TCMSP database was searched to identify the active components and targets of SLXG's action. The disease gene databases (GeneCards, OMMI, PharmGKB, DrugBank) were used to retrieve the targets associated with AP. A TCM ingredient target network was then constructed by using the intersection of these two datasets. The overlapping targets underwent network analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)and Protein-Protein Interaction (PPI) analyses. Molecular docking was performed to examine the interaction patterns between the active ingredients and central targets. Results A "Traditional Chinese Medicine-Component-Target" complex network consisting of 10 traditional Chinese medicines, 114 compounds, and 164 targets was constructed. GO and KEGG analysis showed that SLXG has the potential to regulate the response of oxygen-containing compounds, apoptosis, and inflammatory factors. Nine central genes were identified by the PPI network and subnetwork. IL6 was chosen as the most significant gene for molecular docking. The three active compounds of SLXG: quercetin, luteolin, and paeoniflorin, along with the active site of IL6 have a good binding ability and thus play a preventive role in AP. Conclusion This study provides evidence of the effective preventive role of SLXG against AP, as indicated by bioinformatics analysis. The preventive effect of SLXG is attributed to its multi-component, multi-target, and multi-pathway mechanisms. This finding provides a solid foundation for future research on the clinical application and mechanism of action of drugs.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Yang Wang
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Zitong Chen
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Bin Liu
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Wujie Wang
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Yuliang Li
- Department of Interventional Medicine and Microinvasive Oncology, The Second Hospital, Cheello College of Medicine, Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Xing D, Ma Y, Lu M, Liu W, Zhou H. Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway. BMC Nephrol 2023; 24:314. [PMID: 37884904 PMCID: PMC10601317 DOI: 10.1186/s12882-023-03366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall. It exerts diverse therapeutic effects, including anti-inflammatory, antioxidative, antiapoptotic, and immunomodulatory properties; thus, it is considered valuable for treating several diseases. However, the effects of PF on H/R injury-induced AKI remain unknown. In this study, we established an in vitro H/R model using COCL2 and investigated the functions and underlying mechanisms of PF on H/R injury in HK-2 cells. The cell vitality was evaluated using the cell count kit-8 assay. The DCFH-DA fluorescence probe was used to measure the levels of reactive oxygen species (ROS). Oxidative damage was detected using superoxide dismutase (SOD) and malondialdehyde (MDA) assay kits. Apoptotic relative protein and Keap1/Nrf2/HO-1 signaling were evaluated by Western blotting. Our results indicated that PF increased cell viability and SOD activity and decreased the ROS and MDA levels in HK-2 cells with H/R injury. PF inhibits apoptosis by increasing Bcl-2 and decreasing Bax. Furthermore, PF significantly upregulated the expression of HO-1 and Nrf2, but downregulated the expression of HIF-1α and Keap1. PF considerably increased Nrf2 nuclear translocation and unregulated the HO-1 expression. The Nrf2 inhibitor (ML385) could reverse the abovementioned protective effects of PF, suggesting that Nrf2 can be a critical target of PF. To conclude, we found that PF attenuates H/R injury-induced AKI by decreasing the oxidative damage via the Nrf2/HO-1 pathway and inhibiting apoptosis.
Collapse
Affiliation(s)
- Di Xing
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Yihua Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China.
| |
Collapse
|
7
|
Xu W, Xu JG, He XY, Lin XH. Paeoniflorin exhibits anti- Helicobacter pylori activity by regulating macrophage activity. Shijie Huaren Xiaohua Zazhi 2023; 31:334-339. [DOI: 10.11569/wcjd.v31.i8.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) often causes gastritis, gastric ulcer, and other stomach diseases. At present, there are many drugs available to kill H. pylori, but they are mainly Western medicines, not suitable for long-term use, and often associated with relapse. Traditional Chinese medicines have few side effects, but their mechanism of action is not completely clear.
AIM To analyze the anti-H. pylori activity and mechanisms of action of paeoniflorin (PF).
METHODS Six Kunming mice and four New Zealand rabbits were selected to prepare PF-containing serum. Mouse peritoneal macrophages were collected and divided into a study group, a control group, and a blank group. The study group was supplemented with 5% drug-containing serum, and the control group was supplemented with drug-free serum. Both groups were treated with H. pylori 11637, and the cells was collected 6 h after treatment. The contents of monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in macrophages of each group were detected by ELISA. The expression of heat shock protein 70 (HSP70), inducible nitric oxide synthase (iNOS), Toll-like receptor-2 (TLR2), and Toll-like receptor-4 (TLR4) was detected by Western blot analysis. The relative mRNA expression of HSP70, TLR2, and TLR4 in mouse macrophages was detected by quantitative polymerase chain reaction.
RESULTS The contents of MCP-1, IL-1β, and TNF-α in the control group were significantly higher than those in the blank group, and the contents of MCP-1, IL-1β, and TNF-α in the study group were significantly lower than those in the control group (P < 0.05). The protein expression of iNOS, TLR4, and TLR2 in macrophages of the control group was significantly higher than that in the blank group, and the expression of iNOS, TLR4, and TLR2 in the macrophages of the study group was significantly lower than that in the control group (P < 0.05). The relative expression of TLR4 and TLR2 mRNA in macrophages of the control group was higher than that of the blank group, and the relative expression of TLR4 and TLR2 mRNA in the macrophages of the study group was lower than that of the control group (P < 0.05). The expression of HSP70 mRNA and protein in macrophages of the control group was higher than that of the blank group, and the expression of HSP70 mRNA and protein in macrophages of the study group was lower than that of the control group (P < 0.05).
CONCLUSION Paeoniflorin can inhibit the secretion of inflammatory cytokines and HSP70 by macrophages by regulating their activity. The anti-inflammatory effect may be related to the inhibition of the TLR2/4 signaling pathway.
