1
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
2
|
Wu J, Fu G, Luo C, Chen L, Liu Q. Cuproptosis-related ceRNA axis triggers cell proliferation and cell cycle through CBX2 in lung adenocarcinoma. BMC Pulm Med 2024; 24:85. [PMID: 38355480 PMCID: PMC10865584 DOI: 10.1186/s12890-024-02887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has high morbidity and mortality. Despite substantial advances in treatment, the prognosis of patients with LUAD remains unfavorable. The ceRNA axis has been reported to play an important role in the pathogenesis of LUAD. In addition, cuproptosis is considered an important factor in tumorigenesis. The expression of CBX2 has been associated with the development of multiple tumors, including LUAD. However, the precise molecular mechanisms through which the cuproptosis-related ceRNA network regulates CBX2 remain unclear. METHODS The DEGs between tumor and normal samples of LUAD were identified in TCGA database. The "ConsensusClusterPlus" R package was used to perform consensus clustering based on the mRNA expression matrix and cuproptosis-related gene expression profile. Then, LASSO-COX regression analysis was performed to identify potential prognostic biomarkers associated with cuproptosis, and the ceRNA network was constructed. Finally, the mechanisms of ceRNA in LUAD was studied by cell experiments. RESULTS In this study, the AC144450.1/miR-424-5p axis was found to promote the progression of LUAD by acting on CBX2. The expression of AC144450.1 and miR-424-5p can be altered to regulate CBX2 and is correlated with cell proliferation and cell cycle of LUAD. Mechanistically, AC144450.1 affects the expression of CBX2 by acting as the ceRNA of miR-424-5p. In addition, a cuproptosis-related model were constructed in this study to predict the prognosis of LUAD. CONCLUSIONS This study is the first to demonstrate that the AC144450.1/miR-424-5p/CBX2 axis is involved in LUAD progression and may serve as a novel target for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Guang Fu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Chao Luo
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Liang Chen
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
3
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
4
|
Alzahrani AA, Almajidi YQ, Jasim SA, Hjazi A, Olegovich BD, Alkhafaji AT, Abdulridui HA, Ahmed BA, Alawadi A, Alsalamy A. Getting to know ovarian cancer: Focusing on the effect of LncRNAs in this cancer and the effective signaling pathways. Pathol Res Pract 2024; 254:155084. [PMID: 38244434 DOI: 10.1016/j.prp.2023.155084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Bokov Dmitry Olegovich
- Institute of Pharmacy, Moscow Medical University, Moscow, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | | | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
5
|
Hu Q, Xu L, Yi Q, Yuan J, Wu G, Wang Y. miR-204 suppresses uveal melanoma cell migration and invasion through negative regulation of RAB22A. Funct Integr Genomics 2023; 23:49. [PMID: 36705739 DOI: 10.1007/s10142-022-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Uveal melanoma (UM), a frequently seen adulthood primary ocular malignancy, shows high aggressiveness. Accumulating studies have revealed the crucial effects of microRNAs (miRNAs) on tumorigenesis and development in various human tumors. miR-204, the cancer-associated miRNA, shows dysregulation and is related to several human malignancies, but its effect on UM remains unknown. The present work focused on exploring miR-204's effect on UM and elucidating its possible molecular mechanisms. According to our results, miR-204 expression markedly increased within both UM tissues and cell lines. As revealed by functional analysis, miR-204 suppressed UM cell invasion and migration. Besides, RAB22A expression decreased through directly binding miR-204 into the corresponding 3' untranslated region (3'UTR) in UM cells. Furthermore, the RAB22A mRNA level increased, which was negatively related to the miR-204 level within UM samples. As revealed by mechanical research, miR-204 exerted its inhibition on the invasion and migration of UM cells via RAB22A. Taken together, this study suggested the tumor-suppressing effect of miR-204 on UM through down-regulating RAB22A. Thus, miR-204 may serve as the new anti-UM therapeutic target.
Collapse
Affiliation(s)
- Qidi Hu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Lingli Xu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Quanyong Yi
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Jianshu Yuan
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Guohai Wu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Yuwen Wang
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China.
| |
Collapse
|
6
|
LncRNA HOTAIR sponges miR-301a-3p to promote glioblastoma proliferation and invasion through upregulating FOSL1. Cell Signal 2022; 94:110306. [PMID: 35292358 PMCID: PMC9058208 DOI: 10.1016/j.cellsig.2022.110306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/29/2023]
Abstract
Glioblastoma, one of the most fatal brain tumors, is associated with a dismal prognosis and an extremely short overall survival. We previously reported that the overexpressed transient receptor potential channel TRPM7 is an essential glioblastoma regulator. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in glioma's initiation and progression. However, the function of lncRNA, HOX transcript antisense intergenic RNA (HOTAIR) mediated by TRPM7 in glioma remains unclear. In this study, HOTAIR expression was found to be positively regulated by TRPM7, significantly upregulated in glioma tissues, and is a poor prognosis factor for glioma patients. Moreover, reduced HOTAIR expression impeded the proliferation and invasion of glioma cells. Mechanistically, HOTAIR directly interacted with miR-301a-3p, and downregulation of miR-301a-3p efficiently reversed FOSL1 suppression induced by siRNA HOTAIR, which implied that HOTAIR positively regulated FOSL1 level through sponging miR-301a-3p and played an oncogenic role in glioma progression. In contrast to HOTAIR's role, miR-301a-3p alone served as a tumor suppressor to decrease glioma cell viability and migration/invasion. In agreement with HOTAIR's role, FOSL1 functioned as a tumorigenic gene in glioma pathogenesis, which was highly expressed in glioma tissues, and was shown to be an unfavorable prognostic factor for glioma patients. Mechanically, FOSL1 inhibition by siRNA FOSL1 efficiently rescued the oncogenic-like phenotypes caused by the miR-301a-3p inhibitor in glioma pathogenesis. SIGNIFICANCE: Our study elucidated the role of TRPM7-mediated HOTAIR as a miRNA sponge to target downstream FOSL1 oncogene and therefore consequently contribute to gliomagenesis, which shed new light on TRPM7/lncRNA-directed diagnostic and therapeutic approach in glioma.
Collapse
|
7
|
Fan L, Lei H, Lin Y, Zhou Z, Li J, Wu A, Shu G, Roger S, Yin G. Hotair promotes the migration and proliferation in ovarian cancer by miR-222-3p/CDK19 axis. Cell Mol Life Sci 2022; 79:254. [PMID: 35451651 PMCID: PMC9033702 DOI: 10.1007/s00018-022-04250-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023]
Abstract
Previous studies in our laboratory have reported that miR-222-3p was a tumor-suppressive miRNA in OC. This study aims to further understand the regulatory role of miR-222-3p in OC and provide a new mechanism for its prevention and treatment. We first found that miR-222-3p inhibited the migration and proliferation of OC cells. Then, we observed CDK19 was highly expressed in OC and inversely correlated with miR-222-3p. Besides, we observed that miR-222-3p directly binds to the 3′-UTR of CDK19 and inhibits CDK19 translation, thus inhibiting OC cell migration and proliferation in vitro and repressed tumor growth in vivo. We also observed the inhibitory effect of Hotair on miR-222-3p in OC. In addition, Hotair could promote the proliferation and migration of OC cells in vitro and facilitate the growth and metastasis of tumors in vivo. Moreover, Hotair was positively correlated with CDK19 expression. These results suggest Hotair indirectly up-regulates CDK19 through sponging miR-222-3p, which enhances the malignant behavior of OC. This provides a further understanding of the mechanism of the occurrence and development of OC.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Han Lei
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Ying Lin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Juanni Li
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Anqi Wu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, University of Tours, 37032, Tours, France
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya HospitalCentral South UniversityHunan Province, Changsha, 410000, China.
