2
|
Lee C, Chen R, Sun G, Liu X, Lin X, He C, Xing L, Liu L, Jensen LD, Kumar A, Langer HF, Ren X, Zhang J, Huang L, Yin X, Kim J, Zhu J, Huang G, Li J, Lu W, Chen W, Liu J, Hu J, Sun Q, Lu W, Fang L, Wang S, Kuang H, Zhang Y, Tian G, Mi J, Kang BA, Narazaki M, Prodeus A, Schoonjans L, Ornitz DM, Gariepy J, Eelen G, Dewerchin M, Yang Y, Ou JS, Mora A, Yao J, Zhao C, Liu Y, Carmeliet P, Cao Y, Li X. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway. Signal Transduct Target Ther 2023; 8:305. [PMID: 37591843 PMCID: PMC10435562 DOI: 10.1038/s41392-023-01539-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023] Open
Abstract
Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Guangli Sun
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases,Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lasse D Jensen
- Department of Health, Medical and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, 581 83, Linköping, Sweden
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Harald F Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Mannheim/ Heidelberg, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Xiangke Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - JongKyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Juanhua Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Guanqun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Juanxi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jiaxin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Yihan Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200031, Shanghai, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Aaron Prodeus
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jean Gariepy
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Xinzao, Panyu district, Guangzhou, 511436, Guangdong, China
| | - Jin Yao
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200031, Shanghai, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Far BF, Malik AA, Gupta AK, Sadhu S, Dohare S, Gupta PK. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro 2022; 83:105417. [PMID: 35718257 DOI: 10.1016/j.tiv.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Noura Al-Dayan
- Department of Medical Lab Sciences, Prince Sattam bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ashish Kumar Gupta
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Soumi Sadhu
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Sushil Dohare
- Department of Epidemiology, Faculty of Public Health & Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India; Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
7
|
Delgado-Ureña M, Ortega FG, de Miguel-Pérez D, Rodriguez-Martínez A, García-Puche JL, Ilyine H, Lorente JA, Exposito-Hernandez J, Garrido-Navas MC, Delgado-Ramirez M, Serrano MJ. Circulating tumor cells criteria (CyCAR) versus standard RECIST criteria for treatment response assessment in metastatic colorectal cancer patients. J Transl Med 2018; 16:251. [PMID: 30189880 PMCID: PMC6127986 DOI: 10.1186/s12967-018-1624-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background The use of circulating tumor cells (CTCs) as indicators of treatment response in metastatic colorectal cancer (mCRC) needs to be clarified. The objective of this study is to compare the Response Evaluation Criteria in Solid Tumors (RECIST) with the Cytologic Criteria Assessing Response (CyCAR), based on the presence and phenotypic characterization of CTCs, as indicators of FOLFOX–bevacizumab treatment response. Methods 77 mCRC blood samples from FOLFOX–bevacizumab treated patients were analyzed to isolate CTCs before and after (12 and 24 weeks) treatment, using an immunomagnetic separation method. VEGFR expression was identified by double immunostaining. Results We observed a decrease of CTCs (42.8 vs. 18.2%) and VEGFR positivity (69.7% vs. 41.7%) after treatment. According to RECIST, 6.45% of the patients did not show any clinical benefit, whereas 93.55% patients showed a favorable response at 12 weeks. According to CyCAR, 29% had a non-favorable response and 71% patients did not. No significant differences were found between the response assessment by RECIST and CyCAR at 12 or 24 weeks. However, in the multivariate analysis, RECIST at 12 weeks and CyCAR at 24 weeks were independent prognostic factors for OS (HR: 0.1, 95% CI 0.02–0.58 and HR: 0.35, 95% CI 0.12–0.99 respectively). Conclusions CyCAR results were comparable to RECIST in evaluating the response in mCRC and can be used as an alternative when the limitation of RECIST requires additional response analysis techniques.
Collapse
Affiliation(s)
- Mayte Delgado-Ureña
- Integral Oncology Division, Clinical University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain
| | - Francisco G Ortega
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain
| | - Diego de Miguel-Pérez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación, 11, 18071, Granada, Spain
| | - Alba Rodriguez-Martínez
- Integral Oncology Division, Clinical University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain.,Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación, 11, 18071, Granada, Spain.,DestiNA Genomics Ltd, 7-11 Melville St, Edinburgh, EH3 7PE, UK.,Division of Preventive Medicine and Public Health, CIBERESP, University of Jaen, Campus de las Lagunillas, 23072, Jaén, Spain
| | - Jose L García-Puche
- Integral Oncology Division, Clinical University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain.,Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain
| | - Hugh Ilyine
- DestiNA Genomics Ltd, 7-11 Melville St, Edinburgh, EH3 7PE, UK
| | - Jose A Lorente
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación, 11, 18071, Granada, Spain
| | - Jose Exposito-Hernandez
- Integral Oncology Division, Clinical University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain
| | - M Carmen Garrido-Navas
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain
| | - Miguel Delgado-Ramirez
- Division of Preventive Medicine and Public Health, CIBERESP, University of Jaen, Campus de las Lagunillas, 23072, Jaén, Spain
| | - M José Serrano
- Integral Oncology Division, Clinical University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain. .,Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016, Granada, Spain.
| |
Collapse
|
8
|
Misawa Y, Misawa K, Kawasaki H, Imai A, Mochizuki D, Ishikawa R, Endo S, Mima M, Kanazawa T, Iwashita T, Mineta H. Evaluation of epigenetic inactivation of vascular endothelial growth factor receptors in head and neck squamous cell carcinoma. Tumour Biol 2017; 39:1010428317711657. [PMID: 28718364 DOI: 10.1177/1010428317711657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to determine the methylation status of the genes encoding the vascular endothelial growth factor receptors and to evaluate the usefulness of VEGFR methylation as a prognostic indicator in head and neck squamous cell carcinoma. VEGFR messenger RNA expression and promoter methylation were examined in a panel of cell lines via quantitative reverse transcription and methylation-specific polymerase chain reaction, respectively. Promoter methylation was compared with clinical characteristics in 128 head and neck squamous cell carcinoma samples. The normalized methylation values for the VEGFR1, VEGFR2 and VEGFR3 promoters tended to be higher in the tumour cell lines than in normal tonsil samples, whereas amounts of VEGFR1, VEGFR2 and VEGFR3 messenger RNA were significantly higher. Methylation of the VEGFR1 promoter (p = 0.003; 66/128 head and neck squamous cell carcinoma samples, 52%) and VEGFR3 promoter (p = 0.043; 53/128 head and neck squamous cell carcinoma samples, 41%) significantly correlated with recurrence, whereas methylation of the VEGFR2 promoter significantly correlated with lymph node metastasis (p = 0.046; 47/128 head and neck squamous cell carcinoma samples, 37%). Concurrent methylation of the VEGFR1 and VEGFR3 promoters significantly correlated with reduced disease-free survival (log-rank test, p = 0.009). In a multivariate logistic regression analysis, methylation of the VEGFR1, VEGFR3 and both the VEGFR1 and VEGFR3 promoters independently predicted recurrence (odds ratios and 95% confidence intervals: 3.19, 1.51-6.75 (p = 0.002); 2.24, 1.06-4.76 (p = 0.035); and 2.56, 1.09-6.05 (p = 0.032), respectively). Methylation of the VEGFR promoters predicts poor prognosis in head and neck squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Yuki Misawa
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- 2 Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Imai
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daiki Mochizuki
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuji Ishikawa
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Endo
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Mima
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takeharu Kanazawa
- 3 Department of Otolaryngology - Head and Neck Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Toshihide Iwashita
- 2 Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- 1 Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|