Collapse
|
8
|
Ma L, Liu X, Zhang M, Zhou L, Jiang L, Gao L, Wang X, Huang Y, Zeng H, Wu Y. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. Int Immunopharmacol 2023; 116:109754. [PMID: 36753983 DOI: 10.1016/j.intimp.2023.109754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 02/08/2023]
Abstract
The pathophysiological mechanism of acute kidney injury (AKI) is complicated, and effective drugs are still lacking. Ferroptosis is a newly discovered regulatory cell death mode characterized by the lethal accumulation of iron and reactive oxygen species-(ROS-)-dependent lipid hydroperoxides. In recent years, ferroptosis has been confirmed to be involved in the progression of AKI. Paeoniflorin (PF) is a traditional Chinese medicine that has protective effects on a variety of kidney diseases including AKI. However, the mechanism by which PF attenuates AKI is unclear. We detected that PF attenuated serum biochemical markers, histological damage, ferroptosis and inflammation in a dose-dependent manner in a mouse AKI model with bilateral renal artery ischemia-reperfusion (IR). Hypoxia-reoxygenation (HR)-induced ferroptosis and inflammation was also inhibited by PF in human renal tubular epithelial cells (HK2). RNA sequence analysis revealed that PF inhibited ferroptosis in HK2 cells by upregulating Slc7a11 in the glutathione pathway after HR treatment. PF failed to further protect cells with specific knockdown of Slc7a11 from ferroptosis under HR conditions. Consequently, these data indicated that PF prevention of ferroptosis in AKI requires dependence on Slc7a11. This study provided a scientific basis for the clinical search for drugs to prevent IR induced AKI.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xian Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuebo Huang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Hanxu Zeng
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
9
|
Peng L, Ma Z, Chu W, Jiang P, Fu Y, Wang P. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall. Food Chem Toxicol 2023; 173:113624. [PMID: 36681265 DOI: 10.1016/j.fct.2023.113624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The aims of this work were to obtain total glucosides of paeony (TGP) with high content of paeoniflorin and evaluate the hepo-protective properties of TGP. After optimization by response surface methodology, optimized conditions were as follows: extraction time 33.0 min, extraction temperature 48 °C, ethanol content 44%, and the yield of TGP was 47.68 mg/g. Moreover, under established macroporous resin purification, paeoniflorin content of TGP achieved 67.6% in 1.5 L scale-up verification experiment. Purified TGP (p-TGP) was further analyzed by UHPLC-Q-Orbitrap-MS/MS, and 35 compouds including paeoniflorin were identified. The obtained p-TGP effectively reduced biochemical indexes and inflammatory cytokines in liver tissue of acute alcoholic liver injury mice model. Depending on this work, TGP with definitive compound composition exhibited great protective effect against acute alcoholic liver injury in vivo. Furthermore, the finding of this work will be helpful to understand the relationship between compound composition and functional properties of Chinese herb extracts.
Collapse
Affiliation(s)
- Lin Peng
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Zhe Ma
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Wenhui Chu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Peisi Jiang
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China
| | - Yongqian Fu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, 318000, China.
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, 89 Guyue Road, Pan'an, 322300, China.
| |
Collapse
|
10
|
Song TJ, Ke J, Chen F, Zhang JY, Zhang C, Chen HY. Effect of SNHG11/miR-7-5p/PLCB1 Axis on Acute Pancreatitis through Inhibiting p38MAPK Pathway. Cells 2022; 12:cells12010065. [PMID: 36611865 PMCID: PMC9818913 DOI: 10.3390/cells12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. A growing number of studies have shown that long noncoding RNAs (lncRNAs) play an important role in AP progression. Here, we aimed to elucidate the role of Small Nucleolar RNA Host Gene 11(SNHG11) and its underlying molecular mechanisms behind AP progression. The in vivo and in vitro AP cell models were established by retrograde injection of sodium taurocholate and caerulein stimulation into AR42J cells and HPDE6-C7 cells, respectively. A bioinformatics website predicted the relationship between SNHG11, miR-7-5p, and Phospholipase C Beta 1(PLCB1) and validated it with a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. AR42J cells and HPDE6-C7 cells were transfected with an overexpression of plasmids or shRNA to investigate the effects of the SNHG11/miR-7-5p/PLCB1 axis on cell proliferation and apoptosis, inflammatory cytokine secretion, and acute pancreatitis. Low expression of SNHG11 and PLCB1 and high expression of miR-7-5p were observed in AP pancreatic tissue and AP cell models. SNHG11 overexpression inhibited apoptosis and inflammatory responses induced by caerulein. Simultaneously, we discovered that SNHG11 regulates PLCB1 expression by sponging miR-7-5p. PLCB1 overexpression abrogated inflammatory damage exacerbated by miR-7-5p enrichment. In addition, the SNHG11/miR-7-5p/PLCB1 axis could be involved in caerulein-induced inflammatory injury by participating in the p38MAPK signaling pathway. The overexpressed SNHG11/miR-7-5p/PLCB1 axis can inhibit AP progression by participating in the p38MAPK signaling pathway, thereby providing a potential therapeutic target and therapeutic direction for AP therapy.
Collapse
Affiliation(s)
- Tian-Jiao Song
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Jun Ke
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
- Correspondence:
| | - Jiu-Yun Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Chun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Mindong Hospital, Ningde, Fujian Medical University, No. 89, Heshan Road, Fuan 355000, China
| | - Hong-Yi Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| |
Collapse
|
11
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
12
|
Xu B, Zheng J, Tian X, Yuan F, Liu Z, Zhou Y, Yang Z, Ding X. Protective mechanism of traditional Chinese medicine guizhi fuling pills against carbon tetrachloride-induced kidney damage is through inhibiting oxidative stress, inflammation and regulating the intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154129. [PMID: 35490491 DOI: 10.1016/j.phymed.2022.154129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemical or drug-induced kidney damage has been recognized as a critical cause of kidney failure. The oxidative stress, inflammation, and imbalance of intestinal flora caused by carbon tetrachloride (CCl4) play a fundamental role in chronic kidney damage. Guizhi Fuling pills (GZFL) is a traditional formula consisting of five traditional Chinese medicinal herbs, which can promote blood circulation and improve kidney function. The underlying mechanisms of GZFL improving kidney damage are not fully understood yet. AIM The current study aimed to explore the effects of GZFL on CCl4-induced kidney damage and intestinal microbiota in mice. METHODS Male ICR mice were intraperitoneally administered with 20% CCl4 (mixed in a ratio of 1:4 in soybean oil) twice a week, for 4 weeks to induce kidney damage. Creatinine (CRE), urea nitrogen, antioxidant enzymes, and inflammatory cytokines were measured and the histology of the kidney, jejunum, and colon examination to assess kidney and intestinal damage. The expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) family members, nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome in kidney tissues, and the tight junction proteins in colonic tissues were detected by Western blot. The gut microbiota was analyzed through 16S rRNA gene sequencing. RESULTS GZFL treatment decreased the serum CRE and urea nitrogen levels. Moreover, GZFL reduced the levels of pro-inflammatory cytokines and increased antioxidant enzyme activities in kidney and colonic tissues. GZFL improved the kidney, jejunum, and colon histology. Furthermore, GZFL inhibited the expressions of NLRP3, ASC, and cleaved-Caspase-1, while Nrf2, HO-1, NQO1, GCLM, and tight junction proteins were increased. The dysbiosis of intestinal microbiota improved after GZFL treatment. CONCLUSIONS This study showed that GZFL could improve kidney damage, which might be mainly via the integrated regulations of the Nrf2 pathway, NLRP3 inflammasome, and composition of intestinal microbiota.