| |
Collapse
|
8
|
LncRNA HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. In Vitro Cell Dev Biol Anim 2022; 58:295-306. [PMID: 35426065 DOI: 10.1007/s11626-022-00657-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
LncRNA HOX antisense intergenic RNA (HOTAIR) can regulate cancer-related gene expression and promote stem cell and tumor cell proliferation via mechanisms including the competing endogenous RNA (ceRNA) mechanism. HOTAIR is abundantly expressed in the genital tubercle of E11.5, E12.5, and E13.5 embryos, whereas it became barely detectable at E13.5 and expressed again in adult mouse testis. However, the underlying function and mechanism of HOTAIR in spermatogenesis have not been elucidated. Interestingly, other researchers reported that the function of gene Nanos C2HC-Type Zinc Finger 2 (nanos2) includes the maintenance of both the primordial germ cells (PGCs) and germline stem cells, and Nanos2 protein and transcripts (NANOS2) were detected only in PGCs from day E11.5 and undifferentiated spermatogonia in spermatogenesis. We therefore investigated the relationship between HOTAIR and NANOS2 in maintaining spermatogonial stem cell population. We found that, compared to the adult mouse, the expression levels of HOTAIR and NANOS2 in embryo mouse were significantly higher and miR-761expression level was lower. In mouse GC-1 spermatogonia cells, overexpression of miRNA-761 significantly inhibited the expression of NANOS2 and HOTAIR, suppressed the proliferation, and promotes apoptosis of cells. Knock down and overexpression of HOTAIR indicated that HOTAIR expression was positively correlated with NANOS2 expression; overexpressed HOTAIR could promote proliferation and suppresses apoptosis of GC-1 cells. By a rescue experiment and dual luciferase reporter assay, miR-761 was identified as a direct target of HOTAIR, and NANOS2 was identified as the direct target of miR-761. The above results indicate that HOTAIR promotes proliferation and suppresses apoptosis of mouse spermatogonium GC-1 cells by sponging miR-761 to modulate NANOS2 expression. Our findings elucidate one of possible mechanisms and importance of HOTAIR in maintaining spermatogonial stem cell population, and provide new candidate genes and possible pathogenesis for male infertility.
Collapse
|
9
|
Wang X, Zheng S, Yang F, Zhang W, Zhao D, Xue X, Lin Q, He Y, Hu G, Hu Y. lncRNA HITT inhibits metastasis by attenuating Rab5-mediated endocytosis in lung adenocarcinoma. Mol Ther 2022; 30:1071-1088. [PMID: 35017116 PMCID: PMC8899701 DOI: 10.1016/j.ymthe.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
Abstract
Endocytosis of cell surface receptors is essential for cell migration and cancer metastasis. Rab5, a small GTPase of the Rab family, is a key regulator of endosome dynamics and thus cell migration. However, how its activity is regulated still remains to be addressed. Here, we identified a Rab5 inhibitor, a long non-coding RNA, namely HITT (HIF-1α inhibitor at translation level). Our data show that HITT expression is inversely associated with advanced stages and poor prognosis of lung adenocarcinoma patients with area under receiver operating characteristics (ROC) curve (AUC) 0.6473. Further study reveals that both endogenous and exogenous HITT inhibits single-cell migration by repressing β1 integrin endocytosis in lung adenocarcinoma. Mechanistically, HITT is physically associated with Rab5 at switch I via 1248-1347 nt and suppresses β1 integrin endocytosis and subsequent cancer metastasis by interfering with guanine nucleotide exchange factors (GEFs) for Rab5 binding. Collectively, these findings suggest that HITT directly participates in the regulation of Rab5 activity, leading to a decreased integrin internalization and cancer metastasis, which provides important insights into a mechanistic understanding of endocytosis and cancer metastasis.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xuting Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Yunfei He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Science, 320 Yuyang Road, Shanghai 200031, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Science, 320 Yuyang Road, Shanghai 200031, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Wu J, Wu Y, Guo Q, Wang S, Wu X. RNA-binding proteins in ovarian cancer: a novel avenue of their roles in diagnosis and treatment. J Transl Med 2022; 20:37. [PMID: 35062979 PMCID: PMC8783520 DOI: 10.1186/s12967-022-03245-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC), an important cause of cancer-related death in women worldwide, is one of the most malignant cancers and is characterized by a poor prognosis. RNA-binding proteins (RBPs), a class of endogenous proteins that can bind to mRNAs and modify (or even determine) the amount of protein they can generate, have attracted great attention in the context of various diseases, especially cancers. Compelling studies have suggested that RBPs are aberrantly expressed in different cancer tissues and cell types, including OC tissues and cells. More specifically, RBPs can regulate proliferation, apoptosis, invasion, metastasis, tumorigenesis and chemosensitivity and serve as potential therapeutic targets in OC. Herein, we summarize what is currently known about the biogenesis, molecular functions and potential roles of human RBPs in OC and their prospects for application in the clinical treatment of OC.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Price RL, Bhan A, Mandal SS. HOTAIR beyond repression: In protein degradation, inflammation, DNA damage response, and cell signaling. DNA Repair (Amst) 2021; 105:103141. [PMID: 34183273 PMCID: PMC10426209 DOI: 10.1016/j.dnarep.2021.103141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed from the mammalian genome as transcripts that are usually >200 nucleotides long. LncRNAs generally do not encode proteins but are involved in a variety of physiological processes, principally as epigenetic regulators. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized lncRNA that has been implicated in several cancers and in various other diseases. HOTAIR is a repressor lncRNA and regulates various repressive chromatin modifications. However, recent studies have revealed additional functions of HOTAIR in regulation of protein degradation, microRNA (miRNA) sponging, NF-κB activation, inflammation, immune signaling, and DNA damage response. Herein, we have summarized the diverse functions and modes of action of HOTAIR in protein degradation, inflammation, DNA repair, and diseases, beyond its established functions in gene silencing.
Collapse
Affiliation(s)
- Rachel L Price
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States.
| |
Collapse
|
12
|
Zhang J, Yang ZM, Huang Y, Wang KN, Xie Y, Yang N. LncRNA GAS5 inhibits the proliferation and invasion of ovarian clear cell carcinoma via the miR-31-5p/ARID1A axis. Kaohsiung J Med Sci 2021; 37:940-950. [PMID: 34414664 DOI: 10.1002/kjm2.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
To investigate the role of the lncRNA growth arrest special 5 (GAS5) in ovarian clear cell carcinoma (OCCC), we measured the expression of GAS5 and miR-31-5p in OCCC tissue samples and OCCC cell lines using RT-qPCR. MTT and colony formation assays were used to measure cell viability and colony formation ability. Cell invasion was determined by Transwell assays. The binding between GAS5 and miR-31-5p as well as miR-31-5p and ARID1A was determined by dual-luciferase reporter assays. The ARID1A protein levels were detected using western blotting. Kaplan-Meier curves were used for the analysis of the 5-year survival rate of patients with OCCC. GAS5 and ARID1A levels were significantly decreased, while miR-31-5p levels were strongly elevated in the OCCC tissues and cell lines. Patients with lower GAS5/ARID1A levels had shorter overall survival times. Overexpression of GAS5 or inhibition of miR-31-5p suppressed cell viability and invasion of OCCC cells and upregulated the protein levels of ARID1A. Moreover, overexpression of miR-31-5p reversed the effects of overexpression of GAS5. Cotransfection with pcDNA3.1-GAS5 and miR-31-5p inhibitor led to the lowest cell viability and cell invasion rates. A dual-luciferase reporter assay was performed to confirm the target relationship between GAS5 and miR-31-5p, as well as between miR-31-5p and ARID1A. LncRNA GAS5 inhibited cell viability and invasion of OCCC through activation of ARID1A by sponging miR-31-5p.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong-Mei Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ka-Na Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nian Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Qi X, Lin Y, Chen J, Shen B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief Bioinform 2021; 21:441-457. [PMID: 30715152 DOI: 10.1093/bib/bbz006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 02/05/2023] Open
Abstract
Crosstalk between competing endogenous RNAs (ceRNAs) is mediated by shared microRNAs (miRNAs) and plays important roles both in normal physiology and tumorigenesis; thus, it is attractive for systems-level decoding of gene regulation. As ceRNA networks link the function of miRNAs with that of transcripts sharing the same miRNA response elements (MREs), e.g. pseudogenes, competing mRNAs, long non-coding RNAs, and circular RNAs, the perturbation of crucial interactions in ceRNA networks may contribute to carcinogenesis by affecting the balance of cellular regulatory system. Therefore, discovering biomarkers that indicate cancer initiation, development, and/or therapeutic responses via reconstructing and analyzing ceRNA networks is of clinical significance. In this review, the regulatory function of ceRNAs in cancer and crucial determinants of ceRNA crosstalk are firstly discussed to gain a global understanding of ceRNA-mediated carcinogenesis. Then, computational and experimental approaches for ceRNA network reconstruction and ceRNA validation, respectively, are described from a systems biology perspective. We focus on strategies for biomarker identification based on analyzing ceRNA networks and highlight the translational applications of ceRNA biomarkers for cancer management. This article will shed light on the significance of miRNA-mediated ceRNA interactions and provide important clues for discovering ceRNA network-based biomarker in cancer biology, thereby accelerating the pace of precision medicine and healthcare for cancer patients.
Collapse
Affiliation(s)
- Xin Qi
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Xie W, Sun H, Li X, Lin F, Wang Z, Wang X. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int 2021; 21:434. [PMID: 34404407 PMCID: PMC8369623 DOI: 10.1186/s12935-021-02136-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 03/05/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. OC is associated with the activation of oncogenes, the inactivation of tumor suppressor genes, and the activation of abnormal cell signaling pathways. Moreover, epigenetic processes have been found to play an important role in OC tumorigenesis. Epigenetic processes do not change DNA sequences but regulate gene expression through DNA methylation, histone modification, and non-coding RNA. This review comprehensively considers the importance of epigenetics in OC, with a focus on microRNA and long non-coding RNA. These types of RNA are promising molecular markers and therapeutic targets that may support precision medicine in OC. DNA methylation inhibitors and histone deacetylase inhibitors may be useful for such targeting, with a possible novel approach combining these two therapies. Currently, the clinical application of such epigenetic approaches is limited by multiple obstacles, including the heterogeneity of OC, insufficient sample sizes in reported studies, and non-optimized methods for detecting potential tumor markers. Nonetheless, the application of epigenetic approaches to OC patient diagnosis, treatment, and prognosis is a promising area for future clinical investigation.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feikai Lin
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
15
|
Xin X, Li Q, Fang J, Zhao T. LncRNA HOTAIR: A Potential Prognostic Factor and Therapeutic Target in Human Cancers. Front Oncol 2021; 11:679244. [PMID: 34367966 PMCID: PMC8340021 DOI: 10.3389/fonc.2021.679244] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory function on transcription, can repress gene expression by recruiting chromatin modifiers. HOTAIR is an oncogenic lncRNA, and numerous studies have determined that HOTAIR is highly upregulated in a wide variety of human cancers. In this review, we briefly summarize the impact of lncRNA HOTAIR expression and functions on different human solid tumors, and emphasize the potential of HOTAIR on tumor prognosis and therapy. Here, we review the recent studies that highlight the prognostic potential of HOTAIR in drug resistance and survival, and the progress of therapies developed to target HOTAIR to date. Furthermore, targeting HOTAIR results in the suppression of HOTAIR expression or function. Thus, HOTAIR knockdown exhibits great therapeutic potential in various cancers, indicating that targeting lncRNA HOTAIR may serve as a promising strategy for cancer therapy. We also propose that preclinical studies involving HOTAIR are required to provide a better understanding of the exact molecular mechanisms underlying the dysregulation of its expression and function in different human cancers and to explore effective methods of targeting HOTAIR and engineering efficient and targeted drug delivery methods in vivo.
Collapse
Affiliation(s)
- Xiaoru Xin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qianan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
16
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
17
|
Deciphering the Long Non-Coding RNAs and MicroRNAs Coregulation Networks in Ovarian Cancer Development: An Overview. Cells 2021; 10:cells10061407. [PMID: 34204094 PMCID: PMC8227049 DOI: 10.3390/cells10061407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are emergent elements from the genome, which do not encode for proteins but have relevant cellular functions impacting almost all the physiological processes occurring in eukaryotic cells. In particular, microRNAs and long non-coding RNAs (lncRNAs) are a new class of small RNAs transcribed from the genome, which modulate the expression of specific genes at transcriptional and posttranscriptional levels, thus adding a new regulatory layer in the flux of genetic information. In cancer cells, the miRNAs and lncRNAs interactions with its target genes and functional pathways are deregulated as a consequence of epigenetic and genetic alterations occurring during tumorigenesis. In this review, we summarize the actual knowledge on the interplay of lncRNAs with its cognate miRNAs and mRNAs pairs, which interact in coregulatory networks with a particular emphasis on the mechanisms underlying its oncogenic behavior in ovarian cancer. Specifically, we reviewed here the evidences unraveling the relevant roles of lncRNAs/miRNAs pairs in altered regulation of cell migration, angiogenesis, therapy resistance, and Warburg effect. Finally, we also discussed its potential clinical implications in ovarian cancer and related endocrine disease therapies.
Collapse
|
18
|
Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer. Front Cell Dev Biol 2021; 9:641963. [PMID: 33996797 PMCID: PMC8117355 DOI: 10.3389/fcell.2021.641963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
19
|
Cantile M, Di Bonito M, Tracey De Bellis M, Botti G. Functional Interaction among lncRNA HOTAIR and MicroRNAs in Cancer and Other Human Diseases. Cancers (Basel) 2021; 13:cancers13030570. [PMID: 33540611 PMCID: PMC7867281 DOI: 10.3390/cancers13030570] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review aimed to describe the contribution of functional interaction between the lncRNA HOTAIR and microRNAs in human diseases, including cancer. HOTAIR/miRNAs complexes interfere with different cellular processes during carcinogenesis, mainly deregulating a series of oncogenic signaling pathways. A great number of ncRNAs-related databases have been established, supported by bioinformatics technologies, to identify the ncRNA-mediated sponge regulatory network. These approaches need experimental validation through cells and animal models studies. The optimization of systems to interfere with HOTAIR/miRNAs interplay could represent a new tool for the definition of diagnostic therapeutics in cancer patients. Abstract LncRNAs are a class of non-coding RNAs mostly involved in regulation of cancer initiation, metastatic progression, and drug resistance, through participation in post-transcription regulatory processes by interacting with different miRNAs. LncRNAs are able to compete with endogenous RNAs by binding and sequestering miRNAs and thereby regulating the expression of their target genes, often represented by oncogenes. The lncRNA HOX transcript antisense RNA (HOTAIR) represents a diagnostic, prognostic, and predictive biomarker in many human cancers, and its functional interaction with miRNAs has been described as crucial in the modulation of different cellular processes during cancer development. The aim of this review is to highlight the relation between lncRNA HOTAIR and different microRNAs in human diseases, discussing the contribution of these functional interactions, especially in cancer development and progression.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-590-3471; Fax: +39-081-590-3718
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy;
| | - Maura Tracey De Bellis
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.T.D.B.); (G.B.)
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.T.D.B.); (G.B.)
| |
Collapse
|
20
|
Bhardwaj V, Tan YQ, Wu MM, Ma L, Zhu T, Lobie PE, Pandey V. Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Lett 2021; 502:97-107. [PMID: 33429007 DOI: 10.1016/j.canlet.2020.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/09/2023]
Abstract
Nearly 70% of ovarian cancer (OC) patients experience recurrence within the first 2 years after initial treatment. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a pivotal role in the pathogenesis of OC progression, resistance to therapy and recurrent OC (ROC). Transcriptome profiling studies have reported differential expression patterns of lncRNAs in OC which are related to increased cell invasion, metastasis and drug resistance. In this review, we highlighted the roles of lncRNAs in OC progression and outlined the potential molecular mechanisms by which lncRNAs impact on ROC. Recent advances using lncRNAs as potential biomarkers for screening, detection, prediction, response to therapy and as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ming Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
21
|
Identification of the 3-lncRNA Signature as a Prognostic Biomarker for Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21249359. [PMID: 33302562 PMCID: PMC7764807 DOI: 10.3390/ijms21249359] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas in the world, and metastasis is the main cause of CRC-related death. However, the molecular network involved in CRC metastasis remains poorly understood. Long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and may act as a competing endogenous RNA (ceRNA) to affect the expression of mRNA by suppressing miRNA function. In this study, we identified 628 mRNAs, 144 lncRNAs, and 25 miRNAs that are differentially expressed (DE) in metastatic CRC patients compared with nonmetastatic CRC patients from the Cancer Genome Atlas (TCGA) database. Functional enrichment analyses confirmed that the identified DE mRNAs are extensively involved in CRC tumorigenesis and migration. By bioinformatics analysis, we constructed a metastasis-associated ceRNA network for CRC that includes 28 mRNAs, 12 lncRNAs, and 15 miRNAs. We then performed multivariate Cox regression analysis on the ceRNA-related DE lncRNAs and identified a 3-lncRNA signature (LINC00114, LINC00261, and HOTAIR) with the greatest prognostic value for CRC. Clinical feature analysis and functional enrichment analysis further proved that these three lncRNAs are involved in CRC tumorigenesis. Finally, we used Transwell, Cell Counting Kit (CCK)-8, and colony formation assays to clarify that the inhibition of LINC00114 promotes the migratory, invasive, and proliferative abilities of CRC cells. The results of the luciferase assay suggest that LINC00114 is the direct target of miR-135a, which also verified the ceRNA network. In summary, this study provides a metastasis-associated ceRNA network for CRC and suggests that the 3-lncRNA signature may be a useful candidate for the diagnosis and prognosis of CRC.