Collapse
Affiliation(s)
- Baogui Xu
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Jiawen Zheng
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Xiaoxiao Tian
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Falei Yuan
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zhongliang Liu
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China
| | - Yafeng Zhou
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zuisu Yang
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China.
| | - Xianjun Ding
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China.
| |
Collapse
|
13
|
Effect of TRAF6 in acute pancreatitis-induced intestinal barrier injury via TLR4/NF-κB signal pathway. Tissue Cell 2022; 76:101792. [DOI: 10.1016/j.tice.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
|
14
|
Hu Y, Yang W. Paeoniflorin Can Improve Acute Lung Injury Caused by Severe Acute Pancreatitis through Nrf2/ARE Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5712219. [PMID: 35586665 PMCID: PMC9110196 DOI: 10.1155/2022/5712219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022]
Abstract
Objective To evaluate the potential therapeutic effect of paeoniflorin on acute lung injury induced by severe acute pancreatitis (SAP) and to initially explore the possible protective mechanisms of paeoniflorin. Method The SAP lung injury rat model was established by retrograde injection of 5% sodium taurocholate to the cholangiopancreatic duct. H&E staining was used to detect pathological changes in rat lung tissue. W/D ratio method, serum amylase (AMY), and lipase activity were used to assess the degree of lung injury in rats. Oxidation indicators such as LDH, MDA, and SOD in lung tissue were measured. Levels of inflammatory factors TNF-α, IL-6, and IL-10 were measured in bronchoalveolar lavage fluid (BALF). At the same time, Western blot was used to detect the expression of related proteins in the Nrf2/ARE signaling pathway. Results In SAP rats, paeoniflorin treatment could significantly alleviate lung injury conditions such as pulmonary edema and inflammatory cell infiltration in lung tissue and reduce serum amylase and lipase activities. Paeoniflorin can reduce the content of LDH and MDA in lung tissue and increase the content of SOD. In addition, ELISA results showed that paeoniflorin could inhibit the levels of TNF-α and IL-6 in BALF and upregulate the levels of IL-10. Paeoniflorin could upregulate the expression of Nrf2/ARE signaling pathway proteins Cyt-Nrf2, HO-1, and NQO1 in lung tissue of SAP rats. Conclusion Paeoniflorin may improve acute lung injury in rats with severe pancreatitis by inhibiting inflammation and oxidative stress response. These effects may be related to activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Wei Yang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
15
|
Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022; 13:859723. [PMID: 35370668 PMCID: PMC8964350 DOI: 10.3389/fphar.2022.859723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of muscle atrophy. The aim of this study was to explore the effects and mechanisms of paeoniflorin on CKD skeletal muscle atrophy. We demonstrated that paeoniflorin significantly improved renal function, calcium/phosphorus disorders, nutrition index and skeletal muscle atrophy in the 5/6 nephrectomized model rats. Paeoniflorin ameliorated the expression of proteins associated with muscle atrophy and muscle differentiation, including muscle atrophy F-box (MAFbx/atrogin-1), muscle RING finger 1 (MuRF1), MyoD and myogenin (MyoG). In addition, paeoniflorin modulated redox homeostasis by increasing antioxidant activity and suppressing excessive accumulation of reactive oxygen species (ROS). Paeoniflorin alleviated mitochondrial dysfunction by increasing the activities of electron transport chain complexes and mitochondrial membrane potential. Furthermore, paeoniflorin also regulates mitochondrial dynamics. Importantly, paeoniflorin upregulated the expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and phosphorylation of AMP-activated protein kinase (AMPK). Similar results were observed in C2C12 myoblasts treated with TNF-α and paeoniflorin. Notably, these beneficial effects of paeoniflorin on muscle atrophy were abolished by inhibiting AMPK and SIRT1 and knocking down PGC-1α. Taken together, this study showed for the first time that paeoniflorin has great therapeutic potential for CKD skeletal muscle atrophy through AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qiang Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lingyu Liu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
Zhang Y, Zhang Y, Yang C, Duan Y, Jiang L, Jin D, Lian F, Tong X. Naoxintong capsule delay the progression of diabetic kidney disease: A real-world cohort study. Front Endocrinol (Lausanne) 2022; 13:1037564. [PMID: 36440227 PMCID: PMC9686849 DOI: 10.3389/fendo.2022.1037564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a severe and growing health problem, associated with a worse prognosis and higher overall mortality rates than non-diabetic renal disease. Chinese herbs possess promising clinical benefits in alleviating the progression of DKD due to their multi-target effect. This real-world retrospective cohort trial aimed to investigate the efficacy and safety of Naoxintong (NXT) capsules in the treatment of DKD. Our study is the first real-world study (RWS) of NXT in the treatment of DKD based on a large database, providing a basis for clinical application and promotion. METHODS The data was collected from Tianjin Healthcare and Medical Big Data Platform. Patients with DKD were enrolled from January 1, 2011, to March 31, 2021. NXT administration was defined as the exposure. The primary outcome was the change in estimated glomerular filtration rate (eGFR). We employed the propensity score matching (PSM) method to deal with confounding factors. RESULTS A total of 1,798 patients were enrolled after PSM, including 899 NXT users (exposed group) and 899 non-users (control group). The eGFR changes from baseline to the end of the study were significantly different in the exposed group compared to the control group (-1.46 ± 21.94 vs -5.82 ± 19.8 mL/(min·1.73m2), P< 0.01). Patients in the NXT group had a lower risk of composite renal outcome event (HR, 0.71; 95%CI, 0.55 to 0.92; P = 0.009) and deterioration of renal function (HR, 0.74; 95% CI, 0.56 to 0.99; P = 0.039). CONCLUSION NXT can significantly slow the decline of eGFR and reduce the risk of renal outcomes. However, large cohort studies and RCTs are needed to further confirm our results.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Jiang
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Fengmei Lian
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| |
Collapse
|
17
|
Yu W, Zeng M, Xu P, Liu J, Wang H. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153724. [PMID: 34509953 DOI: 10.1016/j.phymed.2021.153724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Influenza often leads to acute lung injury (ALI). Few therapeutics options such as vaccines and other antiviral drugs are available. Paeoniflorin is a monoterpene glucoside isolated from the roots of Paeonia lactiflora Pall. that has showed good anti-inflammatory and anti-fibrotic effects. However, it is not known whether paeoniflorin has an effect on influenza virus-induced ALI. PURPOSE To investigative the protective effect and potential mechanism of paeoniflorin on ALI induced by influenza A virus (IAV). STUDY DESIGN AND METHODS The anti-influenza activity of paeoniflorin in vitro was investigated. Influenza virus A/FM/1/47 was intranasally infected in mice to induce ALI, and paeoniflorin (50 and 100 mg/kg) was given orally to mice during 5 days, beginning 2 h after infection. On day 6 post-infection, body and lung weights, histology and survival were observed, and the lungs were examined for viral load, cytokine and cellular pathway protein expression. RESULTS Results showed that paeoniflorin (50 and 100 mg/kg) reduced IAV-induced ALI. It reduces pulmonary oedema and improves histopathological changes in the lung, and also diminishes the accumulation of inflammatory cells in the lung. It was shown that paeoniflorin (50 and 100 mg/kg) alleviated IAV-induced ALI, as evidenced by improved survival in infected mice (40% and 50%, respectively), reduced viral titer in lung tissue, improved histological changes, and reduced lung inflammation. Paeoniflorin also improves pulmonary fibrosis by reducing the levels of pulmonary fibrotic markers (collagen type IV, alpha-smooth muscle actin, hyaluronic acid, laminin, and procollagen type III) and downregulating the expression levels of type I collagen (Col I) and type III collagen (Col III) in the lung tissues. Additionally, paeoniflorin inhibits the expression of αvβ3, TGF-β1, Smad2, NF-κB, and p38MAPK in the lung tissues. CONCLUSION The results showed that paeoniflorin (50 and 100 mg/kg) protected against IAV-induced ALI, and the underlying mechanism may be related to the reduction of pro-inflammatory cytokine production and lung collagen deposition through down-regulation of activation of αvβ3/TGF-β1 pathway in lung tissue.