Collapse
|
22
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
23
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M. HOX transcript antisense RNA: An oncogenic lncRNA in diverse malignancies. Exp Mol Pathol 2020; 118:104578. [PMID: 33238156 DOI: 10.1016/j.yexmp.2020.104578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
HOX transcript antisense RNA (HOTAIR) is a transcript produced from the antisense strand of the HOXC gene cluster and influencing expression of genes from the HOXD locus. HOTAIR has prominent roles in different aspects of carcinogenic process from cancer initiation to metastasis. A number of in vitro, in vivo and human investigations have confirmed the oncogenic impacts of HOTAIR. The diagnostic power of HOTAIR in distinguishing cancer status from healthy status has been optimal in gastric cancer, pancreatic adenocarcinoma and colorectal cancer. The most important achievement in this regard has been provided by studies that verified diagnostic value of this lncRNA in the serum samples, potentiating its application in non-invasive diagnosis of cancer. Moreover, HOTAIR has a crucial role in determination of response of cancer cells to therapeutic modalities. The current review aims to explain the outlines of these studies to emphasize its potential as a biomarker and therapeutic target for these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Long Noncoding RNA HOTAIR Functions as a Competitive Endogenous RNA to Regulate Connexin43 Remodeling in Atrial Fibrillation by Sponging MicroRNA-613. Cardiovasc Ther 2020; 2020:5925342. [PMID: 33294032 PMCID: PMC7688347 DOI: 10.1155/2020/5925342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
Several studies have indicated that long noncoding RNAs (lncRNAs)-HOX transcript antisense RNA (HOTAIR) is involved in some cardiovascular diseases by regulating gene expression as a competitive endogenous RNA (ceRNA). GJA1 encoding Cx43 is one potential target gene of microRNA-613 (miR-613). Meanwhile, there is a potential target regulatory relationship between HOTAIR and miR-613. The present study is aimed at investigating whether HOTAIR functions as a ceRNA to regulate the Cx43 expression in atrial fibrillation (AF) by sponging miR-613. The expressions of HOTAIR, miR-613, and Cx43 were detected in the right atrial appendages of 45 patients with heart valve disease, including 23 patients with chronic AF. The HOTAIR overexpressed and underexpressed HL-1 cell model were constructed to confirm the effect of HOTAIR on Cx43. Then, the Cx43 expression was detected to testify the interplay between HOTAIR and miR-613 after cotransfecting HOTAIR and miR-613. Furthermore, luciferase assays were performed to verify that HOTAIR could regulate Cx43 remolding as a ceRNA by sponging miR-613. The expression of HOTAIR and Cx43 was significantly downregulated in chronic AF group. HOTAIR regulated positively the Cx43 expression in HL-1 cells. The upregulated effect of HOTAIR on the Cx43 expression could be remarkably attenuated by miR-613. Moreover, the inhibitory effect of miR-613 on the Cx43 expression could be obviously mitigated by HOTAIR. At last, luciferase assays confirmed HOTAIR functioned as a ceRNA in the Cx43 expression by sponging miR-613. Our study suggests that HOTAIR, functioning as a ceRNA by sponging miR-613, is an important contributor to Cx43 remolding in AF.
Collapse
|
25
|
Teng L, Liu P, Song X, Wang H, Sun J, Yin Z. Long Non-Coding RNA Nuclear-Enriched Abundant Transcript 1 (NEAT1) Represses Proliferation of Trophoblast Cells in Rats with Preeclampsia via the MicroRNA-373/FLT1 Axis. Med Sci Monit 2020; 26:e927305. [PMID: 33093438 PMCID: PMC7590520 DOI: 10.12659/msm.927305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Preeclampsia (PE) remains one of the primary causes of maternal morbidity and mortality worldwide. This study was designed to investigate the relevance of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and downstream molecules in trophoblast cell proliferation and apoptosis. Material/Methods NEAT1 expression in the placental tissues of rats with PE was analyzed by reverse transcriptionquantitative polymerase chain reaction. The role of NEAT in trophoblast cell proliferation, migration, invasion, and apoptosis was assessed by transfecting pcDNA-NEAT1 and siRNA-NEAT1 into trophoblast cells. The microRNA (miRNA) binding to NEAT1 and the genes targeted by the screened miRNAs were predicted by Starbase, and the mechanism of action of NEAT1 in PE was further investigated. Results The expression of NEAT1 lncRNA was markedly higher in placental samples of PE than control rats. Ectopic expression of NEAT1 repressed trophoblast cell proliferation, migration, invasion, and colony formation, but facilitated cell apoptosis, whereas NEAT1 downregulation resulted in the opposite effects. NEAT1 was found to act as a molecular sponge for miR-373, regulating Fms-like tyrosine kinase-1 (FLT-1) to modulate PE development. Conclusions NEAT1 may contribute to PE development by regulating trophoblast cell proliferation and apoptosis. These findings may provide a new perspective for understanding the etiology and pathogenesis of PE.
Collapse
Affiliation(s)
- Lingling Teng
- Department of Obstetrics, Liaocheng Second People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Pingping Liu
- Department of Clinical Laboratory, Qingdao Sixth People's Hospital, Qingdao, Shandong, China (mainland)
| | - Xiao Song
- Department of Clinical Laboratory Medicine, Chiping County People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Hui Wang
- Department of Pathology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, Shandong, China (mainland)
| | - Jing Sun
- Department of Neonatology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhongxia Yin
- Department of High Risk Obstetrics, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, Shandong, China (mainland)
| |
Collapse
|
26
|
An amplification-free method for the detection of HOTAIR long non-coding RNA. Anal Chim Acta 2020; 1132:66-73. [DOI: 10.1016/j.aca.2020.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
|
27
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
28
|
Sabet M, Sharifi M, Heidari M, kazemi M, Babaei N. Degradation of HOX Transcript Antisense RNA Provoked Apoptosis and Necrosis in Human Ovarian Cancer Cells. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2020. [DOI: 10.1007/s40944-020-00384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ghafouri-Fard S, Esmaeili M, Shoorei H, Taheri M. A comprehensive review of the role of long non-coding RNAs in organs with an endocrine function. Biomed Pharmacother 2020; 125:110027. [PMID: 32106365 DOI: 10.1016/j.biopha.2020.110027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with sizes larger than 200 nucleotides and no/ small open reading frame that cannot produce functional proteins. The number of these transcripts surpasses the number of coding genes. LncRNAs regulate many aspects of cell functions such as proliferation, cell cycle transition and differentiation; so their dysregulation has pervasive effects on cell phenotype. Increasing numbers of these transcripts have been shown to participate in the pathogenesis of cancer. In the current review, we summarize recent findings regarding the role of lncRNAs in tumors originated from organs which have an endocrine function. We mostly focused on adrenal, pancreas and pituitary gland as prototypes of these organs. Moreover, we presented the obtained data of the role of lncRNAs in prostate, ovarian and testicular cancers. Recent data highly supports the role of lncRNAs in the pathogenesis of cancers originated from these organs. Moreover, certain genomic loci within lncRNAs have been shown to be associated with risk of these cancers. Diagnostic and prognostic role of some lncRNAs in these cancers have been evaluated recently. Taken together, lncRNAs are putative biomarkers for cancers originated from organs which have an endocrine function.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadhosein Esmaeili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Ye Z, Duan J, Wang L, Ji Y, Qiao B. LncRNA-LET inhibits cell growth of clear cell renal cell carcinoma by regulating miR-373-3p. Cancer Cell Int 2019; 19:311. [PMID: 31768131 PMCID: PMC6873579 DOI: 10.1186/s12935-019-1008-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with a poor prognosis. LncRNA-LET is a long non-coding RNA (lncRNA) that is down-regulated in ccRCC tissues. However, its role in ccRCC development and progress is unclear. Methods LncRNA-LET expression was detected in ccRCC tissues and ccRCC cells using quantitative real-time PCR. The overexpression and knockdown experiments were performed in ccRCC cells and xenograft mouse model to evaluate role of lncRNA-LET. Cell cycle, apoptosis and JC-1 assays were conducted via flow cytometer. The protein levels were measured through western blot analysis and the interaction between lncRNA-LET and miR-373-3p was identified via luciferase reporter assay. Results LncRNA-LET expression was lower in ccRCC tissues than that in the matched adjacent non-tumor tissues (n = 16). In vitro, lncRNA-LET overexpression induced cell cycle arrest, promoted apoptosis and impaired mitochondrial membrane potential, whereas its knockdown exerted opposite effects. Moreover, we noted that lncRNA-LET may act as a target for oncomiR miR-373-3p. In contrast to lncRNA-LET, miR-373-3p expression was higher in ccRCC tissues. The binding between lncRNA-LET and miR-373-3p was validated. Two downstream targets of miR-373-3p, Dickkopf-1 (DKK1) and tissue inhibitor of metalloproteinase-2 (TIMP2), were positively regulated by lncRNA-LET in ccRCC cells. MiR-373-3p mimics reduced lncRNA-LET-induced up-regulation of DKK1 and TIMP2 levels, and attenuated lncRNA-LET-mediated anti-tumor effects in ccRCC cells. In vivo, lncRNA-LET suppressed the growth of ccRCC xenograft tumors. Conclusion These findings indicate that lncRNA-LET plays a tumor suppressive role in ccRCC by regulating miR-373-3p.
Collapse
Affiliation(s)
- Zhuo Ye
- 1Department of Urology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052 People's Republic of China
| | - Jiachen Duan
- 1Department of Urology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052 People's Republic of China
| | - Lihui Wang
- 1Department of Urology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052 People's Republic of China
| | - Yanli Ji
- 2Department of Pathology and Pathophysiology, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001 People's Republic of China
| | - Baoping Qiao
- 1Department of Urology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052 People's Republic of China
| |
Collapse
|
31
|
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E, Avendaño-Félix M, Silva-Benítez E, López-Camarillo C, Ramos-Payán R. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Front Oncol 2019; 9:1008. [PMID: 31632922 PMCID: PMC6783611 DOI: 10.3389/fonc.2019.01008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with 1. 8 million cases in 2018. Autophagy helps to maintain an adequate cancer microenvironment in order to provide nutritional supplement under adverse conditions such as starvation and hypoxia. Additionally, most of the cases of CRC are unresponsive to chemotherapy, representing a significant challenge for cancer therapy. Recently, autophagy induced by therapy has been shown as a unique mechanism of resistance to anticancer drugs. In this regard, long non-coding RNAs (lncRNAs) analysis are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. With increasing development of quantitative detection techniques, lncRNAs derived from patients' non-invasive samples (i.e., blood, stools, and urine) has become into a novel approach in precision oncology. Tumorspecific GAS5, HOTAIR, H19, and MALAT are novels CRC related lncRNAs detected in patients. Nonetheless, the effect and mechanism of lncRNAs in cancer autophagy and chemoresistance have not been extensively characterized. Chemoresistance and autophagy are relevant for cancer treatment and lncRNAs play a pivotal role in resistance acquisition for several drugs. LncRNAs such as HAGLROS, KCNQ1OT1, and H19 are examples of lncRNAs related to chemoresistance leaded by autophagy. Finally, clinical implications of lncRNAs in CRC are relevant, since they have been associated with tumor differentiation, tumor size, histological grade, histological types, Dukes staging, degree of differentiation, lymph node metastasis, distant metastasis, recurrent free survival, and overall survival (OS).
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
32
|
Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF, Zhang XL. lncRNA ADAMTS9-AS2 Controls Human Mesenchymal Stem Cell Chondrogenic Differentiation and Functions as a ceRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:533-545. [PMID: 31671346 PMCID: PMC6838486 DOI: 10.1016/j.omtn.2019.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators of cell differentiation and development. However, potential roles for lncRNAs in chondrogenic differentiation have remained poorly understood. Here we identify lncRNA ADAMTS9 antisense RNA 2, ADAMTS9-AS2, which controls the chondrogenic differentiation by acting as a competing endogenous RNA (ceRNA) in human mesenchymal stem cells (hMSCs). We screen out ADAMTS9-AS2 of undifferentiated and differentiated cells during chondrogenic differentiation by microarrays. Suppression or overexpression of lncRNA ADAMTS9-AS2 correlates with inhibition and promotion of hMSC chondrogenic differentiation, respectively. We find that ADAMTS9-AS2 can sponge miR-942-5p to regulate the expression of Scrg1, a transcription factor promoting chondrogenic gene expression. Finally, we confirm the function of ADAMTS9-AS2 to cartilage repair in the absence of transforming growth factor β (TGF-β) in vivo. In conclusion, ADAMTS9-AS2 plays an important role in chondrogenic differentiation as a ceRNA, so that it can be regarded as a therapy target for cartilage repair.
Collapse
Affiliation(s)
- Ming-Jian Huang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing-Yu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jia-Jia Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jing Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yi-Fu Zhuang
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 201999, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
33
|
Cao H, Qi H, Liu Z, Peng WJ, Guo CY, Sun YY, Pao C, Xiang YT, Zhang L. CeRNA network analysis and functional enrichment of salt sensitivity of blood pressure by weighted-gene co-expression analysis. PeerJ 2019; 7:e7534. [PMID: 31565555 PMCID: PMC6746216 DOI: 10.7717/peerj.7534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. The pathogenic mechanisms of SSBP are still uncertain. This study aimed to construct the co-regulatory network of SSBP and data mining strategy based on the competitive endogenous RNA (ceRNA) theory. Methods LncRNA and mRNA microarray was performed to screen for candidate RNAs. Four criteria were used to select the potential differently expressed RNAs. The weighted correlation network analysis (WGCNA) package of R software and target miRNA and mRNA prediction online databases were used to construct the ceRNA co-regulatory network and discover the pathways related to SSBP. Gene ontology enrichment, gene set enrichment analysis (GSEA) and KEGG pathway analysis were performed to explore the functions of hub genes in networks. Results There were 274 lncRNAs and 36 mRNAs that differently expressed between salt-sensitive and salt-resistant groups (P < 0.05). Using WGCNA analysis, two modules were identified (blue and turquoise). The blue module had a positive relationship with salt-sensitivity (R = 0.7, P < 0.01), high-density lipoprotein (HDL) (R = 0.53, P = 0.02), and total cholesterol (TC) (R = 0.55, P = 0.01). The turquoise module was positively related with triglyceride (TG) (R = 0.8, P < 0.01) and low-density lipoprotein (LDL) (R = 0.54, P = 0.01). Furthermore, 84 ceRNA loops were identified and one loop may be of great importance for involving in pathogenesis of SSBP. KEGG analysis showed that differently expressed mRNAs were mostly enriched in the SSBP-related pathways. However, the enrichment results of GSEA were mainly focused on basic physical metabolic processes. Conclusion The microarray data mining process based on WGCNA co-expression analysis had identified 84 ceRNA loops that closely related with known SSBP pathogenesis. The results of our study provide implications for further understanding of the pathogenesis of SSBP and facilitate the precise diagnosis and therapeutics.