Collapse
Affiliation(s)
- Wendi Yu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| | - Maosen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China.
| | - Jinyuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Huixian Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| |
Collapse
|
18
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
19
|
Inhibition of the p38 MAPK pathway attenuates renal injury in pregnant rats with acute necrotizing pancreatitis. Immunol Res 2021; 69:295-306. [PMID: 33988814 DOI: 10.1007/s12026-021-09195-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/20/2021] [Indexed: 01/15/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is an important intracellular signalling pathway that leads to increased expression of pro-inflammatory mediators. Our previous studies have shown that the p38 MAPK pathway was changed in the acute renal injury (ARI) in acute pancreatitis in late pregnancy (APIP), whereas the role of p38 MAPK in APIP-induced ARI has been poorly understood. The present study was undertaken to investigate the participation of the p38 MAPK signalling pathway and the protective effect of SB203580, an inhibitor of p38 MAPK in ARI in APIP. Twenty-four late-gestation SD rats were randomly assigned to four groups: the normal group (N), sham-operated group (SO), acute necrotizing pancreatitis (ANP) group, and p38 MAPK inhibitor (SB203580) treatment group (T). The results showed that serum amylase, lipase, urea, and creatinine levels of p38 inhibitor of T groups were markedly lower than the ANP groups. Additionally, the expression of phosphorylated p38 and myeloperoxidase (MPO), tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, nuclear factor kappa-B (NF-κB), caspase-3, and terminal deoxynucleotidyl TUNEL-positive cells was markedly lower in the T group than in the ANP group. Our results suggest that SB203580 can inhibit renal injury by inhibiting the P38 MAPK signalling pathway and blocking the inflammatory responses in APIP.
Collapse
|
20
|
Coloclyster of Red Peony Root Granules Alleviates Moderately Severe Acute Pancreatitis: A Double-Blinded, Placebo-Controlled, Randomized Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8401239. [PMID: 32774431 PMCID: PMC7396111 DOI: 10.1155/2020/8401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
The red peony root derived from Paeonia lactiflora has been applied to treat human inflammatory diseases. To investigate its therapeutic potential in treating moderately severe acute pancreatitis (MSAP), which has been rarely studied, this study was designed as a double-blinded, placebo-controlled, randomized clinical trial. A total of 60 MSAP patients were enrolled and randomly divided into an experimental (n = 30) group and a control group (n = 30), who received a coloclyster of 15 g of red peony root or placebo granules dissolved in 150 mL of water, respectively. The patients' demographic and clinical characteristics were recorded. The results showed that the experimental group had a shorter remission time of fever (p < 0.05) and abdominal pain (p < 0.01) and faster resumption of self-defecation (p < 0.01) than did the control group. In addition, the coloclyster of red peony root decreased the modified Balthazar CT score as well as the serum interleukin-6 and tumor necrosis factor-alpha levels to a greater extent than did the placebo coloclyster (p < 0.05). The remission times for the normalization of white blood cells and percentage of neutrophils and lymphocytes in the experimental group were also significantly shorter than those in the control group (p < 0.05). In conclusion, a coloclyster of red peony root could help alleviate the clinical symptoms and shorten the course of MSAP by possibly attenuating systematic inflammation. This trial is registered with 14004664.
Collapse
|
21
|
Yang X, Zhao K, Deng W, Zhao L, Jin H, Mei F, Zhou Y, Li M, Wang W. Apocynin Attenuates Acute Kidney Injury and Inflammation in Rats with Acute Hypertriglyceridemic Pancreatitis. Dig Dis Sci 2020; 65:1735-1747. [PMID: 31617131 DOI: 10.1007/s10620-019-05892-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute hypertriglyceridemic pancreatitis (HTGP) is more likely to be severe and complicated with extrapancreatic organ injury. NOX may be involved in the occurrence and development of high fat acute pancreatitis, but the specific mechanism is not clear. AIMS To investigate the protective effects of apocynin, an inhibitor of NOX, on kidney injury associated with the HTGP and its potential mechanisms in a rat model. METHODS In this study, HTGP rat model was induced by intraperitoneal injection of P-407 and L-Arg in combination. Apocynin was given by subcutaneously injection 30 min before the model was induced. The pancreatic and renal histopathology changes were analyzed. Serum AMY, BUN, Cr levels were measured by the Automatic Biochemistry Analyzer. The expression levels of protein associated with NOX/Akt pathway in the kidney were detected. ROS level in kidney and serum was measured by DHE staining and MDA, SOD kits, respectively. Serum TNF-α and IL-6 were detected by ELISA kits. RESULTS In HTGP group, the levels of serum AMY, BUN, Cr, TNF- α, and IL-6 were significantly increased, and the injury of pancreas and kidney was aggravated. The levels of NOX4, NOX2, ROS, p-Akt, GSK-3β, NF-κB, and TNF-α in the kidney were detected, suggesting that NOX may regulate the activity of downstream p-Akt and GSK-3β by regulating ROS levels, thereby affecting the release of inflammatory mediators and regulating HTGP-related kidney injury. After application of apocynin, the expression of NOX4 and NOX2 and the level of ROS in the kidney were reduced, the release of inflammatory mediators decreased, and the histopathology injury of pancreas and kidney was improved obviously. CONCLUSION NOX may play an important role in HTGP-associated kidney injury through Akt/GSK-3β pathway. Apocynin can significantly downregulate the level of NOX and play a protective role in HTGP-related kidney injury through Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaojia Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Hongzhong Jin
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fangchao Mei
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yu Zhou
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
22
|