Collapse
Affiliation(s)
- Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Qi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Zheng Liu
- Science Department, Peking University People's Hospital, Beijing, China
| | - Wen-Juan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chun-Yue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yan-Yan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Christine Pao
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yu-Tao Xiang
- Unit of Psychiatry, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
34
|
Overexpression of long noncoding RNA HOXB-AS3 indicates an unfavorable prognosis and promotes tumorigenesis in epithelial ovarian cancer via Wnt/β-catenin signaling pathway. Biosci Rep 2019; 39:BSR20190906. [PMID: 31337688 PMCID: PMC6680375 DOI: 10.1042/bsr20190906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 01/12/2023] Open
Abstract
Long noncoding RNA HOXB cluster antisense RNA 3 (HOXB-AS3) has been reported to be dysregulated in several tumors. The present study mainly aims at the investigation in how HOXB-AS3 works in epithelial ovarian cancer (EOC) and to elucidate the mechanism involved. Initially, 'GEPIA' was mined to examine the differential expression levels and prognostic value of HOXB-AS3 in EOC patients. The expression of HOXB-AS3 in EOC cell lines and patient specimens was examined with quantitative RT-PCR. Simultaneously, the correlation of HOXB-AS3 expression with a variety of clinicopathological factors and patient survival was analyzed. MTT, colony formation and flow cytometry assays were performed to analyze the cell viability of EOC cells. Wound healing and Transwell assays were carried out to determine EOC cells' capability of migrating and invading. The impact of HOXB-AS3 on EMT and Wnt/β-catenin signaling was explored with the approach of Western blot. We found that in both EOC cell lines and tissues, HOXB-AS3 expression was significantly up-regulated, and its high expression was an independent prognostic marker of poor outcome for EOC patients. In vitro loss-of-function assays revealed that HOXB-AS3 knockdown inhibited EOC cells proliferation, migration, invasion and EMT, and induced EOC cells' apoptosis. Furthermore, we validated that down-regulated HOXB-AS3 attenuated the activity of Wnt/β-catenin signaling to suppress the invasion, migration and proliferation of EOC cells. To sum up, the present study came up with the conclusion that HOXB-AS3 acts as an oncogenic gene in EOC progression through HOXB-AS3-Wnt/β-catenin signaling regulation, providing a novel insight into EOC tumorigenesis.
Collapse
|
35
|
Li T, Qin Y, Zhen Z, Shen H, Cong T, Schiferle E, Xiao S. Long non-coding RNA HOTAIR/microRNA-206 sponge regulates STC2 and further influences cell biological functions in head and neck squamous cell carcinoma. Cell Prolif 2019; 52:e12651. [PMID: 31297902 PMCID: PMC6797510 DOI: 10.1111/cpr.12651] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Objective It is essential to characterize underlying molecular mechanism associated with head and neck squamous cell carcinoma (HNSCC) and identify promising therapeutic targets. Herein, we explored role of homeobox transcript antisense RNA (HOTAIR) in HNSCC to regulate stanniocalcin‐2 (STC2) by sponging microRNA‐206 (miR‐206). Methods HNSCC‐related differentially expressed genes and regulation network amongst HOTAIR, miR‐206 and STC2 were identified. Next, effect of HOTAIR on cell biological functions of HNSCC was identified after transfection of cells with HOTAIR overexpressed plasmids or siRNA against HOTAIR. PI3K/AKT signalling pathway‐related gene expression was measured after miR‐206 and STC2 were suppressed. Cell invasion, migration and proliferation were assessed. Finally, tumour growth was assessed to determine the effects of HOTAIR/miR‐206/STC2 axis in vivo. Results HOTAIR specifically bound to miR‐206 and miR‐206 targeted STC2. Downregulated HOTAIR or upregulated miR‐206 suppressed HNSCC cell proliferation, invasion and migration. miR‐206 inhibited PI3K/AKT signalling pathway by down‐regulating STC2. Besides, silenced HOTAIR or overexpressed miR‐206 repressed the tumour growth of nude mice with HNSCC. Conclusion HOTAIR regulated HNSCC cell biological functions by binding to miR‐206 through STC2.
Collapse
Affiliation(s)
- Tiancheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yao Qin
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zhen Zhen
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Hong Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Tiechuan Cong
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Erik Schiferle
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuifang Xiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
36
|
HOTAIR as a Prognostic Predictor for Diverse Human Cancers: A Meta- and Bioinformatics Analysis. Cancers (Basel) 2019; 11:cancers11060778. [PMID: 31195674 PMCID: PMC6628152 DOI: 10.3390/cancers11060778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies suggest that upregulated expression of the long non-coding RNA HOX transcript antisense RNA (HOTAIR) is a negative predictive biomarker for numerous cancers. Herein, we performed a meta-analysis to further investigate the prognostic value of HOTAIR expression in diverse human cancers. To this end, a systematic literature review was conducted in order to select scientific studies relevant to the association between HOTAIR expression and clinical outcomes, including overall survival (OS), recurrence-free survival (RFS)/disease-free survival (DFS), and progression-free survival (PFS)/metastasis-free survival (MFS) of cancer patients. Collectively, 53 eligible studies including a total of 4873 patients were enrolled in the current meta-analysis. Pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were calculated to assess the relationship between HOTAIR and cancer patients’ survival. Elevated HOTAIR expression was found to be significantly associated with OS, RFS/DFS and PFS/MFS in diverse types of cancers. These findings were also corroborated by the results of bioinformatics analysis on overall survival. Therefore, based on our findings, HOTAIR could serve as a potential biomarker for the prediction of cancer patient survival in many different types of human cancers.
Collapse
|
37
|
Gao H, Li X, Zhan G, Zhu Y, Yu J, Wang J, Li L, Wu W, Liu N, Guo X. Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle 2019; 18:1393-1406. [PMID: 31122127 PMCID: PMC6592227 DOI: 10.1080/15384101.2019.1618121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, and its vulnerability to metastasis contributes to the poor outcomes of EOC patients. Long noncoding RNAs (lncRNAs) were verified to play a pivotal role in EOC metastasis. However, the potential role of lncRNA membrane-associated guanylate kinase inverted 1 (MAGI1) intronic transcript (MAGI1-IT1) in EOC is largely unknown. In this study, the function and mechanisms of MAGI1-IT1 in EOC metastasis were explored profoundly. First, MAGI1-IT1 expression was found to be significantly decreased in overexpressing miR-200a EOC cells. Second, MAGI1-IT1 expression was remarkably increased in metastatic EOC tissues, and high MAGI1-IT1 was dramatically associated with EOC FIGO III-IV stage; in addition, MAGI1-IT1 might be related to EOC dissemination via epithelial-mesenchymal transition (EMT). Next, a series of gain- and loss-of-function assays verified that, although MAGI1-IT1 has no significant role in EOC proliferation and subcutaneous xenograft growth, the upregulation of MAGI1-IT1 can remarkably facilitate EOC EMT phenotype, cells migration and invasion ability and intraperitoneal metastasis in nude mice, while downregulation of MAGI1-IT1 led to the opposite effect in vitro. Moreover, MAGI1-IT1 was validated to promote EOC metastasis through upregulation of ZEB1 and ZEB2 by competitively binding miR-200a, and the restrictive effects of MAGI1-IT1 depletion on EOC metastasis could be reversed by inhibition of miR-200a and upregulation of ZEB1 and ZEB2. Collectively, these results suggest that MAGI1-IT1 may work as a ceRNA in promoting EOC metastasis through miR-200a and ZEB1/2 and may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Hao Gao
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- b Department of Obstetrics and Gynecology , Central Theater of the Chinese PLA , Wuhan , China
| | - Jing Yu
- c Department of Pathology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Jiapo Wang
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Li Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Weimin Wu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
38
|
Zeng XY, Xie H, Yuan J, Jiang XY, Yong JH, Zeng D, Dou YY, Xiao SS. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol Ther 2019; 20:956-966. [PMID: 31062668 PMCID: PMC6606001 DOI: 10.1080/15384047.2018.1564567] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian cancer (OC) is the gynecologic malignant tumor with high mortality. Accumulating evidence indicates that M2-like tumor-associated macrophages (TAMs) can secret EGF to participate in ovarian cancer growth, migration, and metastasis. An EGF-downregulated lncRNA, LIMT (lncRNA inhibiting metastasis), was identified as a critical regulator of mammary cell migration and invasion. Nevertheless, whether EGF secreted from M2-like TAMs regulates LIMT expression in ovarian cancer progression remains largely unknown. Methods: The human OC cell lines OV90 and OVCA429 were recruited in this study. The differentiation of the human monocyte cell line THP-1 into M2-like TAMs was confirmed using flow cytometry within the application of phorbol 12-myristate 13-acetate (PMA). ELISA was performed to detect EGF concentration in co-culture system of M2-like TAMs and OC cell lines. Moreover, CCK-8, flow cytometry and immunofluorescence staining of Ki67 were performed to assess the capacity of cell proliferation. Besides, cell migration and invasion were determined by wound healing and transwell assays. Furthermore, the expression levels of epithelial-mesenchymal transition (EMT) markers and EGFR/ERK signals were analyzed by qRT-PCR and western blot. Female athymic nude mice (8-12 weeks of age; n = 8 for each group) were recruited for in vivo study. Results: In the present study, THP-1 cells exhibited the phenotype markers of M2-like TAMs with low proportion of CD14+ marker and high proportion of CD68+, CD204+, CD206+ markers within the application of PMA. After co-culturing with M2-like TAMs, EGF concentration in the supernatants was significantly increased in a time-dependent manner. Besides, OC cells presented better cell viability, higher cell proliferation, and stronger migration and invasion. The expression of EMT-related markers N-cadherin, Vimentin and EGFR/ERK signals were markedly up-regulated, while E-cadherin was significantly decreased. However, these effects induced by co-culture system were reversed by the application of AG1478 (an EGFR inhibitor) or LIMT overexpression. Furthermore, the endogenous expression of LIMT was decreased in OC cell lines compared with the control group. Also, the in vivo experiments verified that the inhibition of EGFR signaling by AG1478 or overexpression of LIMT effectively repressed the tumor growth. Conclusion: Taken together, we demonstrated that EGF secreted by M2-like TAMs might suppress LIMT expression via activating EGFR-ERK signaling pathway to promote the progression of OC.
Collapse
Affiliation(s)
- Xiang-Yang Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Hui Xie
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jing Yuan
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiao-Yan Jiang
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia-Hui Yong
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Da Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ying-Yu Dou
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Song-Shu Xiao
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
39
|
Zeng S, Liu S, Feng J, Gao J, Xue F. Upregulation of lncRNA AB073614 functions as a predictor of epithelial ovarian cancer prognosis and promotes tumor growth in vitro and in vivo. Cancer Biomark 2019; 24:421-428. [PMID: 30909184 DOI: 10.3233/cbm-182160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saitian Zeng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, China
| | - Shikai Liu
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, China
| | - Jing Feng
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, China
| | - Jiefan Gao
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
40
|
Abstract
Biomarker-driven personalized cancer therapy is a field of growing interest, and several molecular tests have been developed to detect biomarkers that predict, e.g., response of cancers to particular therapies. Identification of these molecules and understanding their molecular mechanisms is important for cancer prognosis and the development of therapeutics for late stage diseases. In the past, significant efforts have been placed on the discovery of protein or DNA-based biomarkers while only recently the class of long non-coding RNA (lncRNA) has emerged as a new category of biomarker. The mammalian genome is pervasively transcribed yielding a vast amount of non-protein-coding RNAs including lncRNAs. Hence, these transcripts represent a rich source of information that has the potential to significantly contribute to precision medicine in the future. Importantly, many lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we will highlight prime examples of lncRNAs that serve as marker for cancer progression or therapy response and which might represent promising therapeutic targets. Furthermore, we will introduce lncRNA targeting tools and strategies, and we will discuss potential pitfalls in translating these into clinical trials.
Collapse
|
41
|
HULC functions as an oncogene in ovarian carcinoma cells by negatively modulating miR-125a-3p. J Physiol Biochem 2019; 75:163-171. [PMID: 30863948 DOI: 10.1007/s13105-019-00669-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
Abstract
The aberrant expression of highly upregulated in liver cancer (HULC) has been reported to participate in ovarian cancer development. A recent research has revealed that HULC-modulated microRNAs (miRNAs) in tumorigenesis. To confirm the functions of HULC on tumorigenesis of ovarian, we explored the effects of HULC expression on ovarian cancer cell development, as well as the underlying mechanism. We transfected SKOV3 cells with pEX-HULC, sh-HULC, and miR-125a-3p mimic as well as their corresponding negative controls (pEX-3, sh-NC, and NC) to alter the expression of HULC and miR-125a-3p, which were analyzed by quantitative reverse transcription PCR (qRT-PCR). Expression of proteins associated with cell cycle, apoptosis, and signaling pathways was determined by Western blot assay. The proliferation, apoptosis, migration, and invasion were explored by bromodeoxyuridine (BrdU) incorporation assay, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) method, and transwell migration and invasion assays, respectively. HULC overexpression promoted proliferation, migration, and invasion, while inhibited apoptosis of SKOV3 cells. In addition, HULC negatively regulated the expression of miR-125a-3p. Besides, miR-125a-3p mimic reversed the effects of HULC on proliferation, migration, and invasion as well as apoptosis of SKOV3 cells. Moreover, we found that HULC enhanced phosphorylated expression of regulatory factors in phosphatidylinositol 3 kinase/protein kinase B/mammalian targets of rapamycin (PI3K/AKT/mTOR) signaling pathway by downregulating expression of miR-125a-3p. Overexpression of HULC promoted ovarian carcinoma development by activating PI3K/AKT/mTOR signaling pathway via downregulating miR-125a-3p.
Collapse
|
42
|
Pan S, Liu Y, Liu Q, Xiao Y, Liu B, Ren X, Qi X, Zhou H, Zeng C, Jia L. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:750-760. [PMID: 30742932 DOI: 10.1016/j.bbamcr.2019.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/20/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of death in colorectal cancer (CRC) patients. Aberrant fucosylation, catalyzed by the specific fucosyltransferases (FUTs), is associated with malignant behaviors. Non-conding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), emerge as key molecules in cancer malignancy. The aim of this study was to investigate HOTAIR/miR-326/FUT6 axis modified fucosylation on sLeX-CD44 (HCELL), which served as E-selectin ligand during CRC progression. Higher levels of HOTAIR and FUT6 were verified in CRC tissues and cell lines, with a positive correlation. HOTAIR was associated with poor clinical prognosis of CRC. Altered HOTAIR levels influenced proliferation, aggressiveness, apoptosis and tumorigenesis of CRC cells. HOTAIR directly harbored miR-326 binding sites and regulated FUT6 expression. Further results corroborated that HOTAIR/miR-326/FUT6 axis modified α1, 3-fucosylation of CD44, which mediated CRC malignancy. Co-modulation of HOTAIR, miR-326 and FUT6 impacted α1, 3-fucosylated CD44, which further triggered PI3K/AKT/mTOR pathway. HOTAIR also mediated CRC tumorigenesis and liver metastasis in vivo. Thus, our findings indicated that HOTAIR/miR-326/FUT6 axis mediated CRC procession through α1, 3-fucosylated CD44 via PI3K/AKT/mTOR pathway. This work rendered new therapeutic targets for CRC.
Collapse
Affiliation(s)
- Shimeng Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yanqiu Liu
- Institute (College) Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Qianqian Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yang Xiao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xia Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Huimin Zhou
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Changqian Zeng
- Medical College, Dalian University, Dalian 116622, Liaoning Province, China.