Paeoniflorin Attenuates Myocardial Fibrosis in Isoprenaline-induced Chronic Heart Failure Rats via Inhibiting P38 MAPK Pathway. Curr Med Sci 2020; 40:307-312. [PMID: 32337690 DOI: 10.1007/s11596-020-2178-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Paeoniforin (Pae) is a monoterpenoid glycoside compound and has many biological activities, such as immunosuppression, anti-inflammation and anti-cell proliferation. However, the effects and mechanisms of Pae on chronic heart failure (CHF) remain unclear. This study was conducted to assess the effects and mechanisms of Pae on myocardial fbrosis in isoprenaline (Iso)-induced CHF rats. Pae (20 mg/kg) was intragastrically administrated to CHF rats for 6 weeks. Cardiac structure and function were assessed. The protein and mRNA levels of transforming growth factor β1 (TGF-β1) and p38 were detected. Compared to Iso group, Pae could alleviate myocardial fibrosis and improve cardiac function in CHF rats. The levels of collagen volume fraction (13.75%±3.77% vs. 30.97%±4.22%, P<0.001) and perivascular collagen volume area (14.32%±2.50% vs. 28.31%±3.16%, P<0.001) were signifcantly reduced in Pae group as compared with those in Iso group. The expression of TGF-β1 protein (0.30±0.07 vs. 0.66±0.07, P<0.05) and mRNA (3.51±0.44 vs. 7.58±0.58, P<0.05) decreased signifcantly in Pae group as compared with that in Iso group. The expression of p38 protein (0.36±0.12 vs. 0.81±0.38, P<0.05) and mRNA (3.84±0.05 vs. 4.40±0.17, P<0.05) also decreased markedly in Pae group as compared with that in Iso group. Pae could attenuate myocardial fbrosis and improve cardiac function in CHF rats by down-regulating the p38 MAPK signaling pathway.
Collapse
|
23
|
Fang Y, Wu LC, Ma K, Pan G, Yang S, Zheng Y, Li Y. Paeoniflorin alleviates lipopolysaccharide-induced disseminated intravascular coagulation by inhibiting inflammation and coagulation activation. Drug Dev Res 2020; 81:517-525. [PMID: 32065451 DOI: 10.1002/ddr.21647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 01/28/2023]
Abstract
Lipopolysaccharide (LPS) is a toxic component of the outer membrane of gram-negative bacteria that can activate the blood coagulation system, leading to disseminated intravascular coagulation (DIC). DIC is a syndrome characterized by thromboembolism and multiple organ failure. Herein, the beneficial effect of paeoniflorin (PF) on the alleviation of LPS-induced DIC was investigated with an experimental DIC mouse model. Briefly, mice were randomly divided into the following six groups: (1) control; (2) LPS; (3) heparin; (4) low-PF treatment; (5) medium-PF treatment; and (6) high-PF treatment. The histological morphology of the liver and kidney was observed, and the coagulation indicators (such as prothrombin time), function indicators (such as alanine transferase), and inflammatory factors (such as TNF-α) were detected. Additionally, an in vitro cell inflammation model using RAW 264.7 murine macrophages was established. Activation of the nuclear factor kappa B (NF-κB) signaling pathway and tumor necrosis factor-α (TNF-α) were determined by western blotting. Based on our findings, PF could significantly improve the histological morphology of the liver and kidney, indicating that PF protects the liver and kidney against damage induced by LPS. Additionally, PF improved the function and coagulation indicators and reduced the production of inflammatory factors. In vitro, PF inhibited the expression of TNF-α by suppressing NF-κB signaling pathway activation. Collectively, our findings support the hypothesis that PF has anti-inflammatory and anticoagulation effects for the alleviation of LPS-induced DIC. PF is thus a potential co-treatment option for DIC.
Collapse
Affiliation(s)
- Yushan Fang
- Department of Pharmacology, Medical College, Jinan University, Guangdong, China
| | - Liang-Cai Wu
- The 6th Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Kanglong Ma
- Department of Pharmacology, Medical College, Jinan University, Guangdong, China
| | - Guopeng Pan
- Department of Pharmacology, Medical College, Jinan University, Guangdong, China
| | - Shangqi Yang
- Department of Pharmacology, Medical College, Jinan University, Guangdong, China
| | - Yanghan Zheng
- Department of Pharmacology, Medical College, Jinan University, Guangdong, China
| | - Yanchang Li
- The 6th Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
24
|
Wang JM, Li JY, Cai H, Chen RX, Zhang YY, Zhang LL, Cui Y, Cheng YX. Nrf2 participates in mechanisms for reducing the toxicity and enhancing the antitumour effect of Radix Tripterygium wilfordii to S180-bearing mice by herbal-processing technology. PHARMACEUTICAL BIOLOGY 2019; 57:437-448. [PMID: 31280667 PMCID: PMC6691819 DOI: 10.1080/13880209.2019.1634106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Context: Radix Tripterygium wilfordii Hook. f. (Celastraceae) (LGT) has outstanding curative efficacy; however, side effects include high toxicity, particularly hepatotoxicity and nephrotoxicity. Objective: To investigate detoxification mechanisms of LGT through processing separately with each of these medicinal herbs including Flower Lonicera japonica Thunb. (Caprifoliaceae) (JYH), Radix Paeonia lactiflora Pall. (Ranunculaceae) (BS), Herba Lysimachia christinae Hance (Primulaceae) (JQC), Radix et Rhizoma Glycyrrhiza uralensis Fisch. (Fabaceae) (GC) and Seed Phaseolus radiatus L. (Fabaceae) (LD) in S180-bearing mice by involving nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Materials and methods: LGT raw and processed products were orally administered at 60 mg/kg to KM male mice inoculated with S180 tumour cells for 14 consecutive days, and blood, tumour, liver and kidney were taken to observe the detoxifying effects and biological mechanisms. Results: Herbal-processing technology significantly weakened hepatotoxicity and nephrotoxicity evoked by LGT with ED50 of the converted triptolide in each processed-herb product for serum alanine transaminase, aspartate transaminase, creatinine and urea nitrogen of 9.3, 16.6, 2.5 and 4.2 μg/kg, for liver glutathione, glutathione S-transferase, catalase, tumour necrosis factor-α and interleukin-10 of 114.9, 67.8, 134.1, 7.7, 4171.6 μg/kg, and for kidney 21.9, 20.5, 145.0, 529.7, 19.4 μg/kg, respectively. Moreover, herbal-processing technology promoted the accumulation of Nrf2 into the nucleus, and upregulated mRNA expression of Nrf2 and heme oxygenase-1. Additionally, herbal-processing technology enhanced the tumour inhibition rate with ED50 12.2 μg/kg. Discussion and conclusions: Herbal-processing technology improves the safety and effectiveness of LGT in cancer treatment, and future research may be focused on the Nrf2-related molecules.