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
43
|
Wang JY, Lu AQ, Chen LJ. LncRNAs in ovarian cancer. Clin Chim Acta 2018; 490:17-27. [PMID: 30553863 DOI: 10.1016/j.cca.2018.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is one of the most common gynecologic malignancies and has a poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators of cancer development. Studies have shown that the dysregulation of lncRNAs is frequently observed in ovarian cancer and greatly contributes to malignant phenotypical changes. In this review, we provide perspectives on the involvement of lncRNAs in the proliferation, apoptosis, cell cycle, migration, invasion, metastasis and drug resistance of ovarian cancer based on recent discoveries. Then, we discuss the role of lncRNAs in predicting the prognosis of ovarian cancer. Finally, we provide insight into the potential of lncRNAs for evaluating the diagnosis and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang 215600, Jiangsu, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ai-Qing Lu
- Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600, PR China
| | - Li-Juan Chen
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang 215600, Jiangsu, PR China.
| |
Collapse
|
44
|
Wang B, Qu XL, Liu J, Lu J, Zhou ZY. HOTAIR promotes osteosarcoma development by sponging miR-217 and targeting ZEB1. J Cell Physiol 2018; 234:6173-6181. [PMID: 30367466 DOI: 10.1002/jcp.27394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have drawn increasing attention because of the role which they play in various diseases, including osteosarcoma. So far, the function and mechanism of HOTAIR in osteosarcoma are unclear. In our study, we observed that HOTAIR was elevated accompanied with a decrease of miR-217 and an increase of ZEB1 in human osteosarcoma cells including U2OS, MG63, Saos-2, and SW1353 compared with human osteoblast cell line hFOB. In addition, the subsequent functional assay exhibited that silencing HOTAIR could significantly repress osteosarcoma cell growth, migration, invasion, and induce cell apoptosis capacity, which indicated that HOTAIR exerted an oncogenic role in osteosarcoma. Moreover, it was revealed by using bioinformatics analysis that HOTAIR can be targeted by microRNA-217 (miR-217). miR-217 has been recognized as a crucial tumor suppressive gene in cancers. We verified that mimics of miR-217 were able to suppress the osteosarcoma development. Furthermore, real-time quantitative PCR showed that HOTAIR siRNA increased miR-217 expression. Besides these, ZEB1 was identified as a downstream gene of miR-217 and we found that HOTAIR can mediate osteosarcoma progress by upregulating ZEB1 expression via acting as a competitive endogenous RNA (ceRNA) via miR-217. Taken these together, our findings in this study indicated that HOTAIR/miR-217/ZEB1 axis, as a novel research point can provide new insights into molecular mechanism of osteosarcoma development.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University, Shanghai, China
| | - Xing-Long Qu
- Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University, Shanghai, China
| | - Jiaxiang Liu
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junhui Lu
- Department of Rheumatology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Zong-Yu Zhou
- Department of Orthopedics, Huaiyin Hospital of Huai'an City, Huai'an, China
| |
Collapse
|
45
|
Xue Z, Zhu X, Teng Y. Long non‑coding RNA CASC2 inhibits progression and predicts favorable prognosis in epithelial ovarian cancer. Mol Med Rep 2018; 18:5173-5181. [PMID: 30320385 DOI: 10.3892/mmr.2018.9550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/13/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhuowei Xue
- Department of Obstetrics and Gynaecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaolu Zhu
- Department of Obstetrics and Gynaecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yincheng Teng
- Department of Obstetrics and Gynaecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
46
|
TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci Rep 2018; 38:BSR20180677. [PMID: 29967294 PMCID: PMC6167503 DOI: 10.1042/bsr20180677] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that taurine-upregulated gene 1 (TUG1) was aberrantly expressed and involved in multiple types of cancer; however, the expression profile and potential role of TUG1 in prostate cancer (PCa) remains unclear. The aim of the present study was to evaluate the expression and function of TUG1 in PCa. In the present study, we analyzed TUG1 expression levels of PCa patients in tumor and adjacent normal tissue by real-time quantitative PCR. Knockdown of TUG1 by RNAi was performed to explore its roles in cell proliferation, migration, and invasion. Here we report, for the first time, that TUG1 promotes tumor cell migration, invasion, and proliferation in PCa by working in key aspects of biological behaviors. TUG1 could negatively regulate the expression of miR-26a in PCa cells. The bioinformatics prediction revealed putative miR-26a-binding sites within TUG1 transcripts. In conclusion, our study suggests that long non-coding RNA (lncRNA) TUG1 acts as a functional oncogene in PCa development.
Collapse
|
47
|
Duan G, Song S, Niu S. WITHDRAWN: Long non-coding RNA HOTAIR promotes LPS-induced inflammatory injury by down-regulation of microRNA-124 in murine chondrogenic ATDC5 cells. Life Sci 2018:S0024-3205(18)30416-8. [PMID: 30031813 DOI: 10.1016/j.lfs.2018.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guoqing Duan
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Shiqiang Song
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Shuaishuai Niu
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
48
|
Wang Z, Liu Z, Wu S. Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget 2018; 8:31465-31477. [PMID: 28415557 PMCID: PMC5458222 DOI: 10.18632/oncotarget.16356] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, several long non-coding RNAs (lncRNAs) have been implicated in osteosarcoma (OS). However, the regulatory roles of lncRNAs in chemotherapy resistance of OS still remain unclear. This study aimed to screen a novel lncRNA that contributes to chemotherapeutic resistance of OS, and to explore the underlying mechanisms. Our data showed that lncRNA CTA was markedly downregulated in OS tissues compared to their matched non-tumor tissues, and low expression of lncRNA CTA was significantly associated with the advanced clinical stage and tumor size. In addition, OS patients with low lncRNA CTA levels showed a worse prognosis when compared with those with high expression of lncRNA CTA. Furthermore, we report that lncRNA CTA has an inverse relationship with miR-210 expression in OS tissues. LncRNA CTA could be activated by doxorubicin (DOX), and could promote OS cell apoptosis by competitively binding miR-210, while inhibit cell autophagy. On the other hand, lncRNA CTA was downregulated in DOX-resistant OS cells. Overexpression of lncRNA CTA reduced autophagy and subsequently overcame DOX resistance of OS in vitro and in vivo. Therefore, we demonstrate that lncRNA CTA is an essential regulator in DOX-induced OS cell apoptosis, and the lncRNA CTA-miR-210 axis plays an important role in reducing OS chemoresistance.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhendong Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
49
|
Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascul Pharmacol 2018; 114:122-130. [PMID: 29548902 DOI: 10.1016/j.vph.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/29/2022]
Abstract
Non-coding RNAs, once considered "genomic junk", are now known to play central roles in the dynamic control of transcriptional and post-transcriptional gene expression. Long non-coding RNAs (lncRNAs) are an expansive class of transcripts broadly described as greater than 200 nucleotides in length. While most lncRNAs are species-specific, their lack of conservation does not imbue a lack of function. LncRNAs have been found to regulate numerous diverse biological functions, including those central to macrophage differentiation and activation. Through their ability to form RNA-DNA, RNA-protein and RNA-RNA interactions, lncRNAs have been implicated in the regulation of myeloid lineage determination, and innate and adaptive immune functions, among others. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in macrophage functions in homeostasis and disease.
Collapse
|
50
|
Cai H, Yao J, An Y, Chen X, Chen W, Wu D, Luo B, Yang Y, Jiang Y, Sun D, He X. LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget 2018; 8:32905-32917. [PMID: 28415631 PMCID: PMC5464837 DOI: 10.18632/oncotarget.16462] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers with a poor prognosis. Though studies have implicated the roles of microRNAs in pancreatic cancer progression, little is known about the role of miR-613 in pancreatic cancer. In the present study, the expression of miR-613 was down-regulated in pancreatic cancer tissues and cancer cell lines. Down-regulation of miR-613 was positively correlated with tumor differentiation, advanced TNM stage, nodal metastasis and shorter overall survival in patients with pancreatic cancer. Overexpression of miR-613 suppressed cell proliferation, invasion and migration, and induced cell apoptosis and cell cycle arrest at G0/G1 phase in pancreatic cancer cells. Bioinformatics analysis, luciferase reporter assay and rescue experiments showed that notch3 was a direct target of miR-613. MiR-613 was inversely correlated with notch3 expression in pancreatic cancer tissues. The long non-coding RNA, HOX transcript antisense RNA (HOTAIR) was up-regulated in both pancreatic cancer tissues and cancer cell lines, and HOTAIR suppressed the expression of miR-613 via functioning as a competing endogenous RNA. In vivo studies showed that stable overexpression of miR-613 or knock-down of HOTAIR suppressed tumor growth and also reduced the expression of notch3. In conclusion, these results suggest that HOTAIR functions as a competing endogenous RNA to regulate notch3 expression via sponging miR-613 in pancreatic cancer.
Collapse
Affiliation(s)
- Huihua Cai
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, The Clinic Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong An
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Xuemin Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Weibo Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Boyang Luo
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Yong Yang
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|