Collapse
Affiliation(s)
- Jun-Ming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- CONTACT Jun-Ming Wang College of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, China
| | - Jin-Yang Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hong Cai
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rong-Xing Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yue-Yue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu-Lu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | | |
Collapse
|
25
|
Liu B, Lin J, Bai L, Zhou Y, Lu R, Zhang P, Chen D, Li H, Song J, Liu X, Wu Y, Wu J, Liang C, Zhou J. Paeoniflorin Inhibits Mesangial Cell Proliferation and Inflammatory Response in Rats With Mesangial Proliferative Glomerulonephritis Through PI3K/AKT/GSK-3β Pathway. Front Pharmacol 2019; 10:978. [PMID: 31551783 PMCID: PMC6745507 DOI: 10.3389/fphar.2019.00978] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MPGN) is the most common type of chronic kidney disease in China, characterized by mesangial cell proliferation and inflammatory response. Paeoniflorin, an effective composition extracted from Radix Paeoniae Alba, has been used for various kinds of kidney diseases. However, there are no studies reporting the effects of paeoniflorin on MPGN. The present study aims to investigate whether paeoniflorin plays a role in MPGN and confirm the underlying molecular mechanisms. Our results manifested that paeoniflorin strongly restrained 24 h urinary protein and promoted renal function and dyslipidemia in a MPGN rat model. Moreover, paeoniflorin attenuated mesangial cell proliferation and inflammation both in MPGN rats and human mesangial cells (HMCs) treated with lipopolysaccharide (LPS). In detail, paeoniflorin decreased the number of mesangial cells and expressions of proliferation marker Ki67 in MPGN rats. Paeoniflorin also inhibited HMC proliferation and blocked cell cycle progression. In addition, the contents of inflammatory factors and the expressions of macrophage marker iNOS were decreased after paeoniflorin treatment. Furthermore, we found that the protective effect of paeoniflorin was accompanied by a strong inhibition of the phosphatidylinositol 3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β pathway. Paeoniflorin enhanced the inhibitory effect of PI3K inhibitor LY294002 and suppressed the activated effect of PI3K agonist insulin-like growth factor 1 (IGF-1) on PI3K/AKT/GSK-3β pathway. In conclusion, these results demonstrated that paeoniflorin ameliorates MPGN by inhibiting mesangial cell proliferation and inflammatory response through the PI3K/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Bihao Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Lixia Bai
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peichun Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Science and Technology Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidan Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Yang S, Chen Y, Duan Y, Ma C, Liu L, Li Q, Yang J, Li X, Zhao B, Wang Y, Qian K, Liu M, Zhu Y, Yang X, Han J. Therapeutic potential of NaoXinTong Capsule on the developed diabetic nephropathy in db/db mice. Biomed Pharmacother 2019; 118:109389. [PMID: 31545275 DOI: 10.1016/j.biopha.2019.109389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
The current treatment for diabetic nephropathy (DN) is still limited. NaoXinTong Capsule (NXT) is a Chinese Medicine prescribed to patients with cardiovascular disease. It can also ameliorate metabolic syndromes in patients indicating its anti-diabetic properties. Herein we report the therapeutic effects of NXT on the developed DN. The db/db diabetic mice at ˜12 weeks old, the age with DN at middle/advanced stages, were treated with NXT for 12 weeks. We found NXT treatment reduced diabetes-induced hyperglycemia and dyslipidemia, thereby substantially reduced DN progress. In the kidney, NXT reduced mesangial matrix expansion and glomerulosclerosis by inhibiting extracellular matrix accumulation through activation of matrix metalloproteinase 2/9 and inactivating transforming growth factor β1 expression. NXT reduced podocyte injury by reducing renal inflammation and expression of adhesion molecules. Mechanically, NXT potently activated AMPKα in multiple tissues thereby enhancing energy metabolism. In the liver, NXT increased glucokinase expression and insulin sensitivity by increasing insulin receptor substrate 1/2 and protein kinase B (AKT) 1/2 expression/phosphorylation. In skeletal muscle, NXT activated expression of glucose transporter type 4, AKT, glycogen synthase and peroxisome proliferator activated receptor α/γ. In adipose tissue, NXT reduced fatty acid synthase while activating hormone-sensitive lipase expression. Taken together, our study demonstrates that NXT reduced progress of the developed DN by ameliorating glucose, lipid and energy metabolism, maintaining renal structural and functional integrity. Our study also indicates the potential application of NXT for DN treatment in clinics.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lipei Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qi Li
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | | | - Yong Wang
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Ke Qian
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Mengyang Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Yang
- Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Department of Pharmacological Sciences, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
27
|
Wu XH, Sun XL, Zhao C, Zhang JQ, Wang X, Zhang AH, Wang XJ. Exploring the pharmacological effects and potential targets of paeoniflorin on the endometriosis of cold coagulation and blood stasis model rats by ultra-performance liquid chromatography tandem mass spectrometry with a pattern recognition approach. RSC Adv 2019; 9:20796-20805. [PMID: 35515565 PMCID: PMC9065745 DOI: 10.1039/c9ra03525g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
This study was employed to explore the potential biomarkers of endometriosis of cold coagulation and blood stasis (ECB) model rats and the effective mechanism of action of paeoniflorin (PF). The serum metabolomics approach was carried out using the UPLC-MS technique with a pattern recognition approach to prove the possible biomarkers of the ECB model rats and the perturbed pathways. Subsequently, the mechanism of PF treatment of this disease model was elucidated. The results revealed that the serum metabolism profiles in two groups were also separated significantly. Moreover, 8 biomarkers were found in the positive mode, and 5 biomarkers were found in the negative mode. Totally, 13 biomarkers participated in the metabolism of phenylalanine, arachidonic acid, etc. After treatment with PF, 10 biomarkers were regulated. Among the 10 biomarkers, 4 were statistically significant: l-phenylalanine, l-tryptophan, LysoPC (18:4(6Z,9Z,12Z,15Z)), and LysoPC (16:1(9Z)). We initially confirmed that PF could significantly regulate the metabolic expression of multiple metabolic pathways in the ECB model rats. For the first time, this study explored the mechanism of action of PF treatment based on the metabolic pathways of the organism and demonstrated the potential of the metabolomics techniques for the study of drug action mechanisms.
Collapse
Affiliation(s)
- Xiu-Hong Wu
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xiao-Lan Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Chuang Zhao
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Jin-Qi Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xu Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology Avenida Wai Long Taipa Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China
| |
Collapse
|
28
|
Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, Wang X, Körner H, Wei W. The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6'-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases. Front Pharmacol 2019; 10:57. [PMID: 30804784 PMCID: PMC6370653 DOI: 10.3389/fphar.2019.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
The plant extract "total glucosides of peony" (TGP) constitutes a mixture of glycosides that is isolated from the roots of the well-known traditional Chinese herb Paeonia lactiflora Pall. Paeoniflorin (Pae) is the most abundant component and the main biologically active ingredient of TGP. Pharmacologically, Pae exhibits powerful anti-inflammatory and immune regulatory effects in some animal models of autoimmune diseases including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). Recently, we modified Pae with an addition of benzene sulfonate to achieve better bioavailability and higher anti-inflammatory immune regulatory effects. This review summarizes the pharmacological activities of Pae and the novel anti-inflammatory and immunomodulatory agent Paeoniflorin-6'-O-benzenesulfonate (CP-25) in various chronic inflammatory and autoimmune disorders. The regulatory effects of Pae and CP-25 make them promising agents for other related diseases, which require extensive investigation in the future.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yawei Guo
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Dafei Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Pengying Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
30
|
Ma X, Wen JX, Gao SJ, He X, Li PY, Yang YX, Wei SZ, Zhao YL, Xiao XH. Paeonia lactiflora Pall. regulates the NF-κB-NLRP3 inflammasome pathway to alleviate cholestasis in rats. J Pharm Pharmacol 2018; 70:1675-1687. [PMID: 30277564 DOI: 10.1111/jphp.13008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Cholestasis is a critical risk factor for severe hepatic disease or cirrhosis. The anti-inflammatory effect of Paeonia lactiflora Pall. (PLP), named Chishao in traditional Chinese medicine (TCM), on alpha-naphthylisothiocyanate (ANIT)-induced cholestasis model was tried to be elucidated in this research. METHODS Therapeutic effect indices on hepatic function, including ALT, AST, TBIL, DBIL, ALP, TBA and γ-GT, were measured. To further investigate the protective mechanism of PLP, the mRNA and protein expression levels of NF-κB-NLRP3 inflammasome pathway were detected. RESULTS Our results showed that compared with the model group, PLP could significantly reduce the increased serum indices such as ALT, AST, TBIL, DBIL, ALP, TBA and γ-GT induced by ANIT in a dose-dependent way. Moreover, we found that PLP downregulated the mRNA expression levels including IKK, p65, NLRP3, caspase-1 and IL-1β, especially at the large dose. Furthermore, PLP also significantly inhibited NF-κB-NLRP3 inflammasome pathway by decreasing the protein levels of p65, p-p65, p-IKK, NLRP3, caspase-1 and IL-1β. CONCLUSIONS The results indicated that PLP could ameliorate ANIT-induced cholestasis in rats and the anti-inflammatory effect of PLP might be related to regulating NF-κB-NLRP3 inflammasome pathway. This study will provide scientific evidence for PLP as a potential drug candidate for cholestasis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian-Xia Wen
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Si-Jia Gao
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Xuan He
- Department of Pharmacy, Xindu District Shibantan Public Hospital, Chengdu, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yu-Xue Yang
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Shi-Zhang Wei
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
31
|
Ouyang J, Zeng Z, Fang H, Li F, Zhang X, Tan W. SIRT3 Inactivation Promotes Acute Kidney Injury Through Elevated Acetylation of SOD2 and p53. J Surg Res 2018; 233:221-230. [PMID: 30502252 DOI: 10.1016/j.jss.2018.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The deactivation of SIRT3, a novel deacetylase located in mitochondria, can aggravate multiple organ dysfunction. However, the role of SIRT3 and its downstream targets in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) remain unknown. MATERIALS AND METHODS I/R was reproduced in a rat model using a clamp placed on the left and right renal pedicles for 40 min. The rats were intraperitoneally injected with either the vehicle or a selective SIRT3 inhibitor (3-TYP) and scarified at different time points (4, 8, and 24 h after I/R). A portion of the renal tissue was extracted for histological analysis, and another portion was collected for the isolation of renal tubular epithelial cells for Western blotting, SOD2 and SIRT3 activity, cell apoptosis, and the determination of oxidative stress. RESULTS The I/R-induced AKI model was successfully reproduced and SIRT3 activity was considerably reduced than control (sham operated) group, accompanied by increased acetylation of SOD2 and p53, as well as their elevated physical interaction in extracted mitochondrial protein (all P values < 0.05). Moreover, SIRT3 suppression by 3-TYP treatment (comparing with the vehicle treatment group) aggravated AKI, as evidenced by increased indicators of oxidative stress (increased mitochondrial red fluorescence MitoSOX and decreased reduced glutathione/oxidized glutathione ratio, all P values < 0.01). CONCLUSIONS The elevation of SOD2 and p53 protein acetylation in the mitochondria of renal tubular epithelial cells is an important signaling event in the pathogenesis of I/R-induced AKI. Thus, deacetylase SIRT3 may be an upstream regulator of both SOD2 and p53, and the SIRT3 deactivation may aggravate AKI.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinji Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
La L, Wang L, Qin F, Jiang J, He S, Wang C, Li Y. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:81-90. [PMID: 29248448 DOI: 10.1016/j.jep.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). AIM OF THE STUDY To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. MATERIALS AND METHODS CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. RESULTS Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. CONCLUSIONS The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula.
Collapse
Affiliation(s)
- Lei La
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lili Wang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Fei Qin
- Guangzhou Baiyunshan Pharmaceutical Holdings CO. Ltd, BAIYUNSHAN Pharmaceutical General Factory, Guangzhou 510515, China.
| | - Jian Jiang
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000, Australia.
| | - Songqi He
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000, Australia.
| |
Collapse
|
33
|
Li X, Wang Y, Wang K, Wu Y. Renal protective effect of Paeoniflorin by inhibition of JAK2/STAT3 signaling pathway in diabetic mice. Biosci Trends 2018; 12:168-176. [PMID: 29669962 DOI: 10.5582/bst.2018.01009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Paeoniflorin is the main bioactive components of the root of P.lactiflora Pall., and has been widely used as an anti-inflammation and immunomodulatory agent. However, the effect and mechanisms of Paeoniflorin in diabetic nephropathy (DN) remains to be elucidated. In the present study, streptozotocin (STZ)-induced type 1 diabetic mice model was used to investigate the protective effect of Paeoniflorin and the role of the Janus kinase (JAK) 2/signal transducer (STAT) 3 signaling pathway on DN. After treatment with Paeoniflorin at a dose of 25, 50 and 100 mg/kg once a day for 12 weeks, both the functional and histological damage to diabetic mice kidney had been attenuated significantly. Additionally, these reno-protective effects were associated with alleviating macrophage infiltration and inflammatory factors expression as well as suppression of the JAK2/STAT3 signaling pathway. These data reveal that Paeoniflorin attenuates renal lesions in diabetic mice and these protective effects may be associated with the prevention of macrophage infiltration and inhibition of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Nephrology, the First Affiliated Hospital, Anhui Medical University
| | - Yan Wang
- Department of Nephrology, the First Affiliated Hospital, Anhui Medical University
| | - Kun Wang
- Department of Nephrology, the First Affiliated Hospital, Anhui Medical University
| | - Yonggui Wu
- Department of Nephrology, the First Affiliated Hospital, Anhui Medical University
| |
Collapse
|
34
|
Mei F, Zuo T, Zhao L, Shi Q, Xiang M, Hong Y, Li M, Wang W. Differential JNK, p38 and ERK response to renal injury in a rat model of acute pancreatitis in pregnancy. Arch Gynecol Obstet 2018; 297:933-942. [PMID: 29349553 DOI: 10.1007/s00404-018-4668-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study was to determine the mechanism of acute renal injury (ARI) in acute necrotizing pancreatitis in late pregnancy (ANPIP). METHODS Pregnant Sprague-Dawley rats in the third trimester were used for this study, and an ANPIP model was induced by injecting 5% sodium taurocholate into the biliary pancreatic duct. The rats were randomly divided into three groups: the normal, sham-operated (SO) and acute necrotizing pancreatitis (ANP) groups. Rats were killed at 3, 6, 12 h after the operation, and blood, pancreatic and renal tissue samples were harvested. Differences were detected in the physiology, pathology and cellular and molecular responses among the different groups. RESULT Serum amylase, lipase, urea and Cr levels were increased in rats with ANPIP. Additionally, expression of phosphorylation p38 and JNK as well as TNF-α and NF-κB were increased in the renal tissues of rats with ANPIP. The expression of phosphorylation ERK was decreased in the renal tissues of rats with ANPIP. CONCLUSIONS Mitogen-activated protein kinases may play an important role in renal injury in rat models of ANPIP.
Collapse
Affiliation(s)
- Fangchao Mei
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Teng Zuo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingwei Xiang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yupu Hong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Lu R, Zhou J, Liu B, Liang N, He Y, Bai L, Zhang P, Zhong Y, Zhou Y, Zhou J. Paeoniflorin ameliorates Adriamycin-induced nephrotic syndrome through the PPARγ/ANGPTL4 pathway in vivo and vitro. Biomed Pharmacother 2017; 96:137-147. [PMID: 28972886 DOI: 10.1016/j.biopha.2017.09.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Paeoniflorin (PF), an effective composition that is extracted from Radix Paeoniae Alba, plays a role in protecting against various kidney diseases. However, the mechanism of PF on nephrotic syndrome (NS) remains unclear. The aim of this study was to investigate the protective role of PF on Adriamycin (ADR)-induced NS in vivo and vitro as well as its potential mechanism. In animal study, PF significantly decreased the levels of 24-h urine protein, blood urea nitrogen, serum creatinine, total cholesterol and triglycerides in NS rats, but increased the total protein and albumin levels. Hematoxylin-eosin (HE) staining revealed that the kidney lesion was resolved upon PF treatment. After treatment with PF, the morphology and number of podocytes in renal tissue were restored to normal. PF increased expression of synaptopodin and decreased expression of desmin, demonstrating a protective effect in podocyte injury. Further studies revealed that PF upregulated Peroxisome proliferator-activated receptor gamma (PPARγ) and restrained Angiopointin-like 4 (ANGPTL4) in kidney tissue. In vitro study, PF reduced Caspase3 and Bax and increased Bcl-2, indicating that the apoptosis rate of podocytes induced by ADR was reduced by PF. Furthermore, PF ameliorated podocyte injury by upregulating synaptopodin and reducing desmin. In accordance with animal study, PF downregulated ANGPTL4 by activating PPARγ. However, the therapeutic effects of PF were reversed by GW9662 (PPARγ inhibitor), likely by suppressing ANGPTL4 degradation. In general, these results demonstrate that PF has a good therapeutic effect on NS by activating PPARγ and subsequently inhibiting ANGPTL4.
Collapse
Affiliation(s)
- Ruirui Lu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jie Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Bihao Liu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ning Liang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu He
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Lixia Bai
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peichun Zhang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yanchun Zhong
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yuan Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jiuyao Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Gu P, Zhu L, Liu Y, Zhang L, Liu J, Shen H. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int Immunopharmacol 2017; 50:152-160. [PMID: 28666238 DOI: 10.1016/j.intimp.2017.06.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Paeoniflorin is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of paeoniflorin. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of paeoniflorin isolated from the dried peeled root of Paeonia lactiflora Pall. It was further intended to find out the probable mechanism of anti-inflammatory effect of paeoniflorin. The anti-inflammatory effect of paeoniflorin (15, 30 and 45mg/kg) was measured employing TNBS-induced ulcerative colitis model of acute inflammation. The TNBS injection resulted significant colitis formation when compared with un-injected mice. The anti-inflammatory effects of paeoniflorin for ulcerative colitis were assessed by body weight, colonic weight and length, macroscopic scores, and histopathological examinations. In addition, the colonic tissue levels of inflammation markers, including myeloperoxidase (MPO), IL-2, IL-6, IL-10, IL-12, IL-1β, TNF-α and IFN-γ were also determined to assess the effect of paeoniflorin. In addition, western blot demonstrated that paeoniflorin inhibited NF-kappaB signaling pathway and apoptosis in TNBS-induced ulcerative colitis tissues. In conclusion, all the findings of this study suggested that paeoniflorin has the anti-inflammatory effect in ulcerative colitis via inhibiting MAPK/NF-kappaB pathway and apoptosis in mice.
Collapse
Affiliation(s)
- Peiqing Gu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Lei Zhu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yajun Liu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Lu Zhang
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Junlou Liu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Hong Shen
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
37
|
Zhao DD, Jiang LL, Li HY, Yan PF, Zhang YL. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia. Molecules 2016; 21:molecules21101362. [PMID: 27754383 PMCID: PMC6273841 DOI: 10.3390/molecules21101362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022] Open
Abstract
Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xue-Fu Road, Nan-Gang District, Harbin 150080, China.
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
- Heilongjiang University Hospital, Harbin 150080, China.
| | - Li-Li Jiang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Hong-Yi Li
- Heilongjiang University Hospital, Harbin 150080, China.
| | - Peng-Fei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xue-Fu Road, Nan-Gang District, Harbin 150080, China.
| | - Yan-Long Